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Abstract: As societal interest in recycling of plastics increases, modeling thermochemical recycling of
vinyl polymers, e.g., via pyrolysis or reactive extrusion, becomes increasingly important. A key aspect
remains the reliability of the simulation results with fewer evaluation studies regarding convergence
as in the polymerization or polymer reaction engineering field. Using the coupled matrix-based
Monte Carlo (CMMC) framework, tracking the unzipping of individual chains according to a general
intrinsic reaction scheme consisting of fission, β-scission, and termination, it is however illustrated
that similar convergence demands as in polymerization benchmark studies can be employed, i.e.,
threshold values for the average relative error predictions on conversion and chain length averages
can be maintained. For this illustration, three theoretical feedstocks are considered as generated from
CMMC polymer synthesis simulations, allowing to study the effect of the initial chain length range
and the number of defects on the convergence demands. It is shown that feedstocks with a broader
chain length distribution and a long tail require a larger Monte Carlo simulation volume, and that the
head–head effects play a key role in the type of degradation mechanism and overall degradation rate.
A minimal number of chains around 5 × 105 is needed to properly reflect the degradation kinetics. A
certain degree of noise can be allowed at the higher carbon-based conversions due to the inevitable
decrease in number of chains.

Keywords: kinetic Monte Carlo; convergence; thermochemical degradation

1. Introduction

In chemical engineering and materials science, multi-scale modeling tools to design
and optimize industrial processes is becoming a standard modus operandi [1,2]. For
processes involving only elemental, hence, non-distributed species, the mathematics are
less complicated so that the industrial application of multi-scale model-based design is
quite mature [3–6]. In contrast, for processes with distributed species, as in polymerization
and polymer recycling, a more complex mathematical description is required with still
significant room for improvement and an ongoing search for the most industrially relevant
modeling approaches [7–10].

In case sufficient macromolecular or polymeric detail is required, so-called coupled
matrix-based kinetic Monte Carlo (CMMC) simulations are promising [11–14]. In such
simulations, the chemical and physical interactions are executed discretely for an ensemble
of molecules according to fundamental probabilities and kinetic rate laws, and structural
information regarding functional groups and monomer unit rate dependencies is stored in
coupled matrices. Macroscopic properties can therefore be related to distributed molecular
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characteristics, and explicitly calculated averages can be linked to the actual chemical make-
up of individual molecules. A specific advantage is that the exact location of structural
defects is known in each macromolecule so that chemical reactions either leading to a
chain length increase or decrease can be mathematically described. In this way, one is
not restricted to the calculation of only average chain length characteristics that define
average, in principle non-existing, molecules. Instead, complete chain length distributions
(CLDs) can be generated, even without the need of closure terms for more complex reaction
schemes [15–18].

A prerequisite for a reliable CMMC for polymer engineering purposes and in general
a reliable kinetic Monte Carlo (kMC) simulation is the use of a sufficiently high number
of molecules. It is thus paramount to develop mathematical frameworks delivering the
minimal (initial) simulation or MC control volume to guarantee a desired or acceptable
level of numerical convergence toward one or more targeted simulation outputs, e.g., con-
version, yield, and (average) chain length characteristics. The appropriate simulation
volume depends on several factors such as the number of reactions (in general events) and
macrospecies types, the spectrum of reaction (in general event) rates, the desired level of ac-
curacy, and the allowed computational cost. In practice, one often tends towards a trade-off
between an acceptable level of accuracy and the practical limitations of the computational
resources available [19]. This leads to the opportunity to optimize simulation approaches
in which an optimum is sought between computational cost and level of accuracy [20,21].

Interestingly, an approach to reduce the kMC computational cost for (intrinsic) free
radical polymerization (FRP) has been proposed by Gao et al. [21] by making use of
scaled reaction rates, downscaling the MC control volume to a point where it contains
only two radicals. A similar approach has been developed by Nasresfahani et al. [22] for
semi-batch (intrinsic) radical polymerization, demanding a constant simulation volume
despite the feeding of reactants, and thus compensation for the expansion of the molecular
ensemble by systematically rescaling to the minimum required MC volume. The authors
however highlighted that a sufficiently large initial MC volume should be chosen to
suppress the errors associated with too low radical numbers at start-up. Furthermore,
Trigilio et al. [19] put forward that for (intrinsic) FRP and reversible deactivation radical
polymerization (RDRP), as simulated based on basic reaction schemes, threshold values
can be defined for the convergence of kMC simulation output. For example, the relative
(discrete) variation of simulation outputs upon an increase in MC control volume should be
below 1% to enable convergence for the monomer conversion and below 0.5% to ensure an
acceptable calculation of the z-based average chain length (xz). Physically this implies, in
the absence of hybrid corrections, a number of radicals sufficiently larger than two in kMC
simulations, specifically if detailed multi-component or multi-modal CLD descriptions
are the simulation scope [23]. In related work, Trigilio et al. [23] focused on the most time
efficient algorithms and data structures for the macrospecies sampling step in the stochastic
simulation algorithm (SSA), being the core of any kMC simulation.

In contrast to polymerization, for polymer recycling, which is an emerging tech-
nique [24–26], only basic kMC numerical convergence tests have been conducted [27–31].
With increasing necessity of recycling plastics towards a more sustainable future, the in-
terest in modeling degradation has already significantly increased but the emphasis is
mostly on model output as such and parameter tuning to experimental data [7,28,29,32–42].
Recycling of plastics is in general divided in three main methods, being primary, secondary,
and tertiary recycling. Primary recycling is considered to be the re-use of the product.
Secondary recycling, often also referred to as mechanical recycling, is the process of re-
covering plastic waste for repeated polymer manufacturing via mechanical means [43].
Tertiary recycling is considered to be the chemical process in which the building blocks in
the plastics are recovered.

