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Abstract: This article presents a distributed model predictive control algorithm including fuzzy
negotiation among subsystems and a dynamic setpoint generation method, applied to a simu-
lated sewerage network. The methodology considers WWTP as an additional objective of control.
To improve the performance of a DMPC using a hydraulic model for prediction, a more detailed
model has been considered including suspended solids concentration (TSS). The results obtained
with the proposed methodology have been validated on a benchmark simulation model for sewer
systems developed to test and compare methodologies, showing good performance.
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1. Introduction

One of the most important resources for humans on earth is water, which becomes
easily polluted due to human activities. An adequate wastewater treatment may clean the
water to be used again, making this cycle sustainable. Urban drainage systems (UDS) collect
and transport both wastewater resulting from human activity and rainfall to treatment
facilities avoiding discharges into the environment, forming a combined urban drainage
system (CUDS). These systems mainly consist of storage tanks and connecting pipes,
constituting a sewer network. After heavy rain events, the wastewater obtained can
overflow the network and pollute the environment.

Obtaining mathematical models of the process that enable the design of different
control algorithms has been the main research in this field. The operating objectives are
essentially to avoid losses of wastewater from the network due to overflows in the storage
reservoirs and at the inlet to the WWTP and to maximize this inlet flow, decreasing the
economic cost of operation [1,2]. Moreover, reducing the pollutant mass escaping from the
network may be a prior objective, so it is needed to consider the concentration of pollu-
tants in the overflowed water [3,4]. Another problem is the “first flush” when abundant
precipitation falls after a dry season, provoking a large growth in the concentration of
contaminants in the sewer system [5].

Simulation models must accurately describe the processes that occur in a sewerage
system (hydraulic and pollutant mass transport). They must be simple enough to be
used for control. The features of the wastewater caught depending on the area (urban or
industrial wastewaters with variable concentrations of contaminants) and the rainwater
going into the network, as well as the specific period of the year, are considered in these
models. In consequence, typical patterns that attempt to represent different situations
have been developed [6]. Some of them are benchmarks for testing control systems of the
sewage, such as [5], and simpler ones can be obtained to be used for advanced control
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design algorithms. In general, control strategies for UDS [7] can be off-line controllers,
which use static rules, and on-line controllers that use real-time control actions [8–10].
Within the first group, RBC (rule-based control) algorithms have been used in [11,12], with
their main problem being the number of rules when the scale of the system grows. Control
systems based on fuzzy logic control (FLC), combining simple rules with an expert system,
are applied in [13–16]. Within the second group of algorithms, the LQR controller has
been used in [17] to reduce the overflows in the network by using all the available storage
volume and emptying the system immediately, if possible. Additionally, genetic algorithms
have been used in water quality networks in [3] and to optimize the control of UDS [4].
In [12], evolutionary algorithms (EA) together with self-adaptive strategies get an increase
in the quality of the water reaching the rivers, reducing costs. Control algorithms based
on population dynamics (PD) have been used in [18,19], getting a better use of the sewage
capacity and reducing overflows. All the above control strategies are based on sewer
network hydraulic models, except in [20,21], in which the concentration of wastewater
pollutants is considered in the control algorithm. A literature review of modelling and
control of sewer systems is presented in [22].

Related to the structure of the UDS control systems, centralized control is the most
used configuration. However, decentralized control using local controllers may be a better
solution if the number of actuators is high [23]. In complex large-scale systems, both levels
of control (local and global) are usually considered together and frequently, and there can
be one more level of control, becoming a hierarchical structure [24,25].

The interaction between the UDS and the WWTP must be considered to improve
performance in both systems [26], but there are only few studies in the literature that tackle
both systems together and, mainly, they deal with the performance of the WWTP, using
simpler models for the sewage systems [27,28]. Considering other control algorithms,
in [29] is used a heuristic-type controller based on rules, and in [30], another that combines
model predictive control (MPC) with RBC strategies.

One of the most popular advanced control strategies is MPC that uses a system
model to obtain the control variables values on a future horizon by optimizing a cost
function [31–33]. The MPC algorithm consists of four main parts: a control-oriented
prediction model of the process, a cost function representing the control objective, a group
of process constraints, and a minimization problem solved in a receding-horizon way [31].
Generally, hierarchical control architectures use the MPC to calculate optimal set-points
for local controllers. The features of MPC strategies have several advantages for being
used in UDS, such as their ability to predict the system’s behavior to future rain events
considering delays, constraints, and disturbances. A centralized predictive controller,
applied in [25], has been developed considering a model whose state variables are the
levels of the network reservoirs, the manipulated variables are flow rates at the tank outputs,
and the measurable disturbances are the collected input flow rates to the system. In this
case, the main constraints are given by the maximum capacity of tanks and pipes.

In [25,34], an MPC controller has been simulated, obtaining important decreases
in floods and overflows. In other cases, MPC algorithms have been applied to UDS
by means of non-linear prediction models and both operation costs and overflows have
decreased [35,36]. Most parts of the control-oriented models in MPCs consider the hydraulic
part only. However, in [20,37], a dynamic model of concentration of suspended solids
(TSS) used for the MPC algorithm to minimize not only the CSO volume, but also the
total pollutant mass escaping into the environment, is presented. Moreover, in [38], a
comparison of two optimization methods to minimize overflows is shown: mixed integer
(MI) and quadratic program (QP). This analysis concludes that both methods have the
same performance, but QP is computationally more efficient than MI.

In the case of large-scale systems, it can be more suitable to split the whole process
into smaller subsystems to simplify the application of MPC controller [9,39]. Then, local
prediction models and cost functions are used, and the exchange of information between
subsystems may be considered or not. Distributed model predictive control (DMPC) [9]
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is applied when local controllers exchange data to solve their own local problem, in a
cooperative and coordinated way. In the literature, there is a wide variety of DMPC algo-
rithms applied to different processes [40,41], but only a few deal with water management
systems, such as volume control in tanks [42,43] and the coordination of drinking water
systems [41,44]. In addition, no applications to sewer systems based on DMPC algorithms
considering the concentrations of pollutants have been developed before, to the knowledge
of the authors.

Therefore, the major contribution of this article is the development and application of a
practical DMPC algorithm to a UDS, using local linearized models of the process including
TSS and fuzzy negotiation among the subsystems [42,43]. Moreover, the WWTP is included
in the control algorithm as an additional objective which consists of the maximization of
the WWTP input flow. The results, obtained from the benchmark described in [5], have
been compared with a centralized MPC and DMPC based in a cooperative game [45] to
validate the utility of the proposed methodology, providing a comprehensive framework
for validation including pollutants and other practical issues.

This document begins with an introduction describing the benchmark simulation
model and presenting the model used by the control algorithms. In the next section, its
sectorization is detailed. This article follows with the exposition of the control objectives.
Then, centralized and distributed MPC control strategies are explained, showing the
compared results in each case considering or not considering TSS. Finally, the conclusions
of this work are presented.

2. Benchmark Model and Evaluation Criteria
2.1. Benchmark Model Description

The model describes, in a realistic way, the operation of a sewer network, being
excellent for testing different control strategies that optimize the performance of the system.
This benchmark simulation model for a sewer system [5] has algorithms to produce different
scenarios that include both the features and the volume of urban wastewater and the runoff
reaching the sewer network, generated by rainfall of variable duration and intensity,
considering the season of the year or day of the week. The generation of wastewater at
each catchment area combines several contributions: domestic, industry, stormwater, and
infiltration to sewage. The pollutants included are chemical oxygen demand (COD), which
can be divided into soluble COD and particulate COD; ammonia (NH4

+); nitrate (NO3
−);

and phosphate (PO4
3−). Particulate COD is the main component of suspended solids.

