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Abstract: The central air conditioning system accounts for 50% of the building energy consumption,
and the cold source system accounts for more than 60% of the total energy consumption of the central
air conditioning system. Therefore, it is crucial to solve the optimal control strategy of the cold source
system according to the cooling load demand, and adjust the operating parameters in time to achieve
low energy consumption and high efficiency. Due to the complex and changeable characteristics of
the central air conditioning system, it is often difficult to achieve ideal results using traditional control
methods. In order to solve this problem, this study first coupled the building cooling load simulation
environment and the cold source system simulation environment to build a central air conditioning
system simulation environment. Secondly, noise interference was introduced to reduce the gap
between the simulated environment and the actual environment, and improve the robustness of the
environment. Finally, combined with deep reinforcement learning, an optimal control strategy for the
central air conditioning system is proposed. Aiming at the simulation environment of the central air
conditioning system, a new model-free algorithm is proposed, called the dominant function upper
confidence bound deep Q-network (AFUCB-DQN). The algorithm combines the advantages of an
advantage function and an upper confidence bound algorithm to balance the relationship between
exploration and exploitation, so as to achieve a better control strategy search. Compared with the
traditional deep Q-network (DQN) algorithm, double deep Q-network (DDQN) algorithm, and the
distributed double deep Q-network (D3QN) algorithm, the AFUCB-DQN algorithm has more stable
convergence, faster convergence speed, and higher reward. In this study, significant energy savings
of 21.5%, 21.4%, and 22.3% were obtained by conducting experiments at indoor thermal comfort
levels of 24 ◦C, 25 ◦C, and 26 ◦C in the summer.

Keywords: deep reinforcement learning; chiller system; energy savings of air conditioning; AFUCB-
DQN; building cooling load

1. Introduction

With the rapid development of the global economy, building energy consumption is
increasing, and has become one of the three major energy-consuming sectors, alongside
industrial and transportation energy consumption. In office buildings that utilize central
air conditioning, the energy consumption of central air conditioning accounts for approxi-
mately 50% of the total building energy consumption [1]. The energy consumption of the
chiller system constitutes 60% to 80% of the entire air conditioning system [2]. Most central
air conditioning systems operate with parameters set to their maximum values, making the
optimization of chiller system operating parameters crucial for energy savings in the overall
central air conditioning system. The cooling load of building air conditioning is influenced
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by various factors, such as outdoor meteorological parameters, building design, and indoor
occupancy. Therefore, dynamically controlling the system’s operating parameters based
on cooling load demand to improve energy efficiency has typically been a focal point in
research on energy savings in central air conditioning systems [3]. Table 1 presents the key
findings from recent research articles in the field.

Since the introduction of adaptive algorithms in 1980, adaptive control has become
one of the important means to solve the problem of adjusting control parameters of air
conditioning systems [4]. In the context of the European Union (EU) and governments
around the world developing mandatory building energy research and conservation poli-
cies for buildings and their air conditioning systems [5], it has become crucial to properly
establish the energy performance of buildings and their different systems to reduce the gap
between building energy model (BEM) simulation results and actual measurements [6].
The core of central air conditioning energy-saving optimal control is to find the best air
conditioning control parameters while maintaining indoor comfort requirements to achieve
the goal of minimum energy consumption. Gao et al. [7] proposed an event-triggered
distributed model predictive control (DMPC) scheme for improving indoor temperature
regulation in multizone buildings. By comprehensively considering energy consumption
and thermal comfort, the scheme determines the optimal temperature set point and verifies
its effectiveness in practical cases. Sampath et al. [8] controlled the heating, ventilation, and
air conditioning (HVAC) system through an adaptive control system, which improved the
thermal comfort of the occupants and the system efficiency. Giuseppe et al. [9] proposed
an optimization framework based on model predictive control and genetic algorithms
to minimize heating energy costs and thermal discomfort. Yang et al. [10] successfully
reduced the total energy consumption of the air conditioning water system by using the
improved parallel artificial immune system (IPAIS) algorithm. Sun et al. [11] used the
equilibrium optimization (EO) algorithm to optimize the load scheduling of chillers in the
HVAC system, which effectively saved energy consumption. Tang et al. [12] proposed a
model predictive control (MPC) method for optimally controlling central air conditioning
systems integrated with cold storage during rapid demand response (DR) events, achieving
power reduction and indoor environment optimization, reducing energy consumption, and
ensuring comfort. However, central air conditioning systems are highly nonlinear, uncer-
tain, time-varying, and coupled, which increase the requirements for control algorithms.
Traditional adaptive algorithms and control methods often fail to achieve ideal control
effects when dealing with these challenges [13]. In addition, the mechanism modeling and
parameter identification of these algorithms are relatively complex.

Reinforcement learning (RL) [14] is a machine learning approach that has emerged in
recent years, and is characterized by self-learning and online learning capabilities. Through
the mechanism of “actions and rewards”, RL can achieve the adaptive optimization of
controllers in the absence of control system models, making it a data-driven control method.
Deep reinforcement learning (DRL) [15] inherits the feature representation capabilities of
deep learning and the ability of reinforcement learning to interact autonomously with the
environment. In recent years, DRL has been widely applied in the field of air conditioning
control, and can be categorized into model-based and model-free RL. Model-based methods
refer to the Markov decision process (MDP) five-tuple (state S, reward R, action A, state
transition probability P, discount factor gamma). If the five-tuple is fully known, it is
considered a model-based method; otherwise, it is regarded as a model-free method.