The present work brings the kMC fields of synthesis and recycling closer together by
focusing on the relation of the initial polymer sample size and the numerical convergence
of the recycling modification for an accurate representation of the yield and CLD averages.
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Emphasis is on the accurate CMMC modeling of the oxygen-free thermochemical recycling
kinetics of vinyl homopolymers with fast unzipping, thus fast production of the monomer
at elevated temperature by pyrolysis. Relevant polymers featuring such efficient thermal
degradation are for instance based on methyl methacrylate and styrene [29,43–47].

The degradation kinetics of these fast-unzipping polymers are to a first approximation
represented by fission, depropagation, and termination reactions, as illustrated in Figure 1,
in which R1 and R2 are general substituents, although they can also be a hydrogen atom.
For the fission reactions, a distinction is made between head–tail (HT) fission, head–head
(HH) fission, and unsaturated chain end (UCE) fission, as shown in Figure 1 (a–c) [45,48–50].
To not overload this figure, only one (theoretical) macromolecule is subjected to a HH (red),
a UCE (blue), and a HT-fission (green) for illustrative purposes. Tail–tail fission is ignored
for simplicity.
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Figure 1. Basic reaction scheme for thermochemical degradation of a general vinyl polymer; to
not overload the figure, a theoretical starting chain containing all defects/functionalities is shown.
Initiation occurs via head–tail fission (a), head–head fission (b), and end-chain fission with the formed
small radical assumed to go the gas phase similar as the monomer (c). Depropagation occurs via
end-chain β-scission of the formed secondary/tertiary (d) and primary (e) end-chain macroradical.
Termination can take place between two secondary/tertiary macroradicals via recombination (f) or
disproportionation (g), or between a primary and a secondary/tertiary macroradical via combination
(h) or disproportionation (i), or between two primary radicals via recombination forming a tail–tail
linkage (j). The radical type (secondary vs. tertiary) depends on R1 and R2 being a hydrogen or not.
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The fission reactions at the top of Figure 1 lead to the formation of macroradicals that
can be primary, secondary, or tertiary, the differentiation between secondary and tertiary
related to R1 and R2 being hydrogen or not. The formed macroradicals can undergo end-chain
β-scission (depropagation), which leads to the formation of monomer and is often referred
to as unzipping. As termination modes, both recombination and disproportionation can
take place [43,51]. Termination by recombination between a primary and secondary/tertiary
macroradical results in the formation of a HT-bond (Figure 1 (h)). For termination by recom-
bination between two primary macroradicals, a TT-bond (Figure 1 (j)) results; and between
two tertiary/secondary macroradicals, a HH-bond is obtained (Figure 1 (f)). Termination by
disproportionation leads to the formation of chain with a saturated chain end and a chain
with an unsaturated chain end (Figure 1 (g) and (i)).

In this work, a CMMC convergence analysis is performed for three feedstocks for
which the starting CLD for the thermochemical degradation simulations is generated
based on a priori conducted FRP simulation, following the CMMC principles outlined
in De Smit et al. [13]. For simplicity, intrinsic kinetics are considered and the shape and
position of the CLD is varied by playing with the synthesis rate coefficients. Specifically,
the relative importance of the termination modes and the variation of the polymerization
temperature allows to realize sufficiently different starting feedstocks, as highlighted
by the CLDs for feedstock A–C in Figure 2. It is shown that reaching convergence for
chain length characteristics is more demanding than for the carbon-based conversion,
especially for feedstocks with a broader CLD and a long tail. In addition, it is demonstrated
that the relative contribution of recombination and disproportionation during the prior
polymerization determines the degradation behavior.
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Figure 2. Number chain length distribution for feedstock A, B, and C to start a thermochemical
degradation. Polymerization simulation conditions to obtain these feedstocks can be found in the
Supporting Information (S1).

2. Modeling Section
2.1. CMMC Synthesis Simulations

Three (theoretical) polymer feedstocks have been generated from CMMC synthesis
simulations to study the convergence demands for CMMC modeling of thermochemical
degradation with fast unzipping (e.g., polyacrylics and polystyrinics). A first feedstock A is
a vinyl homopolymer (in silico) synthesized at a relative high temperature with dominant
termination by recombination. A second feedstock B is similar to feedstock A, but the
contribution of termination by recombination is reduced to 30%, implying 70% termination
via disproportionation during prior synthesis. This results in a polymer feedstock existing
out of 40% saturated chains, 40% chains with a UCE, and 20% chains which contain a
HH-linkage. As shown in Figure 2, compared to feedstock A, feedstock B consists of
relatively shorter chains. A third feedstock C is the result of an (in silico) synthesis at a
lower temperature leading on average to longer chains, as confirmed by the long tail in
Figure 2. For feedstock C, the 70–30% balance for the termination modes of feedstock B is
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maintained. An overview of the reaction rate coefficients to simulate the synthesis of the
three feedstocks can be found in the Supporting Information. These rate coefficients are all
within the range of reported literature data (Table S1) [13,52,53].

