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Abstract: This paper presents the failure analysis of the crack and leakage accident of a crude oil
pipeline under CO2-steam flooding in the western oilfield of China. To analyze the failure behavior
and cause, different testing, including nondestructive testing, chemical composition analysis, tensile
property testing, metallographic analysis, and microanalysis of fracture and chloride stress corrosion
cracking (SCC) testing, are applied in the present study. The obtained results showed that the
pipeline under the insulation layer of high humidity, high oxygen content, and high Cl− environment
occurred pit corrosion, and the stress concentration area at the bottom of the corrosion pit sprouted
cracks. Besides, it is demonstrated that the cracks were much branched, mostly through the crystal,
and the fracture showed brittle, which is consistent with the typical characteristics of chloride SCC.
Meanwhile, the insufficient Ni content of the pipeline material promoted the process of chloride SCC,
and the high-temperature working conditions also aggravated the rate of chloride SCC. In addition,
efficient precautions were provided to avoid fracture.

Keywords: crude oil pipeline; 316L stainless steel; CO2-steam flooding; failure analysis; chloride
stress corrosion cracking

1. Introduction

Dissolving CO2 gas in crude oil can improve the oil flow ratio and swell the crude oil
to achieve the effect of enhanced recovery [1,2]. Moreover, in the global trend of carbon
reduction, CO2 can be effectively buried in this way. Therefore, CO2 flooding has the
economic benefits of recovery enhancement and social benefits of carbon reduction. The
application of CO2 flooding is gradually increasing globally, but it is still in the stage
of industrial trials and enhances the application of benefits [3,4]. The literature has so
far focused on the study of oil reservoirs applicability assessment, production parameter
control and optimization, and miscible effect of CO2 with crude oil [5–8], with few reported
cases of failure of injection and recovery pipelines.

In the western oil field of China, there are many thick oil and super thick oil blocks. To
improve recovery, in addition to using CO2 to reduce the viscosity of the crude oil, steam
is also injected to improve oil washing efficiency and wave area again [9–11]. Given the
increased corrosion of the recovery media caused by the artificial injection of CO2 and
high-temperature steam, 316L stainless steel is used for the crude oil recovery pipeline
to cope with internal corrosion. Moreover, this pipeline lay in the ground and was com-
pletely soaked in sanding water underground. The groundwater is mainly recharged by
atmospheric precipitation, ground runoff and infiltration and discharged by underground
runoff and evaporation. The annual variation of groundwater is about 0.5 m~1.0 m in
the region. But, the pipeline is not coated for corrosion protection, except for the external
surface, which is covered with an insulation layer.
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Nevertheless, the 316L stainless steel pipeline suddenly leaked out after nine months
of service. Figure 1 shows the failed pipeline sample after cleaning with water + paraffin.
The material of the pipeline is manufactured according to ASTM-A312 [12]. This pipeline
sample is Φ168 mm × 5 mm and 600 mm long. Table 1 presents the design and operating
conditions of the pipeline which operating pressure, temperature and flow rate are within
allowable limits. In this work, the pipeline’s material properties and cracking characteristics
will be analyzed by several tests to clarify the causes of leakage failure. And the study
results will provide a scientific basis for the selection of materials and corrosion protection
of the pipeline under the new conditions of CO2-steam flooding.
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Table 1. The design and operating conditions of the pipeline.

Medium Type
Design

Pressure
(MPa)

Operating
Pressure

(MPa)

Design
Temperature

(◦C)

Operating
Temperature

(◦C)

Allowable
Flow Rate

(m/s)

Operating
Flow Rate

(m/s)

Crude oil
containing

water,
associated gas

1.6 0.3 200 98 10 0.4

2. Materials and Methods
2.1. Nondestructive Test

Nondestructive tests can visually detect defects such as cracks and pitting. Given that
the material of the failed pipeline is weakly magnetic, as well as large corrosion pits, the
penetration testing method is more suitable for the nondestructive testing of this pipeline.
To facilitate testing, the pipeline sample was cut into four equal pieces. The external and
internal surfaces of the sample are then cleaned with a cleaning agent and sprayed with a
uniform layer of white penetrant. After waiting for 10 min, the penetrant is wiped off with
a dry cloth, and then the sample surface is wiped with a paper towel soaked with cleaning
agent until all the penetrant is wiped off. After the sample has dried naturally in the air,
the surface is sprayed with a further layer of red developer. The resulting defect image is
then observed and determined.