There are six catchment areas (Figure 1), numbered from 1 to 6.
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The sewer model consists of three elements: a transport submodel describing the
evolution of both flow rate and pollutants in the sewer, a first flush submodel representing
the sudden increase of particulates when the rain starts after a long period of drought, and
several types of storage tank submodels. This model, shown in Figure 1, is made up of six
storage tanks, named ST1, . . . , ST6 (ST5 is an off-line tank); water links; a pump and five
valves for flow control; and a wastewater treatment plant.

The major objective of the sewage network is to catch all the urban residual water and
lead it to the WWTP, keeping constant a supply flow as close as possible to its nominal
inflow rate. This can be obtained by holding the wastewater in the tanks and releasing
when the inflow of the WWTP decreases. Moreover, another objective is to minimize the
overflows in the deposits and at the inlet of WWTP when rainfall is so intense that it can
cause flooding and discharges of contaminant substances into the environment.

As a part of the process of design and assessment of the controllers, a simplified model
of the system has been developed and used for the control algorithm. The simplifications
consist of considering the hydraulic part of the benchmark together with the concentration
of suspended solids TSS, disregarding variables that represent concentrations of other
pollutants. The ST5 tank has been eliminated because in this configuration, it is not
controllable. The ST6 deposit has been renumbered as 5. In addition, the ST4 reservoir is
considered like the rest because the inlet valve is fixed, and the outlet flow is generated by
opening a valve instead of activating the pump. In consequence, the mathematical model
of the system contains the following parts [5]:

Water catchment areas: zones when the water is collected constituting the inlet flow
to the sewage that is considered as a disturbance. The resultant flow in each zone are
represented by qri, i = 1, . . . , 6.

Link elements: gravity wastewater pipes in an open channel. They connect the resultant
flows in each zone with the deposits, and the deposits with each other and with the WWTP.
They are represented as first-order systems with very slow dynamics, depending on their
length, including the concentration of total suspended solids, as shown in [37]. Their
discrete mathematical model is:

qi(k + 1) =
(

1− T
τi

)
qi(k) +

(
T
τi

)
qu,i(k),

Tssout,i(k + 1) = (1− ci)Tssout,i(k) + ciTssin,i(k), i = 1, 2, 3 . . . , 9,
(1)

where:

T is the sampling period;
τi is the time constant of the element i;
qi(k) is the output flow of the element i;
Tssout,i is the concentration of suspended solids in the output flow of the element i;
qu,i(k) is the sum of inflows to the link element i;
Tssin,i is the concentration of suspended solids in the input flow of the element i;
ci is the sedimentation coefficient of suspended in the element i (parameter that
needs calibration);

Storage tanks: deposits for storing wastewater. Wastewater stored can overflow if a
maximum tank volume is overcome. Their discrete model for the water level and TSS is:

hi(k + 1) = hi(k) + T
Ai
[uin,i(k)− ui(k)− qov,i(k)]

ui(k) = ai(k)c0i
√

hi(k), Vi(k) = Aihi(k), Vmax,i = Aihmax,i

Tssout,i(k + 1) = (1− ci)Tssout,i(k) + ciTssin,i(k),i = 1, 2, 3, 4, 5,

(2)

where all parameters are related to tank i and instant k:

Vmax,i is the maximum capacity of the tank;
Vi(k) is the filled volume;
Tssin,i is the concentration of suspended solids in the input flow of the tank i;
Tssout,i is the concentration of suspended solids in the output and overflow flow of the tank i;
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uin, i(k) is the input flow rate;
ui(k) is the output flow rate;
qov,i(k) is the overflow flow rate;
c0i is the discharge coefficient (experimental parameter depending on the tank i);
ci is the sedimentation coefficient of suspended in the tank i (parameter that needs calibration);
Ai is the tank area;
hmax,i is the tank height;
hi(k) is the water level;
ai(k) is the opening of the deposit outlet valve (control variable: ai∈[0, 1]);

Nodes: they are places of union of several water pipes. The output flow is the addition
of the input flows, and the concentration of suspended solids at the outlet is obtained
assuming that the mass of suspended solids is conserved in the node [37]. For example, for
a node where three pipes join:

qin3(k) = qout1(k) + qout2(k)

qin3(k)Tssin3(k) = qout1(k)Tssout1(k) + qout2(k)Tssout2(k)

Tssin3(k) =
qout1(k)Tssout1(k)+qout2(k)Tssout2(k)

qout1(k)+qout2(k)
,

(3)

In Figure 2, the node model of the example is shown.
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Therefore, the expression that allows the calculation of the concentration of solids
at the outlet of a node has a non-linear relationship with the flows and concentrations of
solids at the inlet of the node, which will also be considered as state variables of the process.
As such, to get a linear model of this system, which can be part of the control algorithm, we
have to linearize the following expression:

Tssin3 = qout1Tssout1+qout2Tssout2
qout1+qout2

≈ Kqout1qout1 + Kqout2qout2 + KTssout1Tssout1 + KTssout2Tssout2,

where : Kqout1 = qout2o(Tssout1o−Tssout2o)

(qout1o+qout2o)
2 , Kqout2 = qout1o(Tssout2o−Tssout1o)

(qout1o+qout2o)
2

KTssout1 = qout1o
qout1o+qout2o

, KTssout2 = qout2o
qout1o+qout2o

,

(4)

are coefficients calculated for each sampling time at the point of operation from the values
of the flow rates and concentrations of solids measured at that point.

The whole system is shown in Figure 3, depicted by a block diagram made of these
simple elements: catchments, represented by ovals; storage tanks, by triangles; and link
elements, by rectangles. This diagram is like the benchmark represented in Figure 1, but
more detailed.
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The state variables are the tank levels 1, 2, 3, 4, and 5 (x1, . . . , x5); the flow rates of
the pipes 3, 7, 8, and 9, corresponding to the states (x6, . . . , x9); and the concentrations of
suspended solids in each of them, respectively, except in tanks 1 and 2, since in these cases,
the concentrations are not controllable (x10, . . . ,x16) because the inlet flow to these tanks
cannot be controlled and this is the only way to modify their concentrations. Moreover,
the output flow of pipe 9 (state x9) is the inlet flow to the WWTP if it does not exceed
its nominal value. The output flows of the pipes of the catchments 1, 2, 4, 5, and 6, as
well as the flow caught in zone 3, will represent measurable disturbances on the system
(d1, . . . , d6), as well as the concentrations of suspended solids in tanks 1 and 2, in the outlet
flows of the link elements of the catchment areas 4, 5, and 6, and in the flow caught in
zone 3 (d7, . . . , d12). The overflowed volume in reservoir 1 returns to the sewer through
tank 4. The control variables are the desired output flows of the tanks. They also are the
set-points of local PID flow controllers at a lower level (u1, . . . , u5). Therefore, the state
vector, the control variables vector, and the disturbances vector are defined considering the
benchmark variables as:

x = (h1, h2, h3, h4, h5, q3, q7, q8, q9, Tss3, . . . , Tss9), u = (u1, u2, u3, u4, u5),

d = (q1, q2, q4, q5, q6, qr3, Tssd1, . . . , Tssd6),
(5)

Table 1 shows the system variables and their correspondence with the considered
variables of the state space model.