Model-based algorithms are appealing for task implementation because an optimized
model can provide the intelligent agent with “foresight” to simulate scenarios and under-
stand the consequences of actions, even in the absence of knowledge about the dynamic
environment. Monte Carlo tree search (MCTS) is the most well-known model-based al-
gorithm widely applied in many board games, such as chess and Go. The iterative linear
quadratic regulator (iLQR) [16] and MPC generally require stringent assumptions to be
made for their implementation. Zhao et al. [17] proposed a model-based DRL approach
using a hybrid model to address the heating, ventilation, and air conditioning control
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problem, which improved learning efficiency and reduced learning costs. Chen et al. [18]
combined model-based deep reinforcement learning with MPC to propose a novel learning-
based control strategy for HVAC systems, demonstrating the effectiveness of the algorithm
through simulation experiments. However, acquiring an accurate model is challenging
for most problems. Many environments are stochastic, and their dynamic transitions are
unknown, requiring the model to be learned. Modeling in environments with large state
and action spaces is particularly difficult, especially when the transitions are complex.
Furthermore, the model can only be effective if it can accurately predict future changes in
the environment. In particular, central air conditioning systems, as complex multivariable
systems, pose additional challenges in modeling and prediction.

Model-free RL learns optimal control strategies by interacting with the model-free
building environment, avoiding cumbersome modeling work [19] and offering better
scalability and generalization capabilities [20]. For instance, Heo et al. [21] proposed a
data-driven intelligent ventilation control strategy based on deep reinforcement learning,
effectively improving system performance through deep Q-network (DQN) algorithm-
controlled air conditioning systems. Yuan et al. [22] presented a reinforcement learning-
based control strategy for a variable air volume (VAV) air conditioning system. Wei et al. [23]
introduced a data-driven approach based on deep reinforcement learning to control variable
air volume HVAC systems. Deng et al. [24] combined active building environment change
detection with DQN to propose a novel HVAC control strategy, effectively saving energy
consumption. Lei et al. [25] proposed a practical person-centric multivariable HVAC
control framework based on DRL, utilizing a branching dueling Q-network (BDQ) to
significantly reduce energy consumption. Marantos et al. [26] applied neural network-
fitted Q-iteration methods to HVAC system control, achieving significant improvements in
energy efficiency and thermal comfort compared to rule-based controllers. Zhang et al. [27]
used the asynchronous advantage actor–critic (A3C) algorithm to control HVAC systems,
making them suitable for the overall building energy model and achieving energy-saving
effects. Wang et al. [28] applied the Monte Carlo actor–critic algorithm with long short-term
memory (LSTM) neural networks to HVAC system control to achieve optimization effects.
Ding et al. [29] proposed a deep reinforcement learning-based multizone residential HVAC
thermal comfort control strategy, implementing the optimal HVAC thermal comfort control
policy through a deep deterministic policy gradient (DDPG). Zhang et al. [30] reduced the
heating demand in office building heating systems through deep reinforcement learning
training. Gao et al. [31] developed a DDPG-based method to learn the optimal thermal
comfort control policy, effectively reducing HVAC energy consumption.

In recent years, research has primarily focused on proposing energy-saving strategies
for HVAC systems using deep reinforcement learning methods and validating the perfor-
mance of these algorithms. However, there is still insufficient research on energy-saving
strategies for cooling systems and improving deep reinforcement learning algorithms to
adapt to these strategies. Additionally, stable and secure data obtained from real-world
central air conditioning system environments are scarce, and the cost of data acquisition is
high, making it unsuitable for directly training reinforcement learning agents. Therefore, it
is necessary to establish a simulated environment for central air conditioning systems that
closely resembles real-world conditions.
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Table 1. Summary of previous research papers and their contributions.

Approach Reference Contributions

traditional algorithm [7] The proposed DMPC scheme can reduce the energy consumption of multizone
buildings and improve the thermal comfort of occupants.

[8] Higher air conditioning system performance and energy efficiency can be
achieved through adaptive control systems.

[9]
Through an optimization framework of model predictive control and genetic

algorithms, significant energy savings can be achieved in the coldest and
highest energy cost situations while maintaining comfort.

[10] Improved parallel artificial immune system algorithm reduces system
energy consumption.

[11] Successfully optimized the load distribution of chillers in the HVAC system
using a balance optimization algorithm, achieving energy savings.

[12]
An MPC approach is proposed to optimize the operation of central air
conditioning systems with integrated cold energy storage during rapid

demand response (DR) events.

Deep reinforcement
learning (model-based) [17] A hybrid model-based deep reinforcement learning approach is proposed for

HVAC system control.

[18]
Proposed model-based deep reinforcement learning and model predictive
control (MBRL-MC), a novel learning control strategy combining model
predictive control and deep reinforcement learning, for HVAC systems.

Deep reinforcement
learning (model-free) [21]

An intelligent ventilation control system based on the deep reinforcement
learning algorithm is proposed, which achieves the goal of real-time control of

indoor air quality and energy saving.

[22] Used RL algorithms to optimize air conditioning system operation, save
energy efficiently, and perform well in multizone air supply.

[23] A data-driven DRL approach was developed for intelligently scheduling a
building’s HVAC system, reducing energy consumption.

[24] A novel approach to HVAC control is proposed, utilizing active environmental
change detection and deep Q-networks.

[25] A practical deep reinforcement learning (DRL) approach is proposed for
multivariable, occupant-centric HVAC system control.

[26] A decision-making mechanism is proposed to support the smart thermostat
task using reinforcement learning techniques.