2.2. Physical and Chemical Performance Test

The chemical composition, mechanical properties and metallographic organization of
metal pipes are the most basic physical and chemical properties, which are also the main
basis for reflecting the corrosion resistance and strength of pipes. Firstly, an direct reading
spectrometer (SPECTRO ARL 4460) was used to analyze the chemical composition of the
pipeline body and corrosion pits area. Secondly, three parallel specimens (1#, 2#, 3#) were
taken from the pipe’s body to test tensile properties by material testing machine (MTS 810),
including tensile strength, yield strength and elongation after a fracture. Moreover, the
microstructure, grain size and nonmetallic inclusion of the pipeline body and cracks were
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analyzed by a metallographic microscope and image analysis system (LEICA MEF4M). The
above tests determine whether there are any abnormalities in the material properties of
the pipeline.

2.3. Microscopic Characterisation Analysis

This pipeline’s corrosion morphology, products and cracking characteristics were char-
acterized to analyze the mechanism of corrosion and cracking. The crack was mechanically
opened, and the fracture morphology was analyzed using a scanning electron microscope
(TESCAN VEGA 3). The surface products at the cracks were analyzed by an energy spec-
trum analyzer (XFORD INCA350) and X-ray diffractometer (D8 ADVANCE). In addition,
the grains of the metallographic organization of the pipe body was subjected to energy
spectroscopy by line scan to characterize whether there were changes in the elements
within the grains and at the boundaries. Also, to determine if intergranular corrosion is a
possibility. This leads to determining the possibility of intergranular corrosion.

2.4. Corrosion Test

Boiling magnesium chloride SCC standard test can determine the susceptibility of
austenitic stainless steel to SCC. According to the standard of ASTM G36, three rectangular
specimens (size: 75mm × 15mm × 2mm) were extracted from the pipeline sample. The
specimens were bent U-shaped with an indenter with a radius of 8mm. Then the 42%
MgCl2 solution was added to the experimental vessel with a thermometer and condensation
tube. The solution will be heated to a constant boiling point of 155 ± 1 ◦C and then put
the specimens into it. And their appearance is monitored periodically at 1h intervals. The
susceptibility of the pipeline to chloride SCC is determined by observing whether cracks
develop on the surface of the specimens.

3. Results
3.1. Visual Inspection

Figure 2 shows the external wall of the pipeline, which had a large contiguous black-
ened area. It results from dense corrosion pits in which some oil has been deposited. The
depth of these corrosion pits is generally in the range of 1~2mm. Furthermore, corrosion
pits and cracks are in the same area. The multiple crack crosses are observed at the bottom
of the pits 30~150 mm in length. The main cracks are distributed along the pipeline trans-
versely and longitudinally, as indicated by the arrows in Figure 2. The uncorroded area
had a bright metallic luster, and no cracks were found. This suggests that uneven corrosion
of the pipeline has occurred.
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Figure 3 shows that the internal wall of the pipeline possessed multiple cracks at
the same location as those on the external wall. Hence, penetration was suspected, but
no corrosion pits were observed in the internal wall. Therefore, it should be indicated
that the inner wall corrosion of the pipeline is not apparent under the fluid medium and
working condition.
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Figure 3. Macroscopic appearance of cracks on the internal surface (The arrows point to the cracks).

Figure 4 shows that the cracks originated from the external wall and expanded continu-
ously to the internal wall according to the cross-sectional observation. It is more visualized
and proved that the external soil environment of pipeline operation is the main influencing
factor of cracking.
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3.2. Nondestructive Test

Figure 5 shows the macroscopic morphology of the pipeline after the penetration
test. Large defects are observed on the external surface of the pipeline sample, including
corrosion pits and cracks. In addition, many obvious branching cracks are observed on the
internal surface of the pipeline sample. The cracks on the external wall are concentrated in
the corrosion pit area, where the majority are longitudinal, and the cracks are determined
as penetrated.
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Figure 5. Macroscopic appearance of the pipeline sample after penetration testing: (a) external wall;
(b) internal wall.