Table 1. System variables.

Space State Model Variables System Variables Meaning and Units

x1, . . . , x5 h1, . . . , h5 Tank levels (m)
x6, x7, x8, x9 q3, q7, q8, q9 Pipes 3, 7, 8, and 9 flow rates (m3/d)
x10, x11, x12 Tss3, Tss4, Tss5 Suspended solids in tanks 3, 4, and 5 (g/m3)

x13, x14, x15, x16 Tss6, Tss7, Tss8, Tss9 Suspended solids in pipes 3, 7, 8, and 9 (g/m3)
u1, . . . , u5 u1, . . . , u5 Tank output flow rates (m3/d)

d1, d2, d3, d4, d5, d6 q1, q2, q4, q5, q6, qr3 Catchment flow rates (m3/d)
d7, . . . , d12 Tssd1, . . . , Tssd6 Catchment suspended solids (g/m3)

The mathematical model, in terms of discrete differential equations, is:

x1(k + 1) = x1(k) + T
A1
[d1(k)− u1(k)− qov1(k)]

x2(k + 1) = x2(k) + T
A2
[d2(k)− u2(k)− qov2(k)]

x3(k + 1) = x3(k) + T
A3
[x6(k)− u3(k)− qov3(k)]

x4(k + 1) = x4(k) + T
A4
[d3(k) + u1(k) + qov1(k) + u3(k)− u4(k)− qov4(k)]

x5(k + 1) = x5(k) + T
A5
[x8(k)− u5(k)− qov5(k)]

x6(k + 1) =
(

1− T
τ3

)
x6(k) +

(
T
τ3

)
[d6(k) + u2(k)]

x7(k + 1) =
(

1− T
τ7

)
x7(k) +

(
T
τ7

)
u4(k)

x8(k + 1) =
(

1− T
τ8

)
x8(k) +

(
T
τ8

)
[d4(k) + d5(k) + x7(k)]

x9(k + 1) =
(

1− T
τ9

)
x9(k) +

(
T
τ9

)
u5(k)

x10(k + 1) = (1− c3)x10(k) + c3x13(k)

x11(k + 1) = (1− c4)x11(k) + c4
(u1(k)+qov1(k))d7(k)+d3(k)d9(k)+u3(k)x10(k)

u1(k)+qov1(k)+d3(k)+u3(k)

x12(k + 1) = (1− c5)x12(k) + c5x15(k)

x13(k + 1) = (1− c6)x13(k) + c6
u2(k)d8(k)+d6(k)d12(k)

u2(k)+d6(k)

x14(k + 1) = (1− c7)x14(k) + c7u4(k)

x15(k + 1) = (1− c8)x15(k) + c8
d5(k)d11(k)+x7(k)x14(k)+d4(k)d10(k)

d5(k)+x7(k)+d4(k)

x16(k + 1) = (1− c9)x16(k) + c9u5(k),

(6)
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Then, a linear model is obtained from this model, removing the overflow flow rate
terms and linearizing the nonlinear equations in the nodes. This will be used as a prediction
model in the MPC strategy:

x11(k + 1) = (1− c4)x11(k) + c4[K4Tss1outd7(k) + K4Tss3outx10(k)+

+K4u1u1(k) + K4u3u3(k) + K4q4d3(k) + K4Tssd3d9(k)
]

x13(k + 1) = (1− c6)x13(k) + c6[K6Tss2outd8(k) + K6u2u2(k)+

+K6qr3d6(k) + K6Tssd6d12(k)
]

x15(k + 1) = (1− c8)x15(k) + c8
[
K8q7x7(k) + K8Tss7outx14(k)+

+K8q5d4(k) + K8q6d5(k) + K8Tssd4d10(k) + K8Tssd5d11(k)
]

(7)

Hence, the state space model equations are:

x(k + 1) = Ax(k) + Bpu(k) + Bdd(k)⇒x(k + 1) = Ax(k) + B
[

u(k)
d(k)

]
,

where : B = [Bp Bd], x = (x1,x2, . . . , x16), d = (d1,d2, . . . , d12),

u = (u1,u2, . . . , u5),

(8)

The matrices of the model are shown at the end of this paper in Appendix A.

2.2. Evaluation Criteria

The evaluation of the behavior of the system includes different places of overflow in
the sewage and at the input of the WWTP. The evaluation criteria used to analyze the effects
of the applied control strategies are shown below. Only hydraulic variables are considered
in some of them, whereas others also include magnitudes related to water quality. Some of
the indices, such as Nov (number of overflows), Tov (duration of overflow), Vov (overflow
volume), Gu (degree of usage of WWTP), and S (smoothness in control law application),
corresponding to the first group, are shown in [46]. In this work, the following qualitative
indices will be considered, where the subscript i stands for a specific overflow point in the
system and n is the total number of points:

1. Total suspended solids mass (Mssov,i) (kg): this is the total mass of suspended solids at
a specific overflow place i. Considering simulation time in days (d) Tsim, if qov,i(t) is the
overflow (m3/d) and Tssi(t) is the total suspended solids concentration (g/m3), the
total suspended solids mass of pollutant overflowed at the point i is:

Mssov,i = 10−3
Tsim∫
0

qov,i(t)Tssi(t)dt, (9)

and the total mass of suspended solids overflowed in the whole sewer is:

Mssov =
n

∑
i=1

Mssov,i, (10)

2. Ammonia mass (NHov,i) (kg): this is the total mass of ammonia in wastewater escaping
from the sewage at a specific overflow place i. If NHi(t) is the ammonia concentration,
the total ammonia mass overflowed at the point i is:

NHov,i = 10−3
Tsim∫
0

qov,i(t)NHi(t)dt, (11)
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and the total mass of ammonia overflowed in the whole sewer is:

NHov =
n

∑
i=1

NHov,i, (12)

3. Nitrate mass (NOov,i) (kg): this is the total mass of nitrate in wastewater discharged
from a specific overflow place i. If NOi(t) is the nitrate concentration, the total nitrate
mass overflowed at the point i is:

NOov,i = 10−3
Tsim∫
0

qov,i(t)NOi(t)dt, (13)

and the total mass of nitrate overflowed in the whole sewer is:

NOov =
n

∑
i=1

NOov,i, (14)

4. Phosphate mass (POov,i) (kg): this is the total mass of phosphate in wastewater escaping
from the sewer network at a certain overflow place i. If POi(t) is the phosphate
concentration, the total phosphate overflowed at the point i is:

POov,i = 10−3
Tsim∫
0

qov,i(t)POi(t)dt, (15)

and the total mass of phosphate overflowed in the whole sewer is:

POov =
n

∑
i=1

POov,i, (16)

5. Overflow quality index (OQIi) (kg-pollution units/d): this is an aggregated index
representing the total mass of pollutants in wastewater discharged into treated water
receivers from a determined overflow place i during a simulation time Tsim. It includes
all the pollutants with different weights, like those used in BSM2 for WWTP [22]. In
this case, OQIi can be approximated as:

OQIi =
1

Tsim
[wTss Mssov,i + wNH NHov,i + wNONOov,i + wPOPOov,i],

and the total index : OQI =
n
∑

i=1
OQIi,

(17)

with wTss = 2, wNH = 30, wNO = 10, and wPO = 100.

