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Abstract: Sugarcane is one of the main agro-industrial products consumed worldwide, and, therefore,
the use of suitable soils is a key factor to maximize its production. As a result, the need to evaluate
soil matrices, including many physical, chemical, and biological parameters, to determine the soil’s
aptitude for growing food crops increases. Machine learning techniques were used to perform an in-
depth analysis of the physicochemical indicators of vertisol-type soils used in sugarcane production.
The importance of the relationship between each of the indicators was studied. Furthermore, and
the main objective of the present work, was the determination of the minimum number of the most
important physicochemical indicators necessary to evaluate the agricultural suitability of the soils,
with a view to reducing the number of analyses in terms of physicochemical indicators required
for the evaluation. The results obtained relating to the estimation of agricultural capability using
different numbers of parameters showed accuracy results of up to 91% when implementing three
parameters: Potassium (K), Calcium (Ca) and Cation Exchange Capacity (CEC). The reported results,
relating to the estimation of the physicochemical parameters, indicated that it was possible to estimate
eleven physicochemical parameters with an average accuracy of 73% using only the data of K, Ca
and CEC as input parameters in the Machine Learning models. Knowledge of these three parameters
enables determination of the values of soil potential in regard to Hydrogen (pH), organic matter
(OM), Phosphorus (P), Magnesium (Mg), Sulfur (S), Boron (B), Copper (Cu), Manganese (Mn), and
Zinc (Zn), the Calcium/Magnesium ratio (Ca/Mg), and also the texture of the soil.

Keywords: land use; vertisols; machine learning; soil agricultural aptitude; sugar cane

1. Introduction

To achieve efficient and safe methods of food production it is important to improve
agricultural techniques and adapt farming practices to attend to the needs of the soil and
its appropriate management. There are multiple factors to achieve good crop management
and to optimize it, which require continuous evaluation for appropriate decisions to be
made. Additionally, predicting suitable areas to grow food in faces the issue of uncertainty
in the quality of the soil and the corresponding practices required to improve the health of
the soil to ensure it can fulfill the demands for global food necessities. World sugarcane
production in 2018 was 2,042,654 thousand tons, of which 56,842 thousand tons were from
Mexico (the seventh highest sugarcane producing country) [1]. The state of Veracruz in
Mexico contributes 38% of the sugarcane production [2].
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The agricultural aptitude of soil to obtain above 80 t/ha of sugarcane requires,
among others, the following: available Nitrogen above 300 kg/ha, Phosphorus (P) above
40 ppm, Potassium (K) above 468 ppm, and potential of Hydrogen (pH) between 6.6
and 7.3 amo [3,4]. These parameters have to be maintained and monitored because the
properties of soil vary greatly due to agricultural cropping patterns [5]

The challenge is still the optimization of the parameters that determine soil capability
to produce food using a minimum of physicochemical parameters. A strategy that has
proved to improve decision making in agriculture is the use of Artificial Intelligence (AI),
which analyzes big volumes of data [6] to solve nonlinear problems where there may
be no mathematical representations and to obtain models based on experience in cases
of supervised learning. AI has been employed in regard to many fruit, vegetable and
cereal crops, such as potato, lemon, and wheat [7]. In regard to maize, AI exhibited good
predictive capacity, obtaining the lowest root mean square error (RMSE) and the highest
determination coefficient (R2) [8]. In general, all of the results obtained provided accurate
descriptive data [6]. The evaluated areas have included fertilizer efficiency, prediction of
rainfall, crop production, soil preparation, crop pattern, and precision agriculture [9].

In this AI field, several models, such as the Decision Tree model (DT), have been imple-
mented to evaluate the population dynamics of soil organisms and how these dynamics are
affected by changes in different biological and physicochemical environmental attributes
and agricultural practices. AI has also been used to relate morphological, physical and
chemical soil properties to soil structure by creating a framework for Soil Quality assess-
ment, resulting in an adequate index that reproduces the effect of the interactions between
physicochemical variables, the arrangement of soil fragments and biological activity in the
soil [10].