3.3. Chemical Composition

Table 2 presents the results of the chemical composition analysis of the pipe body and
pitting area, in which all elements are within the standard requirements except for the nickel
content. The nickel content is lower than the lower limit required by the standard of ASTM-
A312, which is an unqualified product. Stainless steel materials are more corrosion resistant
because of the addition of the alloy element chromium, molybdenum and nicke. Therefore,
a reduction in nickel content will reduce the corrosion resistance of the material [13,14].

Table 2. Results of chemical composition analysis (in wt.%).

Element C Si Mn P S Ni Cr Mo Nb V Cu Al

Pipe body 0.019 0.40 0.91 0.030 0.0017 9.92 16.12 2.03 0.008 0.082 0.25 0.008
Pitting area 0.018 0.40 0.90 0.030 0.0017 9.89 16.14 2.01 0.007 0.083 0.25 0.009

ASTM-A312 ≤
0.035

≤
1.00

≤
2.00

≤
0.045

≤
0.030

10.00~
14.00

16.00~
18.00

2.00~
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3.4. Tensile Property

Table 3 illustrates the obtained results of the tensile properties of the pipe body. The
tensile strength, yield strength and elongation after fracture are consistent with the require-
ments of ASTM-A312 for 316L steel. In addition, it indicates that the pressure-bearing
performance of the pipe material without defects can meet the design operating conditions.

Table 3. Tensile characteristics test results.

Sample
Original

Gauge Length
L1 (mm)

Final Gauge
Length

L2 (mm)

Yield Force
Fm (kN)

Maximal
Force

FeL (kN)

Original
Cross-Sectional

Area
S (mm2)

Tensile
Strength

Rm (MPa)

Yield Strength
ReL (MPa)

Elongation
after Fracture

A (%)

1# 50 81.92 31.92 70.19 128.9 545 248 64
2# 50 81.81 29.40 66.91 121.9 549 241 64
3# 50 81.89 32.07 70.25 128.9 545 249 64

ASTM-A312 / / / / / ≥485 ≥170 ≥35

3.5. Metallographic Analysis

Figure 6 shows that the metallographic structure of the pipe body is austenite. No
other abnormalities in the metallographic structure of nonmetallic inclusions and grain
size. In addition, all cracks in the pipeline sample had similar characteristics, in which they
all started from the external wall and extended to the internal wall. The cracks appear to be
bifurcated, and no tissue distortion is seen. The main cracks are through crystal cracks, and
part of the bifurcation is observed along the crystal fine cracks.
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Figure 6. Metallographic structure of the pipeline: (a) pipeline body; (b) crack.

3.6. Microanalysis of Fracture

Figure 7 shows an SEM photo of the fracture at different magnifications. The fracture
is flat, without necking, obvious deformation and thinning of wall thickness. As a result,
this fracture indicates a clear, brittle fracture. Figure 8 and Table 4 show that the production
elements within the cracks have O and Cl from external sources in addition to the metal
matrix itself. The physical analysis of the product showed that it is mainly Fe2O3 which
stems from oxygen corrosion, as shown in Figure 9.
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Besides, Figure 10 shows the content of each element has no significant change along
grain boundaries. Therefore, it shows no carbide precipitation at the grain boundary,
excluding the possibility of intergranular corrosion.
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3.7. Chloride SCC Test

After 20 h of the chloride SCC test, cracks appear on the surface of specimens (1#, 2#
and 3#), as shown in Figure 11. And the cracks are mainly concentrated in the bending
section of the specimen, with fewer cracks in the straight edge section, as shown in Figure 12.

To further analyze the crack fracture, specimen 1# is separated along the longest crack
in the center. Figure 13a presents the upper part of the fracture is corroded, indicating that
the cracking starts from the outer wall and gradually extends to the interior. Figure 13b
shows a tearing ling-like quasi-dissociative fracture, which was typical fracture morphology
of crystal penetration.
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4. Discussion

The failure type of the pipeline is cracking, with the cracks starting from the bottom
of the corrosion pit on the external wall and extending to the internal wall. Moreover,
the branching of the cracks, which are mainly crystalline, and the fracture show brittle
characteristics. Coupled with the fact that the pipe material is 316L austenitic stainless steel,
it is judged that the failure of the pipeline is consistent with the significant characteristics of
chloride SCC. SSC is a localized corrosion damage in metal materials under the combined
action of tensile stress and corrosive media. The following three specific analyses regarding
environment, stress and material will be carried out.

