
Citation: Sun, X.; Yang, Y.; Zhang, C.

Junction Temperature Prediction

Model for GaAs HBT Devices Based

on ASO-ELM. Processes 2023, 11, 1346.

https://doi.org/10.3390/pr11051346

Academic Editor: Giampaolo

Manzolini

Received: 24 March 2023

Revised: 20 April 2023

Accepted: 25 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Junction Temperature Prediction Model for GaAs HBT Devices
Based on ASO-ELM
Xiaohong Sun *, Yijun Yang and Chaoran Zhang

School of Electronic and Information Engineering, Suzhou University of Science and Technology,
Suzhou 215009, China
* Correspondence: zixuan19861002@126.com

Abstract: In this study, an accurate temperature prediction model is proposed for GaAs HBT, which
considers both the bias voltage and current rather than power consumption only. The increase in
temperature is closely related to the heat source property, which leads to a complex interaction
between the lattice vibration and the uneven distribution of the electric field and current density.
To improve the accuracy and stability of the temperature prediction model, a machine learning
method of Extreme Learning Machine (ELM) optimized with an Atomic Search Algorithm (ASO) is
introduced. The validity of the model is verified by comparing it with experimental observations by
the QFI InfraScope TM temperature mapping system. The predicted temperatures for an 8 × 8 HBT
power cell fabricated with 2 µm GaAs technology show good agreement with the measurement
results, with a ±2 ◦C error and a relative error deviation below 3%. This demonstrates the superior
performance of the proposed model in accurately predicting the temperature of GaAs HBT.
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1. Introduction

GaAs HBTs are widely used in the design of RF power amplifiers due to their excellent
power processing ability at high frequencies. However, high-performance power amplifier
design typically involves a trade-off between efficiency and linearity, resulting in high
power consumption. This, in turn, leads to significant heating effects in the active transis-
tors, especially with increasing integration. The low thermal conductivity of 45 W/(m·K)
of GaAs material exacerbates the issue of temperature increase during operation [1]. This
increase in temperature has a detrimental impact on the reliability of the circuit and can
even cause the device to burn out. As a result, it is crucial to accurately predict the max-
imum junction temperature of the device to improve the effectiveness of heat treatment,
thermal compensation, device package design, and system cooling requirements [2]. Ac-
curate temperature prediction is particularly important as device integration increases.
A temperature prediction model that considers the bias voltage and current, rather than
just power consumption, is essential for effective heat management.

The direct method [3] for temperature acquisition is inseparable from expensive optical
instruments. While the indirect method for temperature acquisition mainly relies on finite
element simulation and mathematical calculation methods. A finite element simulation
is typically implemented using software such as Silvaco, COMSOL, or ANSYS [4]. This
complex process involves several steps, including device structure definition, mesh divi-
sion, and physical and boundary condition definitions. It is a time-consuming process that
requires careful attention to ensure the validity and convergence of the solution. Math-
ematical calculation methods use thermal resistance to establish relationships between