Principal Component Analysis (PCA) was used to evaluate soil variables and con-
cluded that Magnesium (Mg), Calcium (Ca), potential of Hydrogen (pH), Silt, Clay, and
Potassium (K) are the main variables determining Soil Quality [11]. These methods appear
to be more sensitive to disturbances for management practices [12]. Other research, that in-
cluded 18 parameters and different soils, in terms of crop, residue and fertilization, showed
that the created indicator was most affected by the Nitrogen–Phosphorus–Potassium (NPK)
rate, and that other parameters failed to correlate yield significantly. Additionally, the PCA
synthesized the data [13].

Other research proposed two Soil Quality Index (SQI) approaches, applying PCA and
Expert Opinion (EO),by which 24 physical and chemical parameters were evaluated in the
surface and the control sections (0–100 cm) in soil. The results indicated five principal com-
ponents for the first methodology and six indicators for the second, the latter performing
better in both the surface and control section evaluations [14].

Regression methods, such as Relative Risk (RR), which is an alternative approach to
partial least squares regression (SIMPLS), Principal Component Regression (PCR), and
Partial Least Squares Regression (PLSR), were applied to synthesize ten physical and
chemical variables in soils, and it was concluded that the PLSR method was the most
robust [15,16]. Furthermore, Deep Autoencoders (DAs) have been applied to satellite
images to determine change detection in burnt areas, in mapping forests [17] and in
landslide susceptibility prediction [18]. Excellent classification results in three of the
projects [17,19] indicated that DL is an adequate tool in evaluating complex matrices of
variables. In Table 1 a comparative analysis of state-of-the-art research, separated into
configuration, target and main contribution, is presented.
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Table 1. Comparative table of different state-of-the-art research separated into configuration, target
and main contribution.

Name/Ref. Configuration Target Main Contribution

[20]
Comparative assessment of the
cubist model and the quantile

random forest models
Soil fertility index map

The topographic covariates
had strong predictive ability

for all the soil properties along
with the bioclimatic variables.

[21]

Visible near-infrared spectroscopy
and machine learning models, such
as Partial Least Square Regression
(PLSR), Support Vector Machine

(SVM), and Wavelet Neural
Network (WNN)

Soil organic carbon

A combination of the
techniques was most suitable
in pre-processing data with

different models.

[22]

Visible near-infrared spectroscopy
(VIRS) and machine learning (PLSR),

Support Vector Machine (SVM),
Artificial Neural Networks (ANN),

cubist combined with VIRS

Soil organic matter
The combination of algorithms

resulted in more precise
calibration–validation models.

[23]

Successive projections algorithm
(SPA), competitive adaptive weight
weighting algorithm (CARS), and
the combination of Smart Process

Automation (SPA) and (CARS)

Soil organic matter
The combination of algorithms

resulted in more precise
calibration–validation models.

[24]

Kriging interpolation, density-based
spatial clustering of applications

and noise (DBSCAN) validated with
random forest (RF) algorithms

Soil fertility
degradation (SFD)

Implementing Random Forest
and clustering provided an

accuracy above 95%.

[25]
SVM model paired with 7 Gaussian

Process, Random forest (RF) and
multi-linear regression (MLP)

Permeability of soil (PS)

The parameters of time and
water head were the most

effective to estimate
permeability of soil.

[26] Artificial intelligence model based
on ANN

Hydraulic
conductivity (Ks)

The model predicts Ks by
means of soil parameters, such

as silt, clay, organic matter,
bulk density, pH, and
electrical conductivity.

[27] Architectural model Soil fertility The model predicted organic
matter and clay

[28] Extreme Learning Machine model
with different activation functions

Available phosphorus,
available potassium,

Organic carbon (OC), B,
and pH

The model predicted four of
the five parameters evaluated.

[29] Various machine learning
techniques (K-Nearest)

Land susceptibility
zonation (LSZ)

The susceptibility maps of the
Landslid model paired with

the extreme learning adaptive
neuro fuzzy inference system
(LSM-ELANFIS-VII) provided

the most accurate results.

[30] Neighbor Naïve Bayes (KNN),
Multinomial Logistic Regression, Soil nutrient quality

Two models were accurate and
some uncertainties in the
process are to be studied.