4.1. Corrosion Environment Analysis

It uses a cyclic injection process of CO2 and steam in the oilfield, resulting in a high
recovery pipeline temperature of 98 ◦C. The API RP 571 standard describes the starting
temperature at which chloride SCC occurs as 60 ◦C [15]. The API RP 581 standard states
chloride cracking must be considered for environments above 38 ◦C under severe condi-
tions [16]. Therefore, the operating temperature of the pipeline is sensitive to chloride SCC.

Macroscopic inspection reveals the existence of dense corrosion pits on the external
wall of the pipeline, and XRD analysis further verifies the presence of Fe2O3, which is
mainly a product of oxygen corrosion [17,18]. This is mainly because groundwater often
contains dissolved oxygen from the air. Furthermore, it indicates that the insulation layer
had broken down. Hence, localised pipeline corrosion is caused by underground water
penetration into the insulation. Moreover, the higher the temperature, the more serious the
corrosion will be, eventually resulting in large areas of pitting pits on the external wall of
the pipeline.

In addition, underground water in the western region of China usually contains
more Cl ions (200~1000 mg/L), constituting the basic condition for chloride SCC. At
higher temperatures, the evaporation of water from the metal surface leads to a constant
concentration and deposition of Cl ions. This will cause localised rupture of the stainless-
steel passivation film. The formation of passivation-activation microcells at metal surfaces
with and without passivation films will accelerate anodic dissolution and produce anodic
polarisation [19–21]. As the corrosion pits deepen, small anodes and large cathodes will
appear inside and outside, resulting in ever larger corrosion pits [22–24].

Moreover, it has been shown that the susceptibility to chloride SCC is significantly
increased in the presence of both Cl ions and dissolved oxygen [25–27]. This is because the
rate of oxygen consumption in the crack is greater than the rate of diffusion, leaving the
crack tip still in a low oxygen state [28,29]. A corrosion potential gradient drives anions
(e.g., chloride, sulphate, and hydroxide ions) deeper into the crack, while cations (hydrogen,
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sodium, and zinc ions) move outwards from the crack. This, in turn, causes the chloride
ions to accumulate rapidly at the crack tip, creating very high concentrations. As a result,
cl ions destroy the passivation film more quickly and further reduce the rate of passivation
film formation [30,31]. The aggressive Cl− ions invaded the grain in multi-directions
promoted by dislocation motion, facilitating the main crack to bifurcate [32].

4.2. Stress Analysis

Corrosion pits have formed after significant localised corrosion has occurred on the
external wall of this pipeline. Under operating pressure, soil pressure and other residual
stress, there is a large stress concentration at the bottom of the corrosion pits. Residual
stresses account for the largest proportion of several stresses because the pipeline is sub-
jected to various processes, such as cooling, thermal processing, welding, etc., which can
cause residual stresses. Besides, 316L austenitic stainless steel also has process hardening
characteristics. The presence of stress makes the passivation film surface in the stress con-
centration area enriched with more chloride ions, which reduces the thickness, integrity of
the passivation film, and pitting resistance [33,34]. This results in faster anodic dissolution
in the stress concentration zone. In the low-stress area, the concentration of chloride ions is
relatively low, and the passivation film thickness is greater and more complete, resulting in
greater resistance to pitting corrosion. Figure 14 shows the model for stress corrosion of
stainless steel.

The stress concentration area is prone to cracking [35,36], and the cracks in this pipeline
all start at the bottom of the corrosion pits. As a result, once a crack has developed, the
passivation film formed at the crack’s tip differs from that away from the crack [37]. It is
much looser and less stable, leading to cracking of the passivation film. The corrosion rate
at the tip of the crack will be higher than at other locations [37], thus allowing the crack to
expand in a direction perpendicular to the stress. Once the formation of micro cracks, its
expansion rate is much faster than other types of localized corrosion, so SCC is the most
destructive and damaging type of corrosion among all types of corrosion.
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4.3. Material Analysis

The composition of alloy materials, organizational structure, and heat treatment will
also affect its SCC resistance. For example, austenitic stainless steel is generally considered
susceptible to chloride SCC. In contrast, ferritic stainless steel and duplex stainless steel
have better resistance to chloride SCC performance when exposed to Cl− environments
for long periods. This pipeline insulation layer broke down, resulting in groundwater
containing Cl ions and dissolved oxygen seeping into the insulation. Thus, the environment
of high temperature, high humidity, and high Cl- under the insulation provides favourable
conditions for chloride SCC for 316L material.