3. Sectorization of the System Model

To apply control methodologies to large-scale systems, it is usually necessary to
divide the whole system into smaller subsystems. To find the best way to divide the
system into smaller ones, a structural analysis has been carried out, so that the subsystems
are controllable, reducing their degree of coupling [47]. The direct graph of the system
represents the relationships between the different process variables and helps to obtain
the best method to split the entire system into subsystems with minimal coupling, holding
their reachability [47]. To achieve this objective, the reachability from the input has been
tested from the direct graph of the system obtained by applying the same method as in [46].
This is shown in Appendix B of the document, as well as the system sectorization.

For this benchmark, two subsystems are considered: the first includes tanks 1 to 4,
links 1 to 4, and catchment areas 1 to 4; and the second, tank 5, links 5 to 9, and catchment
areas 5 and 6. To use the distributed MPC exposed in Section 6, the state space local models
of each subsystem are obtained as follows, considering the coupling input u4 to belong to
subsystem 1:
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x1(k + 1) = A1x1(k) + Bp11u1(k) + Bp12u2(k) + Bd11d1(k) + Bd12d2(k),

y1(k) = C1x1(k), where : x1 = (x1, x2, x3, x4, x6, x10, x11, x13),u1 = (u1, u2, u3, u4),

d1 = (d1, d2, d3, d6, d7, d8, d9, d12),

x2(k + 1) = A2x2(k) + Bp21u1(k) + Bp22u2(k) + Bd21d1(k) + Bd22d2(k),

y2(k) = C2x2(k), where : x2 = (x5, x7, x8, x9, x12, x14, x15, x16),

u2 = (u5), d2 = (d4, d5, d10, d11),

(18)

Properly choosing the rows and columns of A and B from the matrices (8), the matrices
A1, Bp11, Bp12, A2, Bp21, and Bp22 are obtained. Moreover, due to the system’s configuration,
Bp21 only has non-zero elements in the last column, and Bp12, Bd12, and Bd21 are null.

4. Control Objectives

The control objectives considered in this system are to keep the WWTP input flow close
to its nominal value, taking advantage of its capacity, to reduce the mass of contaminant
escaping from the sewage, avoiding overflows in the deposits and at the input of the
WWTP, and to optimize operating costs. To get the exposed goal, the set-points of the
outlet flow rates of the deposits (control variables) are obtained to reduce the difference
between the nominal flow rate and its current value at the inlet to the WWTP. Moreover,
the volume of wastewater is distributed among all the reservoirs in the sewerage according
to their capacity, which is obtained by optimizing the difference between the wastewater
level of each deposit and a dynamically calculated set-point level to get that objective [48].
The effects of the disturbances (collected flows at the catchment areas) will be reduced
by the proportional distribution of the wastewater stored in the reservoirs, minimizing
the overflows. The control objectives can be expressed as a cost function that includes the
partial goals previously exposed [46,49]:

J =
M

∑
j=1

N

∑
k=0

wj ϕj(x(k), u(k)) (19)

where N is the prediction horizon of the MPC presented in 5 and M is the number of
objectives considered, ϕj is a partial goal, and wj is the weight associated to each partial
objective ϕj, with j = 1, . . . , M.

The partial objectives included in the control problem considered are shown below:

1. Minimization of load overflowed and overflows, and uniform distribution of the
stored wastewater and the concentration of total suspended solids:

ϕ1(x(k)) =
5
∑

i=1
qii(k)(Vi(k)− viVG(k))

2 +
12
∑

j=10
qjj(k)

(
Tssj−7(k)− Tssm(k)

)2,

vi =
Vimax

5
∑

j=1
Vjmax

, VG(k) =
5
∑

j=1
Vj(k),

withqii(k) =

{
fi xi(k) ≤ hmaxi

fi

(
1 + αi(xi(k)− hmaxi)

2 Tssi(k)
Tssm(k)

)
xi(k) > hmaxi

,

Tssm(k) =

5
∑

j=1
Vj(k)Tssj(k)

5
∑

j=1
Vj(k)

(20)

where VG is the total filled volume in the sewerage at instant k, vi is a factor that represents
the weight of the deposit capacity i in the total available storage volume in the network,
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Tssi(k) represents the concentration of suspended solids of each tank i at the instant k, and
Tssm(k) is the weighted mean concentration of suspended solids at the instant k. The weight
qii(k) allows for the overflows’ penalization, growing quadratically with the associated
overflow, and also considers if the pollutant concentration Tssi(k) is higher or lower than
the average Tssm(k) to penalize more or less the mass of pollutant overflowed. Factors fi
and αi penalize even more overflows in some deposits. Weights qii(k) and qjj(k) are tuning
parameters included as diagonal elements in the Q(k) matrix below.

2. Maximum usage and minimum overflow at the WWTP influent:

ϕ2(x(k)) = (QWWTP(k)−QWWTPmax)
2 (21)

where QWWTP is the inlet flow to the treatment plant (state x9) at instant k and QWWTPmax is
its nominal value.

3. Control efforts minimization:

ϕ3(u(k)) =
5

∑
i=1

rii

(
ui(k)− uire f (k)

)2
(22)

where uiref are the output flows to keep the reference level in a deposit, calculated by
Bernoulli’s law, as explained in Section 5.2. Weights rii are tuning parameters included as
diagonal elements in the R matrix below.

The global control system has a hierarchical structure. The level set-points are gener-
ated for each variable at the upper level to get the cited control objectives. Thus, the MPC
controller solves a constrained optimization problem, obtaining the set-points used by local
controllers, optimizing the usage of WWTP and operating costs. Then, local controllers
apply the control signals to the system [48,50].

5. Predictive Control Problem with Online Linearization
5.1. Optimization Problem

In this work, the centralized predictive control algorithm considers a linear state-space
prediction model, including the influence of disturbances. This model changes every time
new values of the process variables are taken, due to the linearization of the expressions in
each node, so matrices A and B depend on the sample instant k. The key point is that the
optimization of (23) is equivalent to minimize Equation (16), where different objectives are
considered, by using specific weights Q(k) and R in the MPC problem as explained below,
related to weight wj in (19) and the specific performance indices (20), (21), and (22).

The objective function of the MPC contains both the control errors in the system states
and the difference between the control sequence and the flow set-point (hence, it penalizes
control energy), considering the control and prediction horizons are equal to N:

J(k, U) =
N−1
∑

i=1

[
‖^

x(k + i)− xre f (k)‖
2

Q(k) + ‖u(k + i)− ure f (k)‖2
R

]
+ xT(k + N)Px(k + N), (23)

where xre f (k) = (x1re f , x2re f , . . . , x16re f ) and ure f (k) = (u1re f , u2re f , . . . , u5re f ) are the states

and inputs set-points, and U(k) =
[
u(k) u(k + 1) . . . u(k + N − 1)

]T .
For the MPC algorithm, the optimization problem is:

U∗(k) = argminJ(k)
U(k)

, U∗(k) =
[
u∗(k) u∗(k + 1) . . . u∗(k + N − 1)

]Tsubject to :

^
x(k + i + 1) = A(k)

^
x(k + i) + Bp(k)u(k + i) + Bd(k)d(k + i), d(k + i) = d(k)

^
x(k) = x(k)

0 ≤ x̂j(k + i), i = 0, . . . , N − 1, j = 1, . . . , 5

0 ≤ x̂j(k + i) ≤ qmaxj, i = 0, . . . , N − 1, j = 6, . . . , 9

0 ≤ uj(k + i) ≤ umaxj, i = 0, . . . , N − 1, j = 1, . . . , 5,

(24)
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where qmaxj and umaxj are the upper bounds for flow rate in the link elements and the tank
outputs, respectively.