[31] ANN and RF Mustard crop yield

The parameters used were pH,
electrical conductivity (EC),

OC, Nitrogen (N), P, K, S, Cu,
iron (Fe), Zinc (Zn) and Mn
and the most accuracy was
obtained with the KNN and

the ANN.

[32] Evaluation of soil nutrient content
through machine learning models Soil nutrient quality

Two models were accurate and
some uncertainties in the
process are to be studied.
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Therefore, the present research aimed to ascertain, by comparing algorithms, the
technique requiring the least parameters to achieve accurate results in determining the
capability of soils. Additionally, the results provide correlations among physicochem-
ical variables which could help farmers determine soil amendments faster to increase
crop yields.

2. Materials and Methods
2.1. Study Case

Veracruz is the state of Mexico that has the most sugar mills (20) in the country. The
experimental sites included those having the most sugar mills in a region called the High
Mountains in Veracruz, Mexico. Till June 2021 this region had 326,706 ha of sugarcane
and a total production of 19,134,311 tons, earning $45,984.21 USD per ton [2]. The area
has 57 municipalities with an approximate area of 6053 km2. The soils sampled covered
0.5% of the total surface planted with sugar cane. The soil is classified as Vertisol (Vp)
according to the World Soil Resources Report [1]. Figure 1 shows the selected soil and other
classifications of soils presented in the studied area.

(a) (b)

Figure 1. Types of soils present in the studied area include Andosol (purple), Leptosol (grey),
Acrisol (green), Vertisol (pink), Umbrisol (mauve), Luvisol (chartreuse), Phaeozem (brown), Cambisol
(orange), Chernozem (dark brown) and Arenosol (white) (a) and the samples location (blue spots) (b).

Specifically, the obtained soil samples were collected at the municipalities of Atoyac
(18°55′00.0′′ N 96°46′00.0′′ W), Camaron de Tejeda (19°01′00.0′′ N 96°37′00.0′′ W), Carrillo
Puerto (18°47′00.0′′ N 96°34′00.0′′), Coetzala (18°47′00.0′′ N 96°55′00.0′′ W), Ixtaczoquitlan
(18°51′04.6′′ N 97°03′04.4′′ W), Cordoba (18°51′018.300′′ N 96°57′002.200′′ W), and El Naran-
jal (18°47′038.100′′ N 96°55′030.5′′ W), which are areas that traditionally cultivate sugarcane
and include fertilizers, pesticides, herbicides and fuel in the processes of cultivation and
harvesting [33].

2.2. Soil Sampling and Physicochemical Determinations

The sampling procedure implemented to obtain the soil samples was the one described
in the standard SESDPROC-300-R3 (Environmental Protection Agency, 2014) and three
samples were obtained from each site. One from 0 to 10 cm, another from 10 to 20 cm
and a third from 20 to 30 cm. All of the samples were subjected to laboratory analysis to
measure the following 27 physicochemical parameters: texture (%sand, %silt, and %clay);
physical parameters: pH, electric conductivity, apparent density, field capacity 1/3 bar, and
permanent wilting point 15 Bar; OM, CEC, Sodium (Na), CS for Na, and Hydrogen (H);
macronutrients: phosphorus (P), Potassium (K), Calcium (Ca), Nitrogen–Nitrate (N2–NO3),
K/Mg ratio, Ca/Mg ratio, Magnesium (Mg), Sulfur (S), CS for K, CS for Ca and CS for
Mg; micronutrients: Boron (B), Copper (Cu), Iron (Fe), Manganese (Mn), and Zinc (Zn) .
The textural analysis was performed using the Bouyoucos hydrometer, pH was measured
by the 1:1 method ASTM D4972-13, electrical conductivity (EC) was measured by the
conductimetry method, and apparent density was measured by the method proposed by
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the United States Department of Agriculture (USDA). The Walkley and Black method [34]
(FAO, 2019) was conducted with the aim of determining the amount of OM expressed
regarding total organic carbon. Atomic absorption spectrometry was used to determine
the global composition of Na, K, Mg, and Ca in the soils. The composites were digested
in hot HCl and deionized distilled water solution (2:1 ratio) and, afterwards, the solution
was filtered and submitted for analysis. Exchangeable Cations, Nitrogen, Phosphorous,
and S Exchangeable cations were measured using silver thiourea, following the method
described by Pleyser and Juo [35]. Total nitrogen was measured by the Kjheldhal method,
phosphorous was measured by colorimetry, and S was measured by turbidimetry.