[27] A deep reinforcement learning framework for optimal control of HVAC
systems utilizing a whole building energy model is proposed.

[28] A reinforcement learning-based controller is proposed to optimize HVAC
systems in buildings using long short-term memory neural networks.

[29] A method for the thermal comfort control of multizone residential HVAC
systems based on deep reinforcement learning is proposed.

[30]
A practical control framework based on deep reinforcement learning

(BEM-DRL) is proposed for the application of a building energy model (BEM)
in real-time HVAC optimal control.

[31] A framework DeepComfort based on deep reinforcement learning is proposed
for thermal comfort and energy-saving control of buildings.

This research considered multiple factors that influence building cooling loads, includ-
ing solar radiation, human heat dissipation, heat transfer through external windows, and
heat transfer through exterior walls, to construct a simulation environment for building
cooling loads. For the chiller unit, cooling tower, and water pump, this research established
a simulation environment for the cooling source system. By coupling the simulation en-
vironment for the building cooling load with the simulation environment for the cooling
source system, this research created a simulated environment for the central air condition-
ing system. To make the simulation environment more realistic in terms of data collection
processes for operating parameters, this research introduced noise interference and, con-
sequently, enhanced the robustness of the environment. This approach not only allows
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the simulation of data anomalies caused by various disturbances, but also improves the
reliability of the simulation environment.

For the established simulated environment of the central air conditioning system, this
research proposes the advantaged upper confidence bound deep Q-network (AFUCB-DQN)
algorithm. Unlike traditional DQN algorithms, this research utilized an advantage function
to reduce the influence of air conditioning data variance on environmental variance. This
research also combined the upper confidence bound (UCB) algorithm to address the issue
of sampling errors caused by environmental stochasticity induced by noise. The main
contributions of this paper are summarized as follows:

1. This research proposes a comprehensive simulation environment for deep reinforce-
ment learning that considers the building cooling load, which can provide guidance
for the energy optimization of real-world central air conditioning systems.

2. This research took into account various disturbances encountered during sensor
data collection of the cooling source system in real-world environments. To reduce
the discrepancy between the constructed simulation environment and the real envi-
ronment, and enhance the robustness of the environment, this research introduced
noise interference.

3. For the proposed simulation environment of the central air conditioning system
in this paper, this research introduced an advantage function based on the DQN
algorithm and combined it with the UCB algorithm to form the proposed AFUCB-
DQN algorithm.

The remaining sections of this paper are organized as follows. Section 2 presents the
theoretical background of reinforcement learning, the Q-learning algorithm, and the DQN
algorithm. Section 3 constructs and couples the simulation environment for building cool-
ing load with the simulation environment for the cooling source system, while establishing
the Markov decision process for the central air conditioning system. Section 4 introduces
the proposed AFUCB-DQN algorithm. Section 5 validates the simulation environment and
discusses the experimental results. Section 6 summarizes the paper and proposes directions
for future work.

2. Related Theory

This section introduces the relevant theory of reinforcement learning, Q-learning, and
DQN algorithms. The main terms used in this paper are summarized in Table 1.

2.1. Reinforcement Learning

The reinforcement learning process can be represented by Figure 1 [32], which is a
system composed of an environment and an agent. The environment generates information
describing the system state, referred to as states. The agent observes the states and uses this
information to select actions and interact with the environment. The environment accepts
the actions and transitions to the next state, then it returns the next state and a reward to
the agent. When the (state→ action→ reward) loop is completed, one time step is finished.
By continually repeating this process, the environment eventually terminates, obtaining
the optimal policy for a specific task and maximizing the cumulative expected return.

2.2. Q-Learning

The Q-learning algorithm [33] is a classic model-free algorithm that involves con-
structing a Q-table that stores the expected rewards (Q-value) for different actions in each
state–action pair. In this algorithm, the agent selects actions based on the current state by
choosing the state with the maximum Q-value. The Q-value represents the estimation of
the current reward plus the discounted future rewards, and serves as an approximation of
the reward function.
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The Q-learning algorithm is not constrained by the environment model or the state
transition function, as it accumulates experience through interactions with the environment.
Convergence of the Q-table is achieved when the values in the table no longer undergo sig-
nificant changes. The updated formula for the state–action value function in this algorithm
is as follows:

Q(s, a)= Q(s, a)+α
(

r + γmax
at+1

Q(st+1, at+1) − Q(s, a)
)

(1)

In this context, the reward discount factor γ ∈ [0, 1] represents the extent to which
current actions influence future rewards. When γ equals 0, the agent only considers
immediate rewards [34]. The Q-learning algorithm learns by continuously updating the
Q-table. However, frequent read and write operations on Q-values can decrease learning
efficiency and limit the algorithm’s capability to handle larger state spaces.

2.3. DQN

The DQN combines the advantages of the Q-learning algorithm with deep neural
networks to enhance its ability to handle large state spaces [35]. The DQN algorithm uses
a deep neural network as a function approximator, consisting of two parts: the action
network and the target network. Initially, the action network and the target network
have the same parameter settings. During the training process, the parameters of the
action network are updated through training. However, after a certain number of steps
(N steps), the DQN algorithm copies the parameters of the action network to the target
network for parameter updates. In each iteration, the DQN algorithm randomly selects
a small batch of samples (st, at, rt, st+1) from the experience replay buffer, with st+1 as
the input of the action network, which outputs the Q-values for each action at state st,
denoted as Q(s, a, ω), whereω represents the parameters of the neural network. During
training, the weights of the action network are updated by solving the target values. When
computing the target values, the state st+1 is input into the target network, which outputs
the maximum Q-value for each action at state st+1, denoted as max

a+1
Q(st+1, at+1, ω).
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In the DQN algorithm, the loss function is constructed as shown in the following
formula:

L(ω)= E

[(
r + γmax

a+1
Q(st+1, at+1, ω) − Q(s, a, ω)

)2
]

(2)

Taking the partial derivative of the loss function with respect to the parametersω, we
obtain the next gradient and update the network parametersω.