In addition, Ni is the only important element to improve the stress corrosion resistance
of austenitic stainless steel [38,39]. The standard API RP 571 also proposes that the Ni
content of the alloy material is the most sensitive to chloride SCC at 8~12% [15], while the
chemical composition analysis of the pipeline has a Ni content of about 9.9%, which is in
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the sensitive range of chloride SCC. At the same time, an EDS line scan of the pipeline
grain structure revealed no significant change in alloying element content, ruling out
intergranular corrosion cracking due to intergranular Cr depletion.

The accelerated test for chloride SCC confirmed that the pipeline cracked after 20 h
of testing, and it can be concluded that the pipeline does have a high susceptibility to
chloride SCC.

Based on the above analysis, it can be seen that the pipeline leakage failure process is
divided into three stages. In the first stage, due to the presence of groundwater containing
dissolved oxygen and Cl ions, the corrosion process was localized. Under the action of
high temperature (98 ◦C), the local corrosion intensifies continuously. In the second stage,
many cracks were generated at the bottom of the corrosion pits. In the third stage, due
to the local concentration of stress and the continuous action of corrosion, the crack grew
rapidly and led to the final failure of the material.

5. Methods for Chloride SCC Control of Stainless Steel

Three factors are required for SCC to occur: material, environment and stress. If any
of these factors can be controlled, then it is possible to prevent or avoid the occurrence of
chloride SCC in stainless steel.

Firstly, according to the specific environment in which the material is used, avoid using
materials sensitive to chloride SCC. In general, in hot water and high-temperature water
conditions, high chromium ferritic stainless steel, ferritic-austenitic duplex stainless steel,
ultra-low carbon stainless steel and high nickel stainless steel can be considered to choose.
However, in both, the need to resist SCC and require higher strength, ferritic-austenitic
duplex stainless steel is more appropriate. On the other hand, in high concentrations of
chloride media, ferritic stainless steel with low carbon and high chromium can be used,
and high silicon chromium-nickel stainless steel is also a better choice.

Secondly, isolating the material from the corrosive environment is the most effective
way to avoid SCC, such as using coatings or corrosion inhibitors. Reducing the concen-
tration of Cl ions and operating temperature in the environment and preventing Cl ions
adsorption and concentration are also the ways to slow down SCC. In addition, the mass
fraction of oxygen should be reduced to a lower value when stainless steel is used to
dissolve oxygen chloride.

Thirdly, measures should be taken during pipeline manufacturing to eliminate or
reduce the residual stress in processing and welding. Surface treatment methods (such
as shot peening, surface heat treatment, etc.) can also be used to reduce the residual
compressive stress on the surface. Stress removal or elimination can also be performed
using hydrostatic tests, temperature difference tensile and vibration.

6. Conclusions and Recommendations

(1) The pipeline experienced localized external corrosion in groundwater containing
dissolved oxygen and Cl ions, and leakage failure occurred due to chloride SCC in
the stress concentration area at the bottom of the corrosion pits.

(2) The Ni content of the pipeline material was lower than the standard product require-
ments and within the sensitive content range of chloride SCC, which accelerated the
cracking of the pipeline. As well as the high temperature of the recovered medium
under CO2 and steam combined flooding promoted the progress of chloride SCC.

(3) Several Specific and practical recommendations are then proposed from both manufac-
turing and maintenance points of view. First, replacing the pipeline with 2205 duplex
stainless steel pipe is feasible. Second, by reducing the operating temperature of the
pipeline, the development of SCC will be slowed. Third, the buried pipelines should
adopt an anticorrosion layer + cathodic protection to slow the occurrence of external
corrosion damage under the new process of CO2-steam combined flooding. Fourth,
similar pipelines need to be excavated for defect inspection and safety evaluation,
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and the severely corroded external pipeline section needs to repair by B-type sleeve,
carbon fiber (or glass fiber) reinforcement, etc.
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