The simulation size for the synthesis of the feedstocks is defined based on the total
number of monomer units to be converted, being ∑i i·XPi , with i the chain length and XPi
the number of dead polymer chains of chain length i. For illustration purposes, the CMMC
synthesis is simulated until a monomer conversion of 0.20. For feedstock A and B, the
∑i i·XPi value at 0.2 monomer conversion is 109 and for feedstock C, this is 1010 (bold values
in Table 1). Hence, the initial number of molecules in the CMMC synthesis simulation of
feedstock A and B is 5 × 109 and 5 × 1010 for feedstock C. The number of chains is given
by ∑i XPi .

Table 1. Number of monomer units (∑i i·XPi ; column 2) in the starting feedstock for thermal degrada-
tion. This amount defines the initial MC simulation volume (column 3) for the thermal degradation
simulations. The numbers of chains comprising the initial feedstocks for thermal degradation are
given in column 4–6. These chains are randomly selected from a polymer ensemble generated via a
CMMC synthesis simulation with the number of monomer units equal to the italic values.

Case ∑i
i·XPi

MC Volume
[L]

A
∑iXPi

B
∑iXPi

C
∑iXPi

1 1.0 × 105 1.6 × 10−20 2.0 × 102 4.0 × 102 3.0 × 101

2 1.0 × 106 1.6 × 10−19 2.0 × 103 4.0 × 103 3.0 × 102

3 1.0 × 107 1.6 × 10−18 2.0 × 104 4.0 × 104 3.0 × 103

4 5.0 × 107 8.0 × 10−18 1.0 × 105 8.0 × 104 1.5 × 104

5 1.0 × 108 1.6 × 10−17 2.0 × 105 4.0 × 105 3.0 × 104

6 5.0 × 108 8.0 × 10−17 1.0 × 106 8.0 × 105 1.5 × 105

7 1.0 × 109 1.6 × 10−16 2.0 × 106 4.0 × 106 3.0 × 105

8 5.0 × 109 8.0 × 10−16 - - 1.5 × 106

9 1.0 × 1010 1.6 × 10−15 - - 3.0 × 106

2.2. Generation of Polymer Feedstocks to Study Convergence for Thermochemical Degradation

Out of the ensemble of macromolecules obtained after a converged CMMC synthesis
simulation up to 0.2 monomer conversion (i.e., a simulation with an initial monomer
amount equal to 5 × 109 for feedstock A and B, and 5 × 1010 for feedstock C; see Section S1
in the Supporting Information), a number of chains is randomly selected to form the
feedstock for the actual thermal degradation simulation. For feedstock A and B, as shown
in Table 1, seven cases were specified based on their ∑i i·XPi , whereas for feedstock C, this
was extended to nine as a larger MC control volume was necessary to reach convergence for
all degradation characteristics studied. In Table 1, it can be seen that feedstock C contains
the same order of magnitude for its number of chains at an ∑i i·XPi of 1010 compared to
feedstock A and B, for which ∑i i·XPi is 109. The simulation times for the degradation
of the three different feedstocks for all cases in Table 1 can be found in Section S2 of the
Supporting Information (Table S1 and Figure S1).

For the MC volume calculation during the thermal degradation, only the polymer frac-
tion was taken into account, assuming that the monomer species formed are immediately
transferred to the gas phase and degradation reactions only take place in the melt phase. For
the plotting of CLDs, a carbon-based conversion (Equation (1)) of 50% is always selected.

2.3. Degradation Reactions and Kinetic Parameters

Thermochemical degradation is modeled according to the reactions shown in Figure 1,
with the average rate coefficients specified in Table 2. The term average is used to stress the
ignoring of chain length or polymer (mass) fraction dependencies. These average values
can be seen as ball-park values for polystyrinics and polyacrylics and are well within the
range reported in literature, specifically around 700 K [13,29,43,54]. It should be added
that the current work does not aim at a highly accurate description of degradation kinetics
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of specific vinyl homopolymers, such that ball-park values connected to a basic reaction
scheme suffice.

Table 2. Reactions and (average) kinetic parameters for thermochemical degradation of the vinyl
polymer feedstocks A–C in Figure 2; all parameters values are ball-park only in the frame of studying
convergence aspects.

Fission Reactions Reaction a,b k Unit

Head–Head Fission PHH,i
kHHF→ Rx,i−j + Rx,j 2.0 × 10−2 s−1

Chain End Fission P=,i
kCEF→ Rx,i−1 + RM 2.0 × 10−4 s−1

Head–Tail Fission Pi
kHTF→ Rx,i−j + Rp,j 2.0 × 10−6 s−1

β-Scissions reactions Reaction k Unit

End chain β-scission
(tertiary/secondary radical) Rx,i

kECS,T→ Rx,i−1 + M 4.0 × 105 s−1

End chain β-scission
(primary radical) Rp,i

kECS,P→ Rp,i−1 + M 2.0 × 105 s−1

Termination reactions Reaction k Unit

Termination between two
tertiary/secondary radicals

Rx,i + Rx,j
kt,xx,c→ PHH,i+j 5.8 × 103 L mol−1 s−1

Rx,i + Rx,j
kt,xx,d→ Pi + P=,j 5.8 × 103 L mol−1 s−1

Termination between two
primary radicals Rp,i + Rp,j

kt,PP,c→ PTT,i+j 1.2 × 104 L mol−1 s−1

Termination between a primary
and tertiary/secondary radical

Rx,i + Rp,j
kt,xP,d→ PTT,i+j 5.8 × 103 L mol−1 s−1

Rx,i + Rp,j
kt,xP,d→ Psat,i + Puns,j 5.8 × 103 L mol−1 s−1

a The first subscript indicates the defect/functionality which needs to be present in the chain to undergo the
reaction. b Depending on the nature of the vinyl homopolymer, the subscript x stands for a tertiary or secondary
end-chain macro radical.