δL(ω)

δω
=

[
r+
(
γmax

a+1
Q(st+1, at+1, ω) − Q(s, a, ω)

)]
δQ(s, a, ω)

δω
(3)

During the training process, the DQN algorithm incorporates an experience replay
mechanism, which breaks the correlations between samples and enhances the stability of
the algorithm. Additionally, the DQN algorithm constrains the range of reward values
and error terms, ensuring that the Q-values and gradient values remain within reasonable
bounds, further improving the stability of the algorithm.

3. Environment Construction

In this study, this article carried out the coupling of building cooling load simulation
environment and cold source system simulation environment, in order to realize the
comprehensive simulation and control optimization of central air conditioning system.
Specifically, this research established a building cooling load simulation environment that
can consider outdoor meteorological conditions and building characteristics, including
temperature, humidity, solar radiation, and building parameters, to accurately calculate
the building’s cooling load demand. At the same time, this research also established a cold
source system simulation environment to simulate the operating status of the chiller system.

In order to realize the coupling between the building cooling load and the cooling
source system, this research applied the output of the building cooling load simulation
environment as the input of the cooling source system simulation environment. Specifically,
the building cooling load simulation environment provides real-time cooling load demand
information to the cold source system simulation environment, and the cold source system
simulation environment adjusts the operating parameters of the chiller according to this
demand information, including chilled water supply temperature, chilled water flow,
cooling water flow, and cooling tower air volume. In this way, the cold source system
can be dynamically adjusted according to the actual demand of the building’s cooling
load, so as to optimize energy consumption and improve energy saving effects. Through
the above coupled methods, this research realized the comprehensive simulation and
control optimization of the central air conditioning system. This integrated approach can
more accurately simulate the operation of the central air conditioning system, and provide
guidance for the optimal control of the actual central air conditioning system.

In order to keep the indoor temperature stable, this research designed the cooling
capacity of the air conditioner to be 1.2 times the cooling load of the building, so as to
provide enough cooling capacity reserve to meet the demands of sudden temperature
fluctuations and load increases. Furthermore, in order to optimize the control parameters
of the cold source system, this research modeled the simulated environment of the central
air conditioning system as a Markov decision process, and used a deep reinforcement
learning algorithm for training and convergence. Through this modeling method, the
system can learn and output the best control action, so that the cold source system can be
optimized and controlled according to the actual situation, improving energy efficiency
and performance.

3.1. Building Cooling Load Simulation Environment

The office building in this study is located in Beijing, China. Therefore, the “Beijing
Calculation Base Method” is adopted to calculate the building cooling load. According to
the Code for Design of Heating Ventilation and Air Conditioning [36], in addition to using



Processes 2023, 11, 2068 8 of 21

cooling load indicators for necessary estimations during the conceptual or preliminary
design stages, a detailed and hourly calculation of the cooling load should be performed for
each air-conditioned zone. The total cooling load of the building, CLtotal can be calculated
as the sum of the summer cooling loads of the air-conditioned zones, as shown in Figure 2,
based on the types and properties of the heat gains. The calculation can be expressed by
the following formula:

CLtotal= CLq+CLch.1+CLch.2+CLr (4)

where CLq represents the hourly cooling load formed by the heat transfer through the ex-
ternal walls, CLch.1 represents the hourly cooling load formed by the heat transfer through
the temperature difference of the external windows, CLch.2 represents the hourly cooling
load formed by the solar radiation heat entering the room through the glass windows, and
CLr represents the cooling load caused by the heat dissipation from occupants.
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3.2. Establishment of the Chilled Water System Simulation Environment

The cold source system simulation environment is established to accurately simulate
and analyze the performance and energy consumption of the central air conditioning
system, so as to provide a reliable basis for the research of optimal control algorithms
and energy-saving strategies. In this simulation environment, this research considered the
equipment parameters, energy consumption calculation method, and operating constraints
of the central air conditioning system to ensure that the simulation results match the
behavior of the actual system. By establishing such a simulation environment, this research
helps us to better understand and optimize the performance of the cold source system,
and provides guidance for the energy efficiency improvement of the actual central air
conditioning system.

3.2.1. Simulation Environment for the Chilled Water System

This research investigated a widely applied central air conditioning system that uti-
lizes water as the refrigerant and chilled water units as the cooling source. Each type of
equipment is represented by a single unit, and their specific parameters are listed in Table 2.
To maintain a stable indoor design temperature, the cooling capacity of the air conditioning
system is set to 1.2 times the building’s cooling load. The main energy-consuming com-
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ponents of the central air conditioning system include chilled water units, chilled water
pumps, cooling water pumps, and cooling towers. For example,

Ptotal = Pchiller + Ppumpe + Ppumpc + Ptower (5)

where Ptotal represents the total energy consumption of the central air conditioning system,
Pchiller represents the energy consumption of the chilled water units, Ppumpe represents
the energy consumption of the chilled water pumps, Ppumpc represents the energy con-
sumption of the cooling water pumps, and Ptower represents the energy consumption of
the cooling towers.