2.3. Soil Aptitude Evaluation

The results obtained from the parameters measured by the laboratory were separated
into 4 different groups, based on data from the literature of the desirable variables in the
soil for higher production of sugarcane (16 variables were by this system) [4,36,37]. The
four groups were the following: (1) unsuitable, (2) low, (3) media, and (4) high. Afterwards,
the results were summarized in a final evaluation of three groups (good, medium and
bad) using the following criteria: (1) Samples with 13% or less unsuitable values and eight
parameters or more (out of 16) scoring high were considered to have good quality soils;
(2) Samples with 62.5% of parameters in either medium, high or both were included in
the medium group; (3) Samples having seven parameters in either unsuitable or low, or in
the sum of both, were classified in the bad quality group. It must be mentioned that no
samples were included in two groups with these rules.

2.4. Machine Learning

To achieve the objective of the present study and for better comprehension of the pro-
cess, all the experiments evaluated with machine learning methodologies were segmented
into four categories, listed and explained below. Figure 2 presents the schematic diagram
of the methodology used in the present work.

Figure 2. Schematic diagram of the applied methodology.

2.5. Feature Importance Analysis

The Recursive Feature Elimination (RFE), Chi Square, Least Absolute Shrinkage and
Selection operator (LASSO) and Catboost (CB) algorithms were implemented to determine,
in detail, the most relevant physicochemical parameters, by executing different machine
learning models. The database from the laboratory analysis used for the experiments
contained one hundred soil samples of the studied area. This database included the 28 pa-
rameters listed in the soil sampling physicochemical determination and the soil aptitude
evaluation. All these parameters were evaluated with the four algorithms mentioned to de-
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termine the feature importance. The experiments and analysis of the data were developed
in Python programming language using Sci-Kit learn libraries.

2.6. Agricultural Capability Prediction

Through the identification of relevant variables, another experiment was carried out to
predict the aptitude of soil to grow sugarcane, with the objective of ascertaining how many
variables could determine the capability of soil. Reducing the number of variables in the
determination of the physicochemical parameters determining soil quality could decrease
time and costs. The tests were implemented using 27, 8, 5 and 3 variables, according to the
variables that showed higher importance in the Feature Importance Analysis executed. For
the first experiment, all 27 variables were used and the capability of soil was the predicted
variable. For the second experiment, 8 variables were used as inputs in the methodology
(Soil pH, K, Ca, B, Zn, N2-NO3 CEC, CS for H, CS for Na) and the capability of soil was
the predicted variable. For the experiment with five elements (K, Ca, Zn, CEC y CS for
Na), the feature performance results obtained in the experiments were used. Finally, the
experiments with three variables (K, Ca y CEC) were used to predict the capability of soil.
These experiments were carried out by using the following machine learning techniques:
linear regression (LR), Decision Tree (DT), Random Forest (RF), K Nearest Neighbor (KNN),
Support Vector Machine (SVM) and Catboost (CB). To implement these methodologies, a
cross validation of the data was executed to ensure the separation of the training data from
the test data to avoid having significant variance that could lead to an error in the accuracy
determination of each method. Another fundamental segment was the tuning of the
hyperparameters, by implementing algorithms, such as Grid Search and Random Search,
to find which variables were the more adequate hyperparameters to obtain better accuracy
in predictions. Figure 3 shows the schematic diagram of the prediction of agricultural
capability and the determination of physicochemical variables.

Figure 3. Schematic diagram of the prediction of agricultural capability and the determination of
relevant physicochemical variables.