2.4. Thermochemical Degradation Convergence Characteristics

CMMC makes it possible to store and analyze different process characteristics on the
level of the individual molecule. In this work, focus is mostly on the main conventional out-
put parameters as common for deterministic solvers, i.e., carbon-based conversion (convC),
number average chain length (xn), mass average chain length (xm), xz, and dispersity (Ð):

convC =
XC,product

XC,0
(1)

xn =
∑i i·XPi

∑i XPi

(2)

xm =
∑i i2·XPi

∑i i·XPi

(3)

xz =
∑i i3·XPi

∑i i2·XPi

(4)

Ð =
Xm

Xn
(5)

In these equations, XC,product is the number of carbon atoms present in the (polymer)
product at a certain time and XC,0 is the number of carbon atoms present in the feedstock
at the start of the degradation. In addition to the model outputs listed in Equations (1)–(5),
the complete CLD at 0.5 carbon-based conversion and the evolution of the concentration of
HH-linkages and UCEs are considered.
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All simulations were compiled using the intel (R) Visual Fortran Compiler XE 15.0.6.285
with active compiler optimization on a desktop computer with an Intel i7-8650U processor.

2.5. Convergence Criteria for Thermochemical Degradation

A visual validation regarding convergence was done in a first step by plotting the
temporal or carbon-based conversion profiles of the characteristics or model responses of
interests with increasing case number, thus increasing MC volume (Table 1).

In a second step, the average relative differences between subsequent cases are mapped
according to the principles of Trigilio et al. [19], based on time for the carbon-based conver-
sion and based on a carbon-based conversion range from 0 to 0.95 for the other characteris-
tics. As illustrated in Figure 3, this means that for every model response variable Y, the
relative error between two consecutive cases (for simplicity c1 and c2) for an observation i
for the independent variable X (e.g., a given time or conversion) is initially calculated as:

εY,i,c1→c2(%) = 100×
∣∣Yc2,i −Yc1,i

∣∣
Yc1,i

(6)

to then obtain an average relative error:

εx,c1→c2(%) =
∑i εY,i,c1→c2

imax
(7)

in which imax is the number of observations for the response.

Processes 2023, 11, x FOR PEER REVIEW 7 of 20 
 

 

Ð =   (5)

In these equations, 𝑋 ,  is the number of carbon atoms present in the (polymer) 
product at a certain time and 𝑋 ,  is the number of carbon atoms present in the feedstock 
at the start of the degradation. In addition to the model outputs listed in Equations (1)–
(5), the complete CLD at 0.5 carbon-based conversion and the evolution of the concentra-
tion of HH-linkages and UCEs are considered. 

All simulations were compiled using the intel (R) Visual Fortran Compiler XE 
15.0.6.285 with active compiler optimization on a desktop computer with an Intel i7-8650U 
processor. 

2.5. Convergence Criteria for Thermochemical Degradation 
A visual validation regarding convergence was done in a first step by plotting the 

temporal or carbon-based conversion profiles of the characteristics or model responses of 
interests with increasing case number, thus increasing MC volume (Table 1). 

In a second step, the average relative differences between subsequent cases are 
mapped according to the principles of Trigilio et al. [19], based on time for the carbon-
based conversion and based on a carbon-based conversion range from 0 to 0.95 for the 
other characteristics. As illustrated in Figure 3, this means that for every model response 
variable Y, the relative error between two consecutive cases (for simplicity c1 and c2) for 
an observation i for the independent variable X (e.g., a given time or conversion) is initially 
calculated as: 𝜖 , , → (%) = 100 , ,,   (6)

to then obtain an average relative error: 𝜖 , → (%) =  ∑ , , →   (7)

in which 𝑖  is the number of observations for the response. 

 
Figure 3. Conceptual representation of the relative difference in error (𝜖𝑥,𝑖,𝑐_1→𝑐_2) between two dis-
creet observations for two generic cases (c1 and c2) for the model response Y [19]. 

As in the work of Trigilio et al. [19], a threshold of 1% was used for the convergence 
determination of conversion, 𝑥 , 𝑥 , and Ð. For 𝑥 , a threshold value of 0.5% was put 
forward as in previous work on polymerization [19]. Conversion data output was written 
out every millisecond, and for data plotted as a function of conversion, every 10-3 carbon-
based (fractional) conversion. 

Figure 3. Conceptual representation of the relative difference in error (εx,i,c_1→c_2) between two
discreet observations for two generic cases (c1 and c2) for the model response Y [19].

As in the work of Trigilio et al. [19], a threshold of 1% was used for the convergence
determination of conversion, xn, xm, and Ð. For xz, a threshold value of 0.5% was put
forward as in previous work on polymerization [19]. Conversion data output was written
out every millisecond, and for data plotted as a function of conversion, every 10-3 carbon-
based (fractional) conversion.

3. Results and Discussion

In this section, a convergence analysis is presented for the thermochemical degradation
of the three feedstocks defined in Figure 2 considering the simulation volumes listed in
Table 2. Focus is on the carbon-based conversion (convC), number average chain length
(xn), mass average chain length (xm), z-based average chain length (xz), and dispersity (Ð).
For each feedstock, both a qualitative visual analysis as well as a quantitative analysis
based on the average relative error between two consecutive cases is given, complemented
by an inspection of chain length distributions (CLDs) and defect concentration profiles. The
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converged results are also directly compared considering all feedstocks jointly to highlight
the relevance of a sufficiently high number of radicals in the MC control volume.