For the MPC algorithm, the horizon N, matrices Q(k) and R, and a terminal penalty
for MPC stability, matrix P, obtained from the Riccati equation [51], are tuning parameters.
A variable diagonal matrix Q(k) includes all control objectives of 4. When an overflow
occurs in a deposit, the associated weight grows to further penalize the difference with the
level set-point of this deposit. The elements q11, . . . , q55, q99, . . . , q12,12 are the non-zero
elements of Q(k) and are calculated by (20), where fi and αi are parameters for tuning MPC.
All the rest of the elements are zero because they are related to state variables of pipes and
their suspended solids concentrations that do not need to be optimized. To penalize the
deviations of the flow set-points in respect to their reference and minimize the operating
costs, a diagonal matrix R is used.

This problem is a quadratic optimization problem (QP) with constraints [31]. The
developed algorithm holds the last calculated solution, if the optimization problem is not
feasible, to avoid failure of the control system.

5.2. Set-Point Determination

Optimal operation can be achieved by a hierarchical controller that calculates the
reservoirs’ level set-points to distributing the current volume of wastewater among all the
deposits considering their maximum capacity [48]. Therefore, it is necessary to calculate
for each one its reference level, considering the total capacity of the system and the volume
of that tank at each sampling instant:

xire f (k) =
(

VG(k)
Ai

)
vi, i = 1, . . . , 5, (25)

where xire f (k) is the set-point level for deposit i at instant k. Moreover, the nominal input flow
to the WWTP is x9re f = 60, 000 m3/d. The reference values for the states xref10, . . . , xref12,
representing pollutant concentrations, are all taken equal to the average value of the pollutant
concentration at the instant considered Tssm(k). The references for the rest of states are irrelevant
because the corresponding weight in Q matrix is 0.

The flow rate set-points are obtained considering the set-point level for each deposit,
according to expression:

uire f (k) = c0i

√
xire f (k), i = 1, . . . , 5, (26)

6. DMPC and Fuzzy Negotiation
6.1. Distributed Model Predictive Control (DMPC) with Fuzzy Negotiation

The DMPC strategy presented in this article is based on [52]. It consists of the opti-
mization of local problems including the future behaviour of the inputs of each subsystem
and the neighbour, using local constraints and prediction models. The local MPC problems
are analogous to the one presented in Section 5.1, adding neighbouring constraints. Two
agents compute each optimization problem. Each agent obtains a control sequence for their
subsystem, U∗1 and U∗2 , at every sampling period, keeping the neighbour control sequence
constant to Us

1 and Us
2, respectively, where Us

1 and Us
2 are the previous solutions of optimiza-

tion problem extended to the current k. Then, another optimization problem is solved by
agent 2, providing the control law for the neighbour Uw

1 , keeping their constant, as shown
in [46]. Note that agent 1 does not solve any additional optimization problem to provide
Uw

2 because U2 does not affect subsystem 1 because input u5 belongs to subsystem 2 only.
The fuzzy negotiation provides the final control sequences for subsystem 1, U f

1 considering

the two possible solutions available U∗1 and Uw
1 , because U f

2 = U∗2 . To apply the fuzzy
negotiation, the average input flow to the WWTP, qWWTP, and the TSS mass overflowed
on average for all tanks in the prediction horizon mssov are obtained for each of the cal-
culated control sequences. Local prediction models, local solutions, and disturbances are
considered for this:



Processes 2023, 11, 1528 12 of 25

qWWTP(k) =
1
N

N

∑
i=1

x̂9(k + i), mssov(k) =
1
N

5

∑
j=2

N

∑
i=1

q̂ov,j(k + i) · T̂ssj(k + i), (27)

6.2. Fuzzy Negotiation

The fuzzification process consists of obtaining fuzzy sets from imprecise knowledge
of a system or process. Then, fuzzy values are obtained considering numerical values of
a certain property. Defuzzification allows the calculation of numerical values of certain
output variables applying a rule set to the inputs and interpreting the membership degrees
of the fuzzy sets in a specific decision [53,54]. This method is used in a DMPC algorithm
with negotiation between agents to get the best solution to the whole system [46].

Fuzzy sets for qWWTP and mssov have been considered with trapezoidal shape and
obtained in a heuristic way in order to get the best performance of the entire system
(Figure 4). In particular, the fuzzy sets related to mssov are adapted depending on the
average concentration of TSS. Table 2 shows fuzzy sets parameters corresponding to (28).

µnegligible(mssov, k) =


1, if mssov < a

b−mssov
b−a , if a ≤ mssov < b

0, if mssov ≥ b
µnoticeable(mssov, k) =


0, if mssov < a

mssov−a
b−a , if a ≤ mssov < b

1, if mssov ≥ b
(28)
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Figure 4. Fuzzy sets for qWWTP and mssov.

Table 2. Fuzzy set parameters.

a b c

µ(qWWTP) 56,000 58,000 60,000
µ(mssov) 1000 Tssm(k) 2000 Tssm(k) -

Fuzzy rules and defuzzification have been carried out following methodology of [46].

7. Results and Discussion

This section presents some simulation results. To reduce the computational time, a
period of Tsim = 10 days has been taken out from a two-year data series of the benchmark [5],
where the flow variability is more significant and represents a specific period of a humid
season with heavy rainfall (Figure 5) with their concentrations of suspended solids (Figure 6)
and ammonia (Figure 7) as representative pollutants.

To assess the methodology presented in the article, four cases have been considered.
The first case (CASE 1, without control) consists of keeping all the tank output valves fully
open. The second case (CASE 2, DMPC based on a cooperative game) considers two local
MPCs in relation to the models shown in (15) and a negotiation based on a cooperative
game shown in [45]. The third case (CASE 3, DMPC with fuzzy negotiation) corresponds
to the methodology exposed in this work, and centralized MPC is CASE 4.
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In addition, for each control algorithm, two options have been considered depending
on whether concentrations of TSS are included or not. The collected water comes from the
urban wastewater and intensity variable rainfall events in relation to the season, which are
the ones that usually cause the overflow in the deposits and at the input of the WWTP. For
all cases, the prediction horizon selected is N = 5, and the weights in the cost function are
shown in Table 3.

Table 3. Algorithm tuning parameters.

Weights for (19) Weights for (20), (21) Weights for (22)

wi = 1, i = 1, 2, 3 fi = 10, i = 1, 2, 3, 4, 5 rii = 10−8, i = 1, . . . , 5
αi = 0, i = 1

αi = 10, i = 2, 3, 4, 5
q99 = 10−5

qii = 10−12, i = 10, 11, 12

The system parameters are shown in Table 4 (extracted from [5]).

Table 4. System parameters.