Table 2. Parameters of the cooling system equipment.

Equipment Type Parameter Value

Chiller Unit
Cooling Capacity 120 kW

Cooling Power 45.3 kW

Cooling Water Pump

Rated Flow Rate 25.5 m3/h
Rated Power 18.5 kW
Rated Speed 2900 r/min
Rated Head 98 m

Chilled Water Pump

Rated Flow Rate 29.2 m3/h
Rated Power 18.5 kW
Rated Speed 2900 r/min
Rated Head 101 m

Cooling Tower

Rated Flow Rate 50 m3/h
Rated Power 1.5 kW

Rated Airflow 30,000 m3/h
Fan Rated Speed 720 r/min

The energy consumption of each piece of equipment is represented as follows:

Pchiller =
Qe

COP
(6)

Ppumpe =
ρgVeHe

3.6 × 106 · ηe
(7)

Ppumpc =
ρgVcHc

3.6 × 106 · ηc
(8)

Ptower =

(
ft

f0

)3
Ptower −r (9)

where Qe represents the cooling capacity, COP denotes the operating efficiency of the chiller
unit, Ve is the flow rate of chilled water, He represents the head of the chilled water pump,
ηe denotes the overall efficiency of the chilled water pump, ρ is the density of the fluid, g is
the acceleration due to gravity, Vc represents the flow rate of cooling water, Hc denotes the
head of the cooling water pump, ηc represents the overall efficiency of the cooling water
pump, ft is the operating frequency of the fan, f0 is the rated frequency of the fan, and
Ptower −r represents the rated power of the fan.

3.2.2. Constraints

Table 3 summarizes the operational parameter constraints for the chiller, pump, and
cooling tower based on the selected equipment’s product manuals and the code for design
of heating, ventilation, and air conditioning, considering the strong coupling within the
central air conditioning system and the limitations imposed by outdoor weather conditions:
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Table 3. Operational parameter constraints for chiller, pump, and cooling tower.

Equipment Parameter Constraint

Chiller Chilled water supply temperature (Teo) 7 ◦C ≤ Teo ≤ 12 ◦C

Pump

Cooling water flow rate (Vc) 14 m3/h ≤ Vc ≤ 29.2 m3/h
Cooling water pump frequency (fc) 23 Hz ≤ fc ≤ 50 Hz

Chilled water flow rate (Ve) 12 m3/h ≤ Ve ≤ 25.5 m3/h
Chilled water pump frequency (fe) 23 Hz ≤ fe ≤ 50 Hz

Cooling Tower
Cooling water return temperature (Tci) Twb ≤ Tci ≤ 33 ◦C

Cooling tower airflow rate (Vt) 14,000 m3/h ≤ Vt ≤ 30,000 m3/h
Cooling tower fan frequency (ft) 23 Hz ≤ ft ≤ 50 Hz

3.3. HVAC System MDP

In a central air conditioning system, the cooling water return temperature of the chiller
unit and the cooling tower’s heat dissipation performance are influenced by the cooling
water flow rate. Additionally, the cooling water flow rate and the cooling tower airflow
affect the heat dissipation performance of the cooling tower. By adjusting the frequency of
the cooling water pump, the flow rate of the cooling water can be effectively controlled, and
by adjusting the frequency of the cooling tower fan, the airflow of the cooling tower can
be changed. The chilled water supply temperature can be controlled by adjusting the set
value on the chiller unit, while the chilled water flow rate is related to the frequency of the
chilled water pump. Therefore, considering the operating characteristics and interactions
of each piece of equipment, this research selected the chilled water supply temperature,
chilled water flow rate, cooling water flow rate, and cooling tower airflow as optimization
variables for the air conditioning system.

The solution to the reinforcement learning task is based on the MDP. Therefore, this
research formulated the optimization problem of the central air conditioning system as
an MDP. MDP typically consists of four elements: state space (S), action space (A), state
transition probabilities (p), and immediate rewards (r). Here, the state space S represents the
intermediate results of energy consumption calculation, action space A represents the set
of instructions that the air conditioning controller can execute, state transition probabilities
p represent the probabilities of transitioning to the next state after executing different
control actions a in states, and immediate rewards r represent the rewards obtained by
taking different control actions a in states. This research treated the cooling area of the
central air conditioning system as the environment, and the intelligent controller built
based on the reinforcement learning algorithm acts as the air conditioning controller. The
optimization objective is to reduce the energy consumption required for the operation of
the air conditioning system while ensuring indoor comfort.

The MDP parameters of the central air conditioning system are primarily constructed
based on the optimization objective. In this study, the energy consumption of the central
air conditioning system is taken as the state for reinforcement learning. The chilled water
supply temperature, chilled water flow rate, cooling water flow rate, and cooling tower
airflow are set as selectable actions. When the reinforcement learning algorithm converges,
the output optimal actions correspond to the best control parameters for the cooling system
equipment. The state transition probabilities p depend on the true state of the environment
after executing control actions, so the algorithm needs to estimate the state transition
probabilities p through multiple samples for unbiased estimation. The hourly energy
consumption of the central air conditioning system is set as the immediate reward.

4. AFUCB-DQN

When facing large-scale MDPs, the Q-learning algorithm suffers from the problem of
explosive memory due to the large number of state–action pairs. In our research, which
focuses on the constructed simulation environment of the central air conditioning system,
the state space exhibits high-dimensional characteristics. When using the Q-learning
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algorithm, the high computational complexity and memory storage requirements degrade
the algorithm’s performance. To address these issues, this research employed the DQN
algorithm, where the approximation capability of neural networks helps improve the
stability of the algorithm.