3.1. Convergence Analysis for Feedstock A with a Low Average Chain Length and Only
Head–Head Defects

The model response for which the convergence is checked initially for feedstock A is
the carbon-based conversion. As shown in Figure 4, a first visual analysis of the conversion
plots for the cases in Table 1 indicates that a satisfactory description is obtained from case 2
onwards. The deviations for the cases with a lower simulation volume from the converged
solution (close to case 2) can be explained by the overestimation of structural defects, due
to lack of a sufficient number of chains representing the feedstock. As shown in Figure 5, a
too high simulated HH-linkages concentration can be seen relative to the converged values.
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It should be noted that when the conversion progresses, for every case, the absolute
number of defects decreases, together with the volume of the melt phase. Both effects more
or less cancel out for converged cases so that a nearly constant concentration of HH-linkages
is obtained during thermochemical degradation in Figure 5, bearing in mind that this is
the main initiation event for feedstock A. Yet, Figure 5 reveals that mismatches between
cases are more evident at higher conversions, specifically for lower case numbers. At a
conversion above 0.8, we even see that only for the very high case numbers the stochastic
noise is sufficiently low. Inherently, at very high conversions a limited number of chains is
left. A way to overcome this is to further increase the initial volume to higher numbers as in
Table 1 or to, e.g., duplicate a given composition at a given conversion. However, the added
value of such modeling approaches is very limited in view of the extra computational cost.
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The differences from the converged numerical results for the simulations with a
too low case number become further visible when looking at the average chain length
characteristics. In Figure 6, the carbon-based conversion dependencies of xn, xm, xz and
Ð are shown. Case 1 is highly deviating and case 2 is at the edge of acceptable at the
lower conversions, whereas the other cases give acceptable results. A deviation from the
converged value becomes again most visible above a carbon-based conversion of 0.8, and
this now up to case 5. Hence, to properly reflect the (average) chain length characteristics
up to high conversions, larger simulation volumes are generally required compared to only
a demand of convergence for the conversion.
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Figure 6. Effect of the MC control volume on the evolution of (a) the number average chain length
(xn), (b) mass average chain length (xm), (c) z-average chain length (xz), and (d) dispersity (Ð) during
thermochemical degradation of feedstock A (Figure 1); model parameters: Table 2.

Besides the visual validation of convergence in Figures 4–6, numerical validation of
feedstock A was performed according to Equation (7), as shown in Table 3 for all the model
responses covered in Figures 4–6. The convergence for conversion is very fast and even for
the first case not that far away from the threshold of 1%. For xn, xm and Ð the convergence
is obtained at case 3. For xz, convergence is however only obtained at case 6, highlighting
as in the polymerization work of Trigilio et al. [19] and Marien et al. [18] that it is more
difficult to calculate the tail of a CLD in an accurate manner.

Table 3. Average relative error (%) for the carbon-based conversion (εconvC ) the number average
chain length (εxn ), mass average chain length (εxm ), dispersity (Ð), and z-average chain length (εxz )
for feedstock A. The starting point of reaching the threshold value (by default 1% but for εxz 0.5%)
between two consecutive cases is highlighted in bold italic for each parameter.

Cases εconvC (%) εxn (%) εxm (%) εÐ (%) εxz (%)

1 → 2 4.75 14.65 14.23 2.40 13.58
2 → 3 0.61 1.10 1.33 1.41 2.77
3 → 4 0.35 0.63 0.63 0.28 0.99
4 → 5 0.17 0.27 0.30 0.13 0.61
5 → 6 0.22 0.40 0.45 0.12 0.58
6 → 7 0.09 0.06 0.09 0.08 0.16
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This can also be seen in Figure 7, in which the (number) CLD for case 1 to 6 is shown
with respect to the converged case 7. It is visible that for case 1 and 2, the control volume
is so low that the population of chains is so small that one is unable to obtain a proper
representation of the CLD. With increasing control volume, a more well-defined CLD
becomes visible. Very close to convergence (comparison of case 6 and case 7), it becomes
visually nearly impossible to distinguish the two CLDs from each other. From a practical
point of view, one could even put forward that the noise in case 5 is already acceptable to
obtain a qualitative interpretation. This is supported by the xz relative error data in Table 3
as the value mentioned for the transition from case 4 to case 5 is only slightly above the
threshold of 0.5 (0.61).
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Figure 7. Number chain length distribution (CLD) at a carbon-based conversion of 0.5 for feedstock
A for several cases with the highly converged CLD corresponding to Case 7 included in all subplots
for comparison; (a) case 1, (b) case 2, (c) case 3 and 4, (d) case 5 and 6. Pragmatically, case 5 is already
very close to the converged one.

3.2. Convergence Analysis for Feedstock B/C with Low/High Average Chain Length and Saturations

In this subsection, a similar discussion to that performed in Figures 4–7 and Table 3
for feedstock A is included. It should be remembered that feedstock B is equivalent to
feedstock A with the only difference that in addition to termination by recombination
(30%), disproportionation (70%) also took place during the prior polymerization. This
causes the average chain length of the feedstock to decrease (see Figure 2) and for a fixed
control volume results in an increase in the number of chains compared to feedstock
A for the degradation simulation (Table 1). Note that feedstock C is obtained via (in
silico) polymerization at a lower temperature compared to feedstock B, resulting in lower
termination rates with respect to propagation, creating longer chains during synthesis
(Figure 2).