2.7. Physicochemical Variables Prediction

The last segment of the experimentation was focused on the determination of the
physicochemical parameters in soil through the values of some of the parameters of higher
importance. The present segment estimates a great variety of physicochemical parameters
from a reduced number of known parameters. Three experiments were executed using
different numbers of parameters, selected by relevance, and determined using different
machine learning techniques, such as LR, DT, RF, KNN, SVM and CB. A prediction of
different physicochemical parameters was determined. The first test was executed using
the elements of Soil pH, Potassium, Ca, B, Zn, Nitrogen-Nitrate, CEC, CS H, CS for Na
with the objective of predicting OM, P, Mg, S, Cu, Mn, Ca/Mg and Texture. In the second
experiment, potassium, Ca, Zn, CEC, and CS for N were considered with the objective of
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predicting OM, P, Mg, S, B, Cu, Mn, Ca/Mg and texture. Finally, in the third experiment,
three parameters were used, K, Ca, and CEC, to predict the values of the parameters of soil
pH, OM, P, Mg, S, B, Cu, Mn, Zn, Ca/Mg and Texture. The results obtained enabled the
accuracy of each ML technique for the prediction of each physicochemical property of soil
to be ascertained. It also enabled determination of the accuracy of the predictions from a
certain number of parameters (8, 5 and 3 elements).

3. Results
3.1. Soil Aptitude Evaluation

The results of the soil aptitude evaluation clearly indicated that pH, organic matter,
phosphorus, potassium, calcium, conductivity, zinc, and nitrogen–nitrate marked important
differences between bad and good soil aptitudes. Similarly, in the results indicating bad
aptitude evaluation, a greater presence of elements such as sulfur, CS for H, CS for Na was
found. The Figure 4 shows the results obtained from the physicochemical properties of the
soils with respect to their soil aptitude classification.

Figure 4. Soil Aptitude Evaluation.

3.2. Feature Importance Results

The physicochemical analyses performed in the previous section offered the possibility
to determine the impact of each variable individually with respect to soil aptitude. However,
it was important to perform an analysis of the behavior of each variable with respect to
the others in order to know how they were interconnected and related to the soil aptitude
evaluation. The results of this relevancy analysis indicated that K, Ca, Zn, CEC, and CS for
Na were the parameters recognized by the four techniques (RFE, CHI SQUARE, LASSO,
CB) as the relevant parameters in determining the soil aptitude of vertisol soil. There were
also parameters, such as pH, B, N2–NO3 and CS H, where 3 techniques concurred in their
importance (RFE, CHI SQUARE and LASSO). Figure 5 shows the results obtained by these 4
methods. These parameters of importance were used in the following experiments, wherein
accuracy in the determination of soil aptitude using a reduced number of parameters was
evaluated with data presented in this study.
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Figure 5. Feature Importance using RFE, Chi Square, LASSO and CB.

3.3. Agricultural Capability Prediction Results

The results found after implementing the ML algorithms showed the average of the
accuracy results of the 6 algorithms with respect to the identification of the soil capability.
After specifically analyzing the results by algorithm type, the following observations were
made: by using 27 parameters as the input parameters in the ML algorithms, the highest
average accuracy was obtained with CB 93%; when using 8 parameters the highest average
accuracy was obtained with RF 91%; when using 5 parameters the highest average accuracy
was achieved with LR 91%; when using 3 parameters there were two algorithms with the
highest average accuracy, these being LR and KNN (91%). Figure 6 shows the best scores
related to the accuracy of the ML algorithms in the soil quality prediction.

Figure 6. Features Importance using RFE, Chi Square, LASSO and CB.

3.4. Physicochemical Parameters Prediction Results

The experiments carried out in this section were focused on ascertaining the accuracy
with which it was possible to determine the physicochemical parameters of soil from a
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reduced number of elements as input variables of the ML algorithms. In the first experiment,
8 elements (Soil pH, K, Ca, B, Zn, N2–NO3, CEC, CS H, CS Na) were used as the input
parameters and it was possible to predict OM, P, Mg, S, Cu, Mn, Ca/Mg and Texture.
Figure 7 shows the results focused on the evaluation of accuracy of the 6 machine learning
algorithms executed in the predictions. It can be appreciated, from Figure 7, that, for each
component to be predicted there was an algorithm that had the best accuracy and for each
element to be predicted there was an algorithm presenting the best accuracy. Mostly, the
CB algorithm presented the best accuracy globally with 71.5%. The one with the least
accurate results was the DT algorithm with 58% accuracy. The parameters that could be
predicted were OM (90% using CB), texture (77% using CB) and Mn (77% using LR) and
the parameter with the least accurate result was P with 0.55 accuracy using LR. Figure 6
provides a graphic with the results of the best predictions for each element. To the left of
the name of each element is the name of the ML algorithm executed with which the best
result was obtained.