Parameter Units Values

A1, . . . , A5 tank areas m2 1188, 252, 348, 852, 2988
c01, . . . , c05 discharge coefficients m5/2/d 1.89, 0.40, 0.55, 1.36, 6.12 (×104)

hmax1, . . . , hmax5 tank heights m 5 (for all)
hmin1, . . . , hmin5 minimum levels m 0 (for all)

qmax1, . . . , qmax9 maximum flow rates at the pipes outlet m3/d 5.99, 1.27, 3.02, 4.29, 4.29, 15.06, 4.29, 23.64, 6 (×104)
T sampling time d 0.0021

τ1, . . . , τ9 link elements time constants d 0.0313, 0.0104, 0.0104, 0.0208, 0.0208,
0.073, 0.0208, 0.0104, 0.0104

umax1, . . . , umax5 maximum flow rates at the reservoirs outlet m3/d 5.98, 1.27, 1.75, 4.29, 19.34 (×104)
c1, . . . , c9 sedimentation coefficients in tanks and links - 0.25 (for all)

Firstly, results without including the concentration of TSS are shown as a basis for
comparison with the methodology proposed in this paper. In summary, they correspond
to the methodology of [46] adapted to be applied to the sewer benchmark [5]. As you can
appreciate in Figure 8, the inflow to WWTP has no significant difference for all cases (a), the
same for the overflow flow rate (b) at the entrance of WWTP, corresponding with inlet flows
higher than its nominal value (60,000 m3/d), except for case 1. The differences between all
the cases can be better appreciated in the numerical results of Table 5.
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Due to the water collected in the catchments having great variability, it is not easy to
hold the nominal flow value at the WWTP inlet, and most of the time, it cannot reach this
value. However, when any control is applied, more wastewater is retained in deposit 5,
producing a better regulation of the WWTP inlet flow (Figure 8a), which is particularly
noticeable at the last rainfall peak.

Figure 9 describes the dynamics of some contaminants in the WWTP provided by the
benchmark that includes transport models for all pollutants (TSS and ammonia) in each case.
No significant differences are observed, but, in general, it is observed that both the peaks and
the valleys are more pronounced in the uncontrolled case than in the controlled cases.
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Figure 9. Concentration of suspended solids (a) and ammonia (b) in WWTP input flow rate.

As an example, Figure 10 shows deposit 5 level (a) and outflow set-point (b), u5, in
each case. The water level signal in tank 5 is shown together with the set-point calculated
by the upper level of the hierarchical control system. The set-point tracking is appreciably
better for cases 2, 3, and 4 than for case 1, especially at rainfall peaks. Hence, if no control
is applied, most overflows are generated at the WWTP inlet because not enough water
is being retained in the sewage deposits. Moreover, the controlled cases reduce the total
amount of overflows at the WWTP inlet and the total overflowed water volume (Table 4).

Processes 2023, 11, x FOR PEER REVIEW 18 of 29 
 

 

  
(a) (b) 

Figure 9. Concentration of suspended solids (a) and ammonia (b) in WWTP input flow rate. 

As an example, Figure 10 shows deposit 5 level (a) and outflow set-point (b), u5, in 

each case. The water level signal in tank 5 is shown together with the set-point calculated 

by the upper level of the hierarchical control system. The set-point tracking is appreciably 

better for cases 2, 3, and 4 than for case 1, especially at rainfall peaks. Hence, if no control 

is applied, most overflows are generated at the WWTP inlet because not enough water is 

being retained in the sewage deposits. Moreover, the controlled cases reduce the total 

amount of overflows at the WWTP inlet and the total overflowed water volume (Table 4). 

  

(a) (b) 

Figure 10. Deposit 5 level (a) and output flow rate reference (b). 

The results obtained applying the methodology proposed in this work including TSS 

are shown in Figures 11–13. There are no significant differences comparing with previous 

results. Therefore, more insight is obtained from Tables 6 and 7. 

  
(a) (b) 

Figure 10. Deposit 5 level (a) and output flow rate reference (b).

The results obtained applying the methodology proposed in this work including TSS
are shown in Figures 11–13. There are no significant differences comparing with previous
results. Therefore, more insight is obtained from Tables 6 and 7.
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For the four cases, Tables 5 and 6 show the performance indices of Section 2.2. Case 1
(without control) presents the poorest indices, as we expected, and the centralized MPC
shows the best behaviour for the average flow at the input WWTP (QWWTP) for the degree
of usage of the treatment plant (Gu), for the total overflowed volume (Vov), and for the
total overflowed pollutants (Mssov, NHov, NOov, POov). Moreover, the DMPC with fuzzy
negotiation does not present a great worsening of those indices, with the advantage of using
local optimization problems. Moreover, the smoothing effect of the fuzzy sets selected for
negotiation is the reason why the use of fuzzy DMPC obtains the smallest S. The case of
DMPC based on a cooperative game provides the worst performance indices of controlled



Processes 2023, 11, 1528 17 of 25

cases because the negotiation is performed in a discrete way from evaluating costs for
different combinations of control actions.

Table 5. Numerical results for controllers without Tss.

Data No Control DMPC with
Cooperative Game

DMPC with Fuzzy
Negotiation

Centralized
MPC

Vov,2 184.9266 312.9585 292.3083 202.1544
Vov,3 644.9788 996.5150 795.6183 681.0547
Vov,4 1.8077 × 103 6689.1 7968.8 3130.0
Vov,5 0 6577.5 4338.3 5780.0

Vov,WWTP 2.6362 × 104 18.0810 20.3194 18.0087
Vov 28,999 14,594 13,415 9811.2

Mssov,2 49.310 96.488 83.922 54.588
Mssov,3 128.37 274.86 192.95 139.19
Mssov,4 207.37 992.50 1131.2 443.44
Mssov,5 0 841.16 519.96 712.53

Mssov,WWTP 5451.6 6.1879 7.0636 5.9378
Mssov 5836.6 2211.2 1935.1 1355.7
NHov,2 1.2605 2.4402 2.1236 1.3998
NHov,3 3.2733 7.1891 4.9912 3.5657
NHov,4 6.6447 33.5894 35.7513 14.9230
NHov,5 0 27.0282 16.4251 22.6801

NHov,WWTP 126.8435 0.1085 0.1033 0.1024
NHov 138.0221 70.3554 59.3945 42.6710
NOov,2 0 0 0 0
NOov,3 0 0 0 0
NOov,4 0.0291 0.2452 0.4307 0.1101
NOov,5 0 0.0991 0.0495 0.0772

NOov,WWTP 0.3251 0.0013 6.3448 × 10−4 6.1315 × 10−4

NOov 0.3542 0.3456 0.4808 0.1879
POov,2 0.1136 0.2168 0.1916 0.1254
POov,3 0.3818 0.7977 0.5628 0.4135
POov,4 1.2249 7.3240 6.7831 3.1694
POov,5 0 5.7923 3.4800 4.8845

POov,WWTP 26.8422 0.0242 0.0230 0.0227
POov 28.5626 14.1550 11.0405 8.6155
OQI2 23.6549 36.6397 33.1744 25.1296
OQI3 45.5329 86.6197 63.6188 48.5771
OQI4 71.5591 310.2451 344.5962 143.8839
OQI5 10 259.9951 163.6654 221.1111

OQIWWTP 1483.9 11.5668 11.7255 11.4979
OQI 1634.6 705.0665 616.7803 450.1995

QWWTP 28,860 30,021 30,384 30,556
Gu 48.1006 50.0351 50.6408 50.9265
S - 1.7334 × 1011 6.9231 × 1010 7.6086 × 1010

The overflow volume in deposit 1 comes back to the sewage due to the system structure. Hence, no parameter
is considered.

Table 6. Numerical results for TSS-included option.

Data No Control DMPC with
Cooperative Game

DMPC with Fuzzy
Negotiation

Centralized
MPC

Vov,2 184.9266 313.2993 201.0480 203.8316
Vov,3 644.9788 992.7195 672.6625 666.7686
Vov,4 1.8077 × 103 6694.7 7765.2 3123.6
Vov,5 0 6682.0 4110.8 5789.3

Vov,WWTP 2.6362× 104 19.1941 24.4878 17.9733
Vov 28,999 14,702 12,774 9801.5
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Table 6. Cont.