In Figure 8, the carbon-based conversion is shown as a function of the time for all
seven cases for feedstock B. Compared to feedstock A, feedstock B shows an overall slower
thermochemical degradation profile. This is due to the difference in kinetics as there are
now also chains present which do not contain HH-bonds. These chains have a slower
(degradation) initiation rate and thus an overall slower degradation mechanism. When
looking at the conversion plot, one can again see that convergence is visually obtained from
case 2 onwards.
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The overprediction of the conversion for lower case numbers can again be found in the
overprediction in head–head defects, as is shown in Figure 9a. Compared to feedstock A, in
feedstock B, both saturated chains and chains with unsaturated chain ends are present. This
causes the HH-linkages concentration to decrease more rapidly to a zero value compared to
feedstock A. This preferred degradation of chains with HH-linkages causes an increase in
the concentration of unsaturated chain ends, as the volume of the remaining polymer chains
reduces with this preferred degradation of the chains containing HH-linkages (Figure 9b).
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Figure 9. Effect of the MC control volume on the concentration of (a) head–head linkages during
thermochemical degradation of feedstock B and (b) the concentration of head–tail linkages expressed
in mol·L−1.

Upon looking at the average chain length characteristics in Figure 10 for feedstock
B, the effect of a broader distribution compared to feedstock A becomes visible. As the
population consists of more chains, for a given MC control volume, the number average
chain length xn is already well-defined from case 2 onwards. For xm and xz, more stochastic
noise results for case 2 and 3 compared to xn as it remains challenging to represent the
tail more accurately, bearing in mind the initial shape difference in both feedstock CLDs.
This convergence delaying effect also become visible in the dispersity plot where we see
convergence from case 4 onwards. Furthermore, as for feedstock A, the increase in noise at
the end of the simulation becomes more visible with an inherent reduction in the number
of chains as a function of conversion.
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In Figure 10, we can also see a significant drop of the (average) chain lengths of
the polymer compared to feedstock A (Figure 6). For feedstock A, all chains are mainly
initiated by HH-fission, with no direct chain length-dependent probability of which chains
initiate primarily. This results in a gradual reduction of the number of chains over the
polymer population and thus only slightly changing average properties. For feedstock
B, in contrast, chains with HH-bonds are mainly longer chains in the population thus
when these first start to degrade the average chain length drops. Moreover, longer chains
contain more HT-linkages, making longer chains statistically more susceptible to HT-fission
than shorter chains, thus resulting in an additional lowering of the average chain lengths
during degradation.

Again, we included results based on the average relative error (Equation (7)) as well.
As shown in Table 4, one can see that already from case 2 onwards convergence is obtained
in terms of the carbon-based conversion. Similarly, xn convergence is secured from case 2
onwards, yet xm and consequently Ð converge only later, more specifically from case 3
onwards. The average relative error on xz goes below 0.5 % only from case 5 onwards,
again highlighting the more difficult convergence of the tail, confirming the necessary
minimal representation of the heavier fraction of chains of the polymer distribution.

The obtaining of convergence only from case 5 onwards for xz is also visually observ-
able when looking at the number CLD of the different cases in Figure 11. The heavily
underrepresented population is clearly visible for case 1 and 2, as it struggles to even
represent the form of the distribution itself. For case 3 and 4, noise is still noticeable yet the
general form of the CLD becomes more pronounced. Almost noise-free simulations result
for case 5 and 6, consistent with highly converged result for case 7.

For feedstock C, similar figures to those for Figures 8–11 are included in Supporting
Information (Section S3; Figures S3–S6). It follows that compared to the previous feedstocks,
convergence is reached only for larger MC control volumes, which can be expected as
for a given MC volume less chains are present knowing that for feedstock C most of the
starting chains are quite long. For example, the carbon-based convergence in Figure S3
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is only reasonable from case 3 onwards (before case 2). However, we can still see some
stochastic noise in case 3 so that one could say that a dedicated convergence requires even
a higher case number. When looking at the variation of the concentration of HH-linkages
in Figure S4, the limitations of the very low number of chains (only 30) representing the
polymer feedstock in case 1 are very evident. Moreover, even for cases 2, 3, and 4, very clear
visual differences in HH-linkage concentrations are noticeable, this in contrast to the results
before. Pronounced deviations are also observed in case 1 and 2 for the concentration of
unsaturated chain ends (Figure S5b).

Table 4. Average relative error (%) for the carbon-based conversion (εconvC ) the number average
chain length (εxn ), mass average chain length (εxm ), dispersity (Ð), and z-average chain length (εxz )
for feedstock B. The starting point of reaching the threshold value (by default 1% but for εxz 0.5%)
between two consecutive cases is highlighted in bold italic for each parameter.

Cases εconversion (%) εxn (%) εxm (%) εÐ (%) εxz (%)

1→ 2 21.03 3.23 5.16 6.86 11.91
2→ 3 0.25 0.67 1.51 1.22 3.22
3→ 4 0.13 0.68 0.64 0.56 1.05
4→ 5 0.09 0.38 0.78 0.41 1.42
5→ 6 0.03 0.20 0.23 0.13 0.31
6→ 7 0.02 0.06 0.07 0.03 0.13
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Figure 11. Number chain length distribution (CLD) at a carbon-based conversion of 50% for feedstock
B for several cases with the CLD corresponding to case 7 included in all subplots for comparison;
(a) case 1, (b) case 2, (c) case 3 and 4, (d) case 5 and 6.