Furthermore, the variance of air conditioning data can lead to environmental vari-
ance [37], thereby reducing learning efficiency and causing learning instability and over-
fitting. To address this problem, this research introduced the advantage function based
on the DQN algorithm, aiming to mitigate the impact of air conditioning data variance
on environmental variance. This approach enhances learning stability, improves learning
efficiency, and prevents overfitting. In the proposed simulation environment of the central
air conditioning system, to enhance the robustness of the environment and reduce the gap
between the simulation environment and the real environment, this research introduced
noise perturbation. However, the presence of noise perturbation can introduce errors in
the sampling results. When using the DQN algorithm, traditional ε-greedy exploration
cannot avoid the issue of error data, leading to decreased learning efficiency and increased
instability. To address this problem, this research adopted the UCB algorithm, which aims
to balance the trade-off between exploration and exploitation. It assigns confidence to each
action based on its potential value and uncertainty. By calculating and selecting the action
with the maximum UCB value based on confidence, this research effectively solved the
problem of sampling result errors caused by noise.

4.1. Algorithm Flow

The key components of the AFUCB-DQN algorithm include the neural network,
experience replay storage, objective network, and the advantage function. A neural network
is used to approximate the Q-value function, which receives a state as input and outputs a
corresponding action value. The experience playback storage is used to store the interaction
data between the agent and the environment for offline learning. The target network is a
fixed copy used to calculate the target Q-value to reduce the target value bias during the
learning process. The advantage function is used to calculate the advantage value of each
action, which represents its gain relative to the average value, so as to improve the stability
of the learning process. In contrast, the traditional DQN algorithm and DDQN algorithm
also include neural networks and experience replay storage for learning and storing the
Q-value function. However, they do not use advantage functions to account for action
value and uncertainty. A key component of the distributed double deep Q-network (D3QN)
algorithm also includes the advantage function, which considers the value and uncertainty
of each action. However, in terms of algorithm strategy, the D3QN algorithm still adopts
the ε-greedy strategy, which is to choose the action with the highest Q-value in the current
state [38]. Figure 3 illustrates the pathway process of AFUCB-DQN. The entire process can
be divided into the interaction process between the algorithm and the environment and
the learning process of the algorithm. In the interaction process between the algorithm
and the environment, the energy consumption of the central air conditioning system is
first inputted as state s into the algorithm, which outputs the corresponding action a for
state s. When the environment receives the action, it transitions from state s to state st+1,
and obtains the reward r for action a. At this point, a tuple (s, a, r, st+1) is obtained and
stored in the experience replay buffer based on the replay memory mechanism. When the
experience replay buffer reaches a certain size, the algorithm starts to learn by randomly
sampling from the experience replay buffer. First, the current state s is used as the input of
the Evaluate Network, which outputs the actual Q-value Q(s, a, ω). Then, the next state
st+1 is used as the input of the Target Network, which estimates the corresponding Q-value
max
a+1

Q(st+1, at+1, ω). Next, using Q(s, a, ω), max
a+1

Q(st+1, at+1, ω), and the reward r as

inputs of the loss function, the mean squared error is obtained. Finally, the algorithm
utilizes stochastic gradient descent to update the Evaluate Network and optimize the
action selection policy. During this process, the parameters of the Evaluate Network
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are fully copied to the Target Network after each iteration to ensure the update of the
Target Network.
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4.2. Advantage Function

The advantage function is a function used in reinforcement learning to evaluate the
relative superiority or inferiority of an action compared to other actions. In reinforcement
learning, an agent needs to choose the optimal action in a given state to maximize long-term
rewards. To achieve this goal, the agent needs to evaluate the potential rewards associated
with each possible action in the current state. The advantage function provides an effective
way to assess the value of each action, and helps the agent make informed decisions. The
advantage function is defined as follows:

Aπ(s, a)= Qπ(s, a) − Vπ(s) (10)

where Qπ(s, a) represents the long-term rewards obtained by choosing action a, and Vπ(s)
represents the average long-term rewards obtained in state s. Thus, the advantage function
Aπ(s, a) represents the additional rewards gained by choosing action a relative to the
average action.

The introduction of the advantage function helps to reduce the variance caused by
variations in the data of the air conditioning system, as it subtracts a baseline (state value
function Vπ(s)). By reducing the variance, the advantage function decreases the absolute
values of the state value function, thereby improving learning stability. The advantage
function decomposes the value function into action value and state value components,
reducing their correlation and making the learning process more stable. By using the
advantage function, the update processes of the action value and state value can be inde-
pendent of each other, reducing their mutual interference and improving learning stability.
In reinforcement learning, the reward signal is often sparse, which means the agent may
need to spend a considerable amount of time exploring the environment to obtain rewards.
By computing the advantage function, this research transformed the reward signal into a
denser signal, reducing the sparsity of the reward signal and making it easier for the agent
to find the optimal policy, thereby improving learning efficiency.

In contrast to the DQN algorithm, the AFUCB-DQN algorithm separates the Q-
network value function into two parts: the state value function component V(s, ω, ωV)
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and the advantage function component A(s, a, ω, ωA). The state value function compo-
nent represents the intrinsic value of the static environment itself, dependent only on state s
and independent of the specific action a. The advantage function component represents the
additional value obtained by choosing an action in a specific state, dependent on both state
s and action a. Finally, the two functions are combined to obtain the Q-value corresponding
to each action:

Q(s, a, ω, ωV, ωA)= V(s, ω, ωV)+A(s, a, ω, ωA) (11)

whereω represents the shared parameters of the neural network, andωV andωA represent
the unique neural network parameters for the state value function V(s) and the action
advantage function A(a), respectively.