Data No Control DMPC with
Cooperative Game

DMPC with Fuzzy
Negotiation

Centralized
MPC

Mssov,2 49.310 97.191 54.191 55.108
Mssov,3 128.37 275.65 143.04 136.24
Mssov,4 207.37 993.03 1078.7 444.60
Mssov,5 0 857.42 478.05 713.47

Mssov,WWTP 5451.6 6.5113 8.3917 5.9371
Mssov 5836.6 2229.8 1762.4 1355.3
NHov,2 1.2605 2.4591 1.3826 1.4142
NHov,3 3.2733 7.2185 3.6652 3.4848
NHov,4 6.6447 33.4184 34.3609 14.9650
NHov,5 0 27.4838 15.1051 22.7104

NHov,WWTP 126.8435 0.1183 0.1334 0.1016
NHov 138.0221 70.6981 59.6472 42.6760
NOov,2 0 0 0 0
NOov,3 0 0 0 0
NOov,4 0.0291 0.2409 0.4353 0.1041
NOov,5 0 0.0998 0.0507 0.0738

NOov,WWTP 0.3251 0.0013 8.8362 × 10−4 5.7748 × 10−4

NOov 0.3542 0.3421 0.4869 0.1784
POov,2 0.1136 0.2182 0.1249 0.1265
POov,3 0.3818 0.8010 0.4223 0.4045
POov,4 1.2249 7.2788 6.2459 3.1790
POov,5 0 5.8853 3.1999 4.8879

POov,WWTP 26.8422 0.0263 0.0296 0.0225
POov 28.5626 14.2096 10.0227 8.6205
OQI2 23.6549 36.8371 24.9986 25.2768
OQI3 45.5329 86.8660 49.6458 47.7420
OQI4 71.5591 309.8305 329.8800 144.2374
OQI5 10 264.6245 151.2962 221.3869

OQIWWTP 1483.9 11.6611 12.0823 11.4949
OQI 1634.6 709.8192 567.9028 450.1381

QWWTP 28,860 30,003 30,430 30,555
Gu 48.1006 50.0050 50.7169 50.9255
S - 1.7073 × 1011 6.9069 × 1010 7.6321 × 1010

Table 7. Comparative improvement for controllers including TSS.

Data Included
TSS Option

DMPC with
Cooperative Game

DMPC with Fuzzy
Negotiation

Centralized
MPC

Vov No 14,594 13,415 9811.2
Vov Yes 14,702 12,774 9801.5

Mssov No 2211.2 1935.1 1355.7
Mssov Yes 2229.8 1762.4 1355.3
NHov No 70.3554 59.3945 42.6710
NHov Yes 70.6981 59.6472 42.6760
NOov No 0.3456 0.4808 0.1879
NOov Yes 0.3421 0.4869 0.1784
POov No 14.1550 11.0405 8.6155
POov Yes 14.2096 10.0227 8.6205
OQI No 705.0665 616.7803 450.1995
OQI Yes 709.8192 567.9028 450.1381

QWWTP No 30,021 30,384 30,556
QWWTP Yes 30,003 30,430 30,555

Gu No 50.0351 50.6408 50.9265
Gu Yes 50.0050 50.7169 50.9255
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Regarding the numerical results, the performance improves when the concentration
of pollutant is considered, except in case 2, although this is not very significant.

However, the best performance improvement is in case 3 because the negotiation
between agents considers the overflowed TSS mass. Table 7 shows the comparative perfor-
mance improvement in each case.

In the end, to analyze how the location of the fuzzy sets affects the behavior of the DMPC
algorithm, fuzzy sets have been moved, as shown in Table 8, while preserving their shape.

Table 8. Fuzzy sets parameters for each DMPC case.

µ(
—
q WWTP) µ(

—
mssov)

Case a b c a b

DMPC 1 56,000 58,000 60,000 1000 Tssm(k) 2000 Tssm(k)
DMPC 2 54,000 56,000 58,000 1000 Tssm(k) 2000 Tssm(k)
DMPC 3 58,000 60,000 62,000 1000 Tssm(k) 2000 Tssm(k)
DMPC 4 56,000 58,000 60,000 0000 Tssm(k) 1000 Tssm(k)
DMPC 5 56,000 58,000 60,000 2000 Tssm(k) 3000 Tssm(k)

The results not including the concentration of suspended solids (without TSS) are
presented in Table 9, and the results including TSS are presented in Table 10.

For the first situation, the DMPC1 and DMPC2 cases show similar results, so the
influence of the place of the fuzzy sets is very small. Regarding DMPC3 and DMPC2, the
degree of usage of the treatment plant is slightly smaller in DMPC3 because the fuzzy set
has been moved to the inlet flow constraint of 60,000 m3/d. By comparing DMPC4 and
DMPC3, the overflow (Vov) is larger for DMPC3 because the fuzzy set does not consider
minor overflows. In conclusion, the results have no significant differences because the
fuzzy sets are very close to each other, but DMPC4 presents the best performance.

Table 9. Numerical results moving DMPC fuzzy sets (without including TSS).

Data DMPC1 DMPC2 DMPC3 DMPC4 DMPC5

Vov,2 292.3083 294.4305 310.7161 261.1050 296.7159
Vov,3 795.6183 807.0578 971.8244 687.2200 835.2211
Vov,4 7968.8 7974.8 7721.3 7905.4 7820.3
Vov,5 4338.3 4341.4 4338.3 4338.3 4343.8

Vov,WWTP 20.3194 20.1841 21.2225 20.6859 20.1757
Vov 13,415 13,438 13,982 13,189 13,316

Mssov,2 83.922 84.702 93.652 72.960 85.670
Mssov,3 192.95 196.94 259.77 155.33 206.23
Mssov,4 1131.2 1133.0 1161.4 1129.1 1102.1
Mssov,5 519.96 520.58 613.08 513.98 521.12

Mssov,WWTP 7.0636 7.0119 6.9094 7.2022 6.9319
Mssov 1935.1 1942.2 2134.8 1878.5 1922.0
NHov,2 2.1236 2.1431 2.3672 1.8504 2.1673
NHov,3 4.9912 5.0960 6.7716 4.0041 5.3391
NHov,4 35.7513 35.7867 39.8640 36.1368 34.5933
NHov,5 16.4251 16.4406 19.8800 16.2649 16.4578

NHov,WWTP 0.1033 0.1027 0.1165 0.1056 0.1034
NHov 59.3945 59.5692 68.9993 58.3617 58.6610
NOov,2 0 0 0 0 0
NOov,3 0 0 0 0 0
NOov,4 0.4307 0.4410 0.3890 0.4154 0.4276
NOov,5 0.0495 0.0505 0.0643 0.0499 0.0500

NOov,WWTP 6.3448 × 10−4 6.3597 × 10−4 8.1386 × 10−4 6.5225 × 10−4 6.2756 × 10−4

NOov 0.4808 0.4921 0.4541 0.4660 0.4782
POov,2 0.1916 0.1933 0.2114 0.1675 0.1953
POov,3 0.5628 0.5744 0.7573 0.4548 0.6013
POov,4 6.7831 6.7948 8.5241 6.8598 6.5964
POov,5 3.4800 3.4835 4.2674 3.4520 3.4862

POov,WWTP 0.0230 0.0228 0.0260 0.0235 0.0230
POov 11.0405 11.0687 13.7862 10.9576 10.9022
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Table 9. Cont.