This slower convergence for cases 1, 2, and 3 compared to the other feedstocks is
also evident for the average chain length characteristics in Figure S5. By looking at xn in
Figure S5, the effect of the limited number of chains is clearly visible for case 1. We can
say that visually, convergence is only obtained from case 4 onwards. For xm and xz, a
stronger deviation of the converged values is visible due to the higher kinetic influence of
the longer chains, as shown by the fast drops in Figure S5b,c. Due to the presence of many
larger chains, this part of the chain population decreases faster compared to feedstock A
and B, leading to a faster underrepresentation of the feedstock’s chain population with
decreasing simulation volume, resulting in turn in an increase in stochastic noise with
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increasing carbon-based conversion. For xm and Ð, convergence is therefore only obtained
from case 5 onwards and for xz, convergence is only obtained from case 6 onwards.

The average relative errors in Table S4 of the Supporting Information for thermochem-
ical degradation of feedstock C show that convergence is only reached from case 4 onwards
for most model responses considered. It should however be noted that for the carbon-based
conversion, convergence is obtained if the order of magnitude of number of chains present
in the simulation volume is the same as for case 2 regarding feedstock A and B (103). This
trend is also visible for Ð, xm, and xz, highlighting the relevance of the number of chains
in a general degradation simulation Furthermore, for Ð and xn, the convergence criteria
of an average relative error below 1% are met from case 5 onwards and for xm from case 4
onwards. For xz, convergence is obtained from case 7 onwards. This more demanding
simulation volume for xz is consistent with the (number) CLD data in Figure S6, showing
that only for very high case numbers (8 or 9) can a quantitative CLD description be claimed.
Practically, however, one could already select case 7.

3.3. Number of Radicals for Thermochemical Simulations for Feedstocks A, B, and C

A summary of the (sufficiently) converged simulation results as obtained consid-
ering case 7 for conversion (a), xn (b), xm (c), and xz (d) for feedstocks A, B, and C is
provided in Figure 12. Feedstock A degrades the fastest as it contains only short chains
with HH-linkages. Feedstock B degrades the slowest as it contains the most saturated
chains without HH defects, which thus have to initiate via slower random HT-fission. Com-
pared to feedstock A, which maintains a nearly constant average chain length of 460 during
degradation, feedstock B and C show a steady reduction in average chain length with
increasing conversion. This can be explained by the mixed termination modes during the
prior synthesis of feedstock B and C, which results in longer chains containing HH-defects
that preferentially undergo fission compared to shorter chains lacking a HH-defect. These
chain length dependencies indicate that, in a more detailed modeling approach, it could
be worthwhile to account for chain length dependencies on the rate coefficient level as
opposed to the averages values as used in this present work (Table 2).
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Figure 12. Comparison of sufficiently converged results (case 7 in Table 1); Carbon-based conver-
sion (a), number average chain length (xn) (b), mass average chain length (xm) (c) and z-average chain
length (xz), (d) for feedstock A (red), feedstock B (blue), and feedstock C (green); kinetic parameters:
Table 2.
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Figure 13 displays the corresponding variation for the number of radicals in the MC
control volume. For all three feedstocks, a similar trend is observed at first sight. The
number of radicals is the highest at the start of the degradation and diminishes with
increasing conversion, as the number of chains and defects, and thus potential radical
sources diminishes. A closer inspection of Figure 13 reveals that the feedstock has an
impact on the absolute radical numbers. As explained above, the difference between
feedstock A and B is mainly due to the difference in concentration of HH-linkages (Figure 5
vs. Figure 9a). Consistently, we see in Figure 13 that for feedstock B, the number of radicals
follows the trend of the concentration of HH-linkages with once no more HH-linkages
present, only new radicals formed at a slower rate from HT- and UCE-fission (blue data
points closer to the x-axis). Furthermore, for feedstock C, as the chains are significantly
longer, the average time to fully unzip a macroradical formed via HH-fission is longer
compared to feedstock A and B, resulting in a higher average number of radicals at the
start of the degradation.
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In Table 5, for all three feedstocks, the maximum number of radicals coexisting at a
certain time is shown for all cases. It can be seen that for case 1, for all three feedstocks,
the maximum number of radicals during the thermal degradation is only two, which is
the bare minimum as a fission results in the formation of two radicals at the same time.
It is interesting to see that, for the considered thermochemical degradation conditions,
even once sufficient convergence is established, the maximum number of radicals is rather
limited compared to previously studied (intrinsic) polymerization conditions, even if larger
synthesis simulation volumes are considered [19,55,56]. Furthermore, for feedstock A and
C, one can almost see a linear trend for the number of radicals coexisting simultaneously
with increasing control volume once converged for the higher case numbers.

Table 5. Maximum number of radicals in control volume for Figure 12 (case 7) and other cases in
Table 1.