Figure 7. Accuracy of the Ml algorithms using 8 input variables.

In the second experiment, 5 elements (K, Ca, Zn, CEC and CS N) were implemented
as inputs and it was possible to predict OM, P, Mg, S, B, Cu, Mn, Ca/Mg and texture.
Figure 8 shows the results focusing on the evaluation of accuracy of the 6 ML algorithms
used in the prediction. It can be appreciated from Figure 8 that, for each component being
estimated or predicted, there was an algorithm that had great accuracy. Therefore, Figure 8
indicates which algorithm presented the best accuracy in prediction for each element.
Broadly, 10 parameters were predicted with the KNN algorithm, which had the best global
accuracy with 73.11%, and the least global accuracy was obtained with CB (64%). The
parameters predicted with more accuracy were Ca/Mg (100% using KNN), B (86% using
RF) and OM (86% using LR), and the parameter with less accuracy was P with 45% using
LR. Figure 8 provides a graphic with the results of the predictions with the best accuracy
for each element. To the left of the name of each element is the ML algorithm executed in
which the best accuracy was obtained.
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Figure 8. Accuracy of the ML algorithms using 5 input variables.

In the third experiment, 3 elements (K, Ca and CEC) were used as inputs for the
evaluation and it was possible to predict soil pH, OM, P, Mg, S, B, Cu, Mn, Zn and Ca/Mg.
Figure 9 shows the results focusing on the evaluation of the accuracy of the 6 ML algorithms
used in the prediction. The general average of the prediction of the 12 parameters was
best executed by the KNN algorithm, with a global accuracy of 68%, and the least accurate
global result was obtained with the DT algorithm, with 68% accuracy. The parameters
that could be predicted with higher accuracy were Ca/Mg (91% using SVM) and S (0.86
using RF) and the least accurate prediction was for P (36% using SVM). Figure 9 provides a
graphic with the results of the best predictions for each element. To the left of the name of
each element is the ML algorithm with which the best accuracy was obtained.

Figure 9. Accuracy of the ML algorithms using 3 input variables.

Figure 10 provides a radial graphic with the accuracy of the ML algorithms using 8, 5
and 3 elements as inputs. The average accuracy was 76% for 8 elements as inputs, 76% for
5 elements as inputs and 73% for 3 elements as inputs.
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Figure 10. The average accuracy using 8, 5 and 3 elements as an input variables.

4. Discussion

The discussion of the present study is divided into three segments: relevant parameters,
agricultural capability prediction and physicochemical parameters prediction. This study
indicates that the four implemented techniques, RFE, CHI SQUARE, LASSO and CB,
determined K, Ca, Zn, CEC and CS for Na as being the most relevant parameters for vertisol-
type soil, and pH, B, N and CS H were determined to be relevant by three techniques
(RFE, CHI SQUARE, and LASSO). Meanwhile, [27] determined available Phosphorus (P),
available Potassium (K), organic carbon (OC), boron (B) and pH as being relevant for a
village-wise soil by implementing Extreme Learning Machine (ELM) and [20] established
that the relevant parameters were OC, N, pH, CEC, base saturation and exchangeable
cation, when implementing quantile regression forest (QRF) and the cubist model (CB). It
is important to implement various techniques to validate the parameters to be used.

In the segment regarding the agricultural capability prediction, the present research
evaluated the relevance of different numbers of parameters, and had good accuracy results
for the different techniques (77% to 93%) for specific technique and number of parameters.
Other authors have also evaluated the prediction ability of different models, with accuracy
results in the range of 85 to 95% [38,39] reported when implementing three algorithms, with
Random forest having the highest accuracy (72%), which was below the results obtained in
the present study, and, furthermore, the number of samples was not mentioned and neither
was the percentage of data used for training the model.