4.3. UCB Algorithm

In the conducted study, the central air conditioning simulation environment that this
research established is a complex environment with inherent noise, which can introduce
errors in the sampled results. Existing DQNs explore using the ε-greedy strategy, which
involves uniform exploration and cannot address the errors caused by exploration. To
overcome this issue, this research introduced the UCB algorithm, which aims to balance
exploration and exploitation by exploring unknown choices as much as possible and
exploiting known rewarding choices. The UCB algorithm assigns a confidence level to
each action to balance the trade-off between exploration and exploitation, ensuring that
the potential value and uncertainty of actions are considered in each selection. The UCB
algorithm selects the next action based on the calculated UCB value. The confidence level
comprises the average reward and the confidence interval, where the average reward
represents the historical average reward of an action, and the confidence interval represents
the uncertainty range of the estimated average reward.

During the learning process, the UCB value for each selection is calculated as follows:

UCBi= Xi +

√
2lnt
Ni

(12)

where UCBi represents the UCB value of the i-th action, Xi denotes the average reward
obtained from selecting the i-th action, Ni is the number of times the i-th action has been
chosen, and t represents the current time step. The UCB algorithm selects the action with
the highest UCB value as follows:

at= argmaxi=1,...,KUCBi (13)

By replacing the ε-greedy strategy with the UCB algorithm, this research avoided
excessive randomness caused by the ε-greedy strategy, and addressed the errors in the sam-
pled results due to the stochasticity of the environment caused by noise. This improvement
helps enhance the decision-making performance in the simulation environment.

5. Experiments and Results

This section demonstrates the feasibility and accuracy of the cold source system simu-
lation environment through the description of the experimental setup and the verification
of the simulation environment and algorithm, and compares the convergence and energy
consumption of different algorithms at different indoor temperatures. These experimental
results provide guidance and a basis for the optimization and energy efficiency improve-
ment of the cold source system.

5.1. Experimental Setup

This research simulated an office area located in a public building in Beijing, with a to-
tal area of 600 square meter and a ceiling height of 3 meters. The office area accommodated
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30 lightly active employees. In the design of the building envelope, this research referred
to the Design Standard for Energy Efficiency of Public Buildings [39]. The heat transfer
coefficient of the external walls was set to 0.796 W/

(
m2 · ◦C

)
, and the heat transfer coef-

ficient of the windows was set to 3.1 W/
(
m2 · ◦C

)
, with the window area accounting for

80% of the wall area. Considering the working hours of the employees and the simulated
environment of the central air conditioning system, this research selected a weather dataset
provided by the Xihe Energy Big Data Platform [40]. This dataset included daily weather
data from 8:00 to 18:00 between 1 July 2021, and 31 August 2021, including temperature,
humidity, solar radiation, and other information.

Regarding the AFUCB-DQN algorithm, the specific design of the deep neural network
and hyperparameters are shown in Table 4. To enhance the algorithm’s performance, this
research selected GELU as the activation function. Compared to other commonly used
activation functions such as ReLU and sigmoid, GELU exhibits smoother nonlinear charac-
teristics, which helps improve the algorithm’s performance. Additionally, a sigmoid-like
transformation is introduced into the nonlinear transformation of the activation function,
allowing the output of the GELU function to span a wider range, thereby accelerating the
convergence speed of the model.

Table 4. Design of the deep neural network and hyperparameters in the AFUCB-DQN algorithm.

Size of Input 4
No. of hidden layers 2

Size of each hidden layer [8, 128], [128, 64]
Size of output 4

Activation function GELU
Optimizer Adam

Learning rate 10−3

Batch size 64
Discount factor 0.95

Buffer size 128
Delayed policy update U 2

5.2. Feasibility Verification of the Validation Environment

To verify the feasibility of the building cooling load simulation environment, this
research conducted accuracy validation using 250 sets of building cooling load simulation
data. The x-axis of the graph represents the sample number, ranging from 1 to 250, to
indicate the sequence and corresponding relationship of each dataset. According to the
cooling load standards for office buildings [41], the range of the cooling load is between
128–170 W/m2. As shown in Figure 4, the error between the calculated building cooling
load from the simulation environment and the cooling load standards is within±0.8 W/m2.
This indicates that the simulation environment is suitable for conducting simulation and
research on central air conditioning cooling source systems.

To verify the accuracy of the proposed air conditioning system simulation environment,
As shown in Figure 5, this research compared the simulated data obtained from our
simulation environment with the actual data used in the cooling source system portion of
reference [42]. The results show that the power difference between the simulated data and
the actual data was within ±7%, indicating that the simulation data can be used for the
simulation and research of central air conditioning cooling source systems.
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5.3. Algorithm Comparison

According to the Design Code for Heating Ventilation and Air Conditioning of Civil
Buildings [43], the thermal comfort level for indoor conditions during summer is classified
as Level I, with a temperature range of 24–26 ◦C and a humidity level of around 50%. To
meet the temperature requirements of different individuals, this research compared the
performance of different algorithms at indoor temperatures of 24 ◦C, 25 ◦C, and 26 ◦C.