Case ∑ii·XPi

Maximum Number of Radicals at a Certain Time

A B C

1 1.0 × 105 2 2 2
2 1.0 × 106 4 4 4
3 1.0 × 107 8 6 8
4 5.0 × 107 15 11 13
5 1.0 × 108 24 13 20
6 5.0 × 108 61 29 59
7 1.0 × 109 106 44 106
8 5.0 × 109 - - 401
9 1.0 × 1010 - - 776
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Note that the variation of the number of radicals is from a kinetic point of view less
easy to grasp. To allow for a better kinetic comparison, it is more interesting to work with
radical concentration variations, as done in Figure 14. It follows that a too low simulation
volume causes a significant fluctuation of the radical concentration with respect to the
converged value. For feedstock A and B, this convergence is obtained for case 7 and for
feedstock C for case 9, highlighting that a convergence of radical concentrations is on
the level of the tail of a number CLD. Fluctuating radical concentrations can however be
enough to obtain convergence for average model responses, as highlighted above. However,
too low case numbers give too high fluctuations. For example, in case 1 of feedstock A, an
extreme fluctuation from 0 to 5 × 10−4 mol·L−1 compared to the converged case with a
value fluctuating around 5 × 10−7 mol·L−1 can be observed (Figure S7). This deviation of
case 1 compared to the converged case becomes even more significant towards the end of
the conversion with even radical concentrations reaching 2 × 10−3 mol·L−1, far above the
converged value.
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Figure 14. Radical concentration during the thermal degradation of feedstock A (cases 1 to 4 on the
top left and 4 to 7 on the top right), feedstock B (cases 1 to 4 on the center left and 4 to 7 on the
center right), and feedstock C (cases 1 to 5 on the bottom left and 5 to 9 on the bottom right). Line
plots can be found in the Supporting information (Figure S7).

A similar trend is visible for the other two feedstocks in Figure 14 both showing
a narrowing down of the radical concentration fluctuation with increasing simulation
volume. For feedstock C, the delayed convergence is again evident. For example, for both
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cases 1 and 2, the limited number of chains present is causing strong fluctuations and one
needs higher case numbers (case 8 or 9) to rule out a significant fluctuation effect.

4. Conclusions

To obtain a low simulation time without compromising the accuracy of the model
predictions, a key aspect of a kMC simulation is the selection of the lowest MC control
volume that leads to converged results. In this work, for the thermochemical degradation
of vinyl polymers such as polyacrylics and polystyrinics with dominant unzipping, the con-
vergence demands of three feedstocks, covering various chain length ranges and amounts
of structural defects, has therefore been investigated based on visual inspection and by
calculating relative errors based on polymerization-based literature threshold values for
the carbon-based conversion, number, mass, z-based average chain length, and dispersity.
The number of chains has shown to be a key parameter to obtain sufficient convergence. A
certain degree of noise can be admitted at very high carbon-based conversions, as inherently
a reduction in the number of chains is taking place.

Based on the kinetic rates obtained in this work, it is shown that the start of the
thermal degradation of vinyl polymers is mainly defined by HH-fission. A competition
between UCE- and HT-fission then follows which is more chain length-dependent. It has
been further demonstrated that reaching convergence for chain length averages is the
most demanding, especially for a feedstock having a broad CLD with a very long tail. In
addition, a link with the concentration of head–head defects and unsaturated chain ends,
as well as with the complete chain length distribution has been made. The (maximum)
number of radicals has been identified as well, with lower numbers detected as under
polymerization conditions.

The current work thus further contributes to the bridging of the polymer reaction
engineering field in both synthesis and recycling. Future work will be directed to more
complex polymer systems and more detailed modeling approaches, including appropriate
model reduction tools.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11061623/s1, Table S1: Rate coefficients used for modelling the polymer
feedstock A, B and C in Figure 2 of the main text; for simplicity no chain transfer to monomer.
Table S2: Simulation duration of the thermochemical degradation of the three feedstocks at the
defined cases in the main text (95% carbon-based conversion). Table S3: Simulation duration of the
thermochemical degradation of the three feedstocks at the defined cases in the main text (50% carbon-
based conversion). Table S4: Average relative error (%) (Equation (7)) for the carbon-based conversion
(εconvC ) the number average chain length (εxn ), mass average chain length (εxm ), dispersity (Ð), and
z-average chain length (εxz ) for feedstock C. In italic the starting point to reach the threshold (by
default 1% but for εxz 0.5%). Figure S1: Convergence check of feedstock A, B and C at simulation
volume 1 and 2 regarding monomer conversion (a) and CLD (b). Figure S2: Evolution of the
simulation volume as a f function of carbon-based conversion for case 1 to 5 on the left (a) and
case 5 to 9 on the right (b) for feedstock C. Figure S3: Effect of the MC control volume (Table 2) on
the simulated carbon-based conversion profile for thermal degradation of feedstock C (Figure 1);
kinetic parameters in Table 1. Figure S4: Effect of the MC control volume on the concentration of (a)
Head-Head linkages during thermal degradation of feedstock C and (b) the unsaturated chain-ends
expressed in mol·L−1. Figure S5: Effect of the MC control volume on the evolution of the number
average chain length (xn), mass average chain length (xm), z-average chain length (xz) and dispersity
(Ð) during thermal degradation of Feedstock C (Figure 12); model parameters: Table 1. Figure
S6: Number chain length distribution (CLD) at a carbon-based conversion of 50% for feedstock B
for several cases with the CLD corresponding to Case 9 included in all subplots for comparison.
Practically case 7 can be selected as converged. Figure S7: Radical concentration during the thermal
degradation of feedstock A (cases 1 to 4 on the top left and 4 to 7 on the top right), feedstock B (cases
1 to 4 on the center left and 4 to 7 on the center right) and feedstock C (cases 1 to 5 on the bottom left).
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