From the results, it is possible to have higher accuracy in agricultural capability
prediction using only three parameters for vertisol soils cultivated with sugarcane, these
being those with higher significance, namely, K, Ca and CEC. Most of the producers add
N, P and K fertilizers to soils because these have commonly been considered to increase
yield, without evaluating the present state of the soils. It is remarkable that, from the
present study, for one parameter to remain relevant is needs to connect with the rest of
the parameters. Additionally, the CEC is connected to the presence of organic matter,
which is known not only to be a relevant parameter to increase yield, but also soil structure,
availability of other cations and pH. Finally, Ca is also relevant, as its presence complements
the physical parameters and pH and the possible presence of complex structures that could
affect or impact absorption and availability of minerals.
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It can also be observed that with three parameters it is possible to have a system
capable of great accuracy in predicting soil aptitude. The impact these results can have is
relevant because the results indicate that it is not necessary to analyze all the parameters to
determine the ability of soil to grow sugar cane. By implementing ML algorithms using K,
Ca, and CEC as input parameters one can, with high accuracy, ascertain soil aptitude.

The third aspect to discuss is that the present study evaluated the possibility of
predicting parameters from other soil physicochemical parameters. It was observed that
10 parameters were likely to be predicted with the KNN algorithm, which had the best
global accuracy of 73%, while the least global accuracy was obtained with CB (64%). The
parameters predicted with more accuracy were Ca/Mg (1.0 using KNN), B (86% using
RF) and OM (86% using LR) and the parameter with least accuracy was P with 45%, using
LR. Other authors have aimed to predict different parameters, with accuracy ranging
from 86% to 97%, such as the following: exchangeable sodium percentage with different
models (ANN (89%) and Adaptive Neuro Fuzzy Inference System (92%)) [40], OM with
different models (Kennard-Stone (KS), Successive Projections Algorithm (SPA), Competitive
adaptive weight weighting algorithm (CARS) and their combination).

5. Conclusions

The present study evaluated the potential of different ML algorithms in predicting
the agricultural aptitude of soils with the least number of parameters and to determine if
it was possible to predict some other parameters to reduce the amount of soil analysis in
laboratories. After presenting the results, it can be concluded that the capability of Vertisol
soils in sugarcane production can be determined with three parameters and excellent
accuracy is obtained by using the KNN and LR algorithms. When evaluating the prediction
parameters from other parameters, many excellent prediction results were obtained for
different ML algorithms. These correlations can have an impact in developing countries on
the methodologies implemented to determine the agricultural capability of soils, so as to
help in increasing crop yields and coping with the environmental states of soils.
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Abbreviations
The following abbreviations are used in this manuscript:

Ca Calcium
Ca/Mg Calcium/Magnesium
CARS Competitive adaptive weight weighting algorithm
CB CatBoost
CEC Cation exchange capacity
CS H Cationic Saturation for Hydrogen
CS N Cationic Saturation for Nitrogen
Cu Copper
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DL Deep Learning
DT Decision Tree
EO Expert opinion
K Potassium
KNN K nearest neighbor
LASSO least absolute shrinkage and selection operator
LR Linear Regression
Mg Magnesium
ML Machine Learning
Mn Manganese
N2-NO3 Nitrogen - Nitrate
NPK Amount of Nitrogen, Phosphorus and Potassium
OC Organic Carbon
OM Organic Matter
P Phosphorus
PCA Principal Component Analysis
PCR Principal Component Regression
pH Potential of hydrogen
PLSR Partial Least Squares Regression
RF Random Forest
RFE Recursive Feature Elimination
RR Relative Risks
S Sulfur
SIMPLS An alternative approach to partial least squares regression
SPA Smart Process Automation
SQI Soil Quality Indexes
SVM Support Vector Machine
VIRS Visible near Infrared Spectroscopy
WNN Wavelet Neural Network
Zn Zinc
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