Figure 6 shows the convergence of different algorithms at different room temperatures.
It can be observed that, compared with other algorithms, the AFUCB-DQN algorithm
exhibits more stable convergence and faster convergence speed under different indoor
temperatures, and is able to obtain higher rewards. This can be attributed to two main
aspects. First, the AFUCB-DQN algorithm has a better exploration–exploitation balance
ability than the DQN algorithm and the DDQN algorithm. The traditional DQN algorithm
and DDQN algorithm can only learn the Q-value of taking a specific action in a specific
state. When the actions taken in certain states have no significant impact on the final return,
the learning time will be wasted. Secondly, the DQN algorithm and the DDQN algorithm
use the ε-greedy strategy to explore, but in the face of complex environments with noise,
the effectiveness of exploration is low. The AFUCB-DQN algorithm effectively overcomes
the shortcomings of the traditional ε-greedy strategy in noisy environments by combining
the advantage function and the UCB algorithm. Such improvements enable the algorithm
to better cope with complex building cooling load simulation environments, improve the
effectiveness of exploration, and achieve more stable and rapid convergence performance.
Compared with the D3QN algorithm, although the D3QN algorithm can use the advantage
function to consider the value and uncertainty of each action, it still cannot avoid the error
data problem when using the ε-greedy strategy for exploration in an environment with
noise. Therefore, during the exploration process, the D3QN algorithm may be affected by a
certain degree of error data. To sum up, the AFUCB-DQN algorithm, by introducing the
consideration of the UCB algorithm and the advantage function, can more effectively solve
the problem of error data in the exploration process than the D3QN algorithm, and improve
the learning efficiency and stability. It should be noted that the cumulative rewards of the
DQN algorithm, DDQN algorithm, and D3QN algorithm are not stable enough, because
the existence of the ε-greedy strategy provides a certain probability that the algorithm will
explore other non-optimal behaviors, resulting in oscillations.

Figure 7 illustrates the energy consumption of different algorithms for each sample at
different indoor temperatures. It can be observed that the AFUCB-DQN algorithm consis-
tently achieves significantly lower energy consumption compared to the DQN algorithm,
DDQN algorithm, and D3QN algorithm. Additionally, the AFUCB-DQN algorithm demon-
strates stable energy-saving performance. To provide a more intuitive representation of the
energy-saving effect, Figure 8 presents the average hourly energy consumption of the DQN
algorithm, DDQN algorithm, and D3QN algorithm, and of the AFUCB-DQN algorithm,
in the central air conditioning system at indoor temperatures of 24 ◦C, 25 ◦C, and 26 ◦C.
The figure also indicates the percentage reduction in energy consumption achieved by each
algorithm compared to the original energy consumption. Therefore, while meeting the ther-
mal comfort requirements of different individuals during the summer, the AFUCB-DQN
algorithm exhibits significant energy-saving benefits compared to the DQN algorithm,
DDQN algorithm, and D3QN algorithm.
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6. Conclusions and Future Work

This study proposes an innovative method that combines the building cooling load
simulation environment, the cooling source system, and deep reinforcement learning to
optimize the control strategy of the central air conditioning system, and proposes the
cooling source system control based on the AFUCB-DQ algorithm optimization method.
This method improves the stability of the learning process by using the advantage func-
tion, and obtains a better exploration–utilization balance ability by introducing the UCB
algorithm, avoiding the error data problem that may occur during the exploration process.
By comprehensively considering various factors of building cooling load and introducing
noise interference, this study constructs an accurate and robust central air conditioning
system simulation environment, which can dynamically adjust the operating parameters
of the cooling source system according to the actual cooling load demand. After train-
ing and comparative analysis of the AFUCB-DQN algorithm, this research found that
under the premise of indoor thermal comfort requirements in summer, compared with
the DQN algorithm, DDQN algorithm, and D3QN algorithm, the algorithm shows more
stable convergence, faster convergence speed, and higher rewards, resulting in energy
optimization and significant improvements in energy savings. The operating parameters of
the cold source system obtained by the proposed method can provide effective guidance
for the operation of the actual central air conditioning system. The main focus of this
research is the optimization of energy consumption and energy saving effect under the
requirement of indoor thermal comfort in summer. However, for room use requirements in
other seasons or different working conditions, the applicability and effect of this method
still need further verification and exploration. Future research should consider meeting the
room use requirements under different working conditions, and explore methods, such
as multi-connected air conditioning systems and multi-agent reinforcement learning, to
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solve related problems, and extend the scope of optimization control to energy-saving
optimization throughout the year.

The central air conditioning system control optimization method proposed in this
study not only realizes the improvement in energy saving effect and the guarantee of indoor
thermal comfort, but also provides guidance and reference for practical application.
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Abbreviation
The following abbreviations are used in this manuscript:

AFUCB-DQN Advantaged upper confidence bound deep Q-network
UCB Upper confidence bound
EU European Union
BEM Building energy model
DMPC Distributed model predictive control
HVAC Heating ventilation and air conditioning
EO Equilibrium optimization
IPAIS Improved parallel artificial immune system
DR Demand response
RL Reinforcement learning
DRL Deep reinforcement learning
MDP Markov decision process
MCTS Monte Carlo tree search
iLQR Iterative linear quadratic regulator
MPC Model predictive control
DQN Deep Q-network
VAV Variable air volume
BDQ Branching dueling Q-network
A3C Asynchronous advantage actor–critic
LSTM Long short-term memory
DDPG Deep deterministic policy gradient
D3QN Distributed double deep Q-network
MBRL-MC Model-based deep reinforcement learning and model predictive control
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