Data DMPC1 DMPC2 DMPC3 DMPC4 DMPC5

OQI2 33.1744 33.3891 35.8530 30.1599 33.6553
OQI3 63.6188 64.7335 82.3436 53.1236 67.3239
OQI4 344.5962 345.0823 363.1114 345.3249 335.2797
OQI5 163.6654 163.8365 192.7466 161.9850 163.9967

OQIWWTP 11.7255 11.7134 11.7349 11.7601 11.6996
OQI 616.7803 618.7548 685.7893 602.3535 611.9552

QWWTP 30,384 30,381 30,317 30,401 30,399
Gu 50.6408 50.6354 50.5288 50.6678 50.6643
S 6.9231 × 1010 6.9375 × 1010 9.6167 × 1010 6.9317 × 1010 6.9414 × 1010

For the second case, the place of the fuzzy sets affects more than before. This influence
is more difficult to establish since the fuzzy sets depend at each instant on the concentration
of suspended solids. However, the results have no great differences due to the fuzzy sets
being very close to each other, but DMPC3 presents the best performance.

Table 10. Numerical results moving DMPC fuzzy sets (including TSS).

Data DMPC1 DMPC2 DMPC3 DMPC4 DMPC5

Vov,2 203.5121 204.8541 288.4027 204.9085 205.5031
Vov,3 672.5447 675.6874 722.9298 673.0609 674.1634
Vov,4 7770.5 7701.0 6205.4 7811.8 7880.9
Vov,5 4109.7 4142.8 4873.0 4108.9 4113.2

Vov,WWTP 24.4633 24.5810 23.1997 24.4242 24.3320
Vov 12,781 12,749 12,113 12,823 12,898

Mssov,2 54.9411 55.2451 82.6870 55.3666 55.5478
Mssov,3 142.9723 143.8091 170.0461 143.3309 144.106
Mssov,4 1079.5 1073.9 880.6759 1083.5 1090.4
Mssov,5 477.9512 482.4708 588.7328 477.9763 478.7065

Mssov,WWTP 8.3843 8.5278 7.6018 8.3672 8.3379
Mssov 1763.7 1763.9 1729.7 1768.5 1777.1
NHov,2 1.4013 1.4093 2.0927 1.4119 1.4165
NHov,3 3.6634 3.6850 4.3927 3.6732 3.6952
NHov,4 34.3839 34.2258 28.7100 34.5066 34.6885
NHov,5 15.1017 15.2228 18.9341 15.1034 15.1237

NHov,WWTP 0.1332 0.1324 0.1287 0.1330 0.1323
NHov 54.6835 54.6752 54.2582 54.8281 55.0561
NOov,2 0 0 0 0 0
NOov,3 0 0 0 0 0
NOov,4 0.4302 0.4229 0.3456 0.4393 0.4273
NOov,5 0.0501 0.0502 0.0642 0.0507 0.0487

NOov,WWTP 8.7218 × 10−4 8.4314 × 10−4 8.8063 × 10−4 8.8474 × 10−4 8.4302 × 10−4

NOov 0.4812 0.4739 0.4108 0.4909 0.4768
POov,2 0.1267 0.1274 0.1889 0.1276 0.1280
POov,3 0.4221 0.4246 0.4967 0.4231 0.4252
POov,4 6.2459 6.2178 5.7592 6.2710 6.2872
POov,5 3.1989 3.2246 4.0418 3.1996 3.2018

POov,WWTP 0.0296 0.0295 0.0290 0.0296 0.0294
POov 10.0232 10.0238 10.5156 10.0509 10.0717
OQI2 25.2049 25.2895 32.8343 25.3219 25.3717
OQI3 49.6267 49.8594 57.2369 49.7280 49.9564
OQI4 330.1006 328.4947 273.1868 331.2860 333.1983
OQI5 151.2654 152.5351 185.0174 151.2762 151.4811

OQIWWTP 12.0802 12.1066 11.9102 12.0762 12.0682
OQI 568.2778 568.2853 560.1855 569.6883 572.0757

QWWTP 30,430 30,436 30,474 30,428 30,423
Gu 50.7161 50.7267 50.7896 50.7131 50.7055
S 6.9493 × 1010 6.8258 × 1010 8.5400 × 1010 6.9441 × 1010 6.9763 × 1010
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8. Conclusions

This work presents a DMPC with fuzzy negotiation applied to a simulated sewage
network benchmark, offering good results in comparison with centralized MPC and DMPC
based on a cooperative game. Naturally, centralized MPC obtains the best results, as this
controller uses the entire model of the system. Nevertheless, the DMPC results have no great
differences, but in this case, the control system manages simpler optimization problems
and, like other distributed strategies, provides the system with a certain fault tolerance.
In comparison with a DMPC based on a cooperative game, fuzzy negotiation improves
the results significantly. In addition, the fuzzy negotiation includes expert knowledge of
the sewer system considering fuzzy sets whose shape is real-time adapted to the process
depending on the needs of the sewer system.

Moreover, only DMPC with a fuzzy negotiation algorithm considering the concen-
tration of suspended solids improves the performance of the sewer system even more,
reducing both the volume and the pollutant mass overflowed in the whole of the system,
whereas DMPC based on a cooperative game does not and the MPC algorithm does not
show a relevant improvement. It has been possible to verify that the improvement intro-
duced by considering suspended solids in the MPC and DMPC algorithms is due more to
the increase in the penalty for overflows and to the peculiar adaptive construction of fuzzy
sets than to the optimization of the concentrations of suspended solids in the network.

Consequently, UDS control is fundamentally driven by level and flow dynamics, but the
inclusion of the TSS concentration improves the industrial implementation of the controller.
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Appendix A

Matrices of the model:

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 T

A3
0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 T

A5
0 0 0 0 0 0 0 0

0 0 0 0 0 (1− T
τ3
) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 (1− T
τ7
) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 T
τ8

(1− T
τ8
) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 (1− T
τ9
) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 (1− c3) 0 0 c3 0 0 0
0 0 0 0 0 0 0 0 0 c4K4Tss3out (1− c4) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 (1− c5) 0 0 c5 0
0 0 0 0 0 0 0 0 0 0 0 0 (1− c6) 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 (1− c7) 0 0
0 0 0 0 0 0 c8K8q7 0 0 0 0 0 0 c8K8Tss7out (1− c8) 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1− c9)



,
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Bp =



− T
A1

0 0 0 0
0 − T

A2
0 0 0

0 0 − T
A3

0 0
T

A4
0 T

A4
− T

A4
0

0 0 0 0 − T
A5

0 T
τ3

0 0 0
0 0 0 T

τ7
0

0 0 0 0 0
0 0 0 0 T

τ9
0 0 0 0 0

c4K4u1 0 c4K4u3 0 0
0 0 0 0 0
0 c6K6u2 0 0 0
0 0 0 c7 0
0 0 0 0 0
0 0 0 0 c9



,

Bd =



T
A1

0 0 0 0 0 0 0 0 0 0 0
0 T

A2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 T

A4
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 T

τ3
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 T

τ8
T
τ8

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 c4K4q4 0 0 0 c4K4Tss1out 0 c4K4Tss4 0 0 0
0 0 0 0 0 0 0 0 0 0 c5 0
0 0 0 0 0 c6K6qr3 0 c6K6Tss2out 0 0 0 c6K6Tss3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c8K8q5 c8K8q6 0 0 0 0 c8K8Tss5 c8K8Tss6 0
0 0 0 0 0 0 0 0 0 0 0 0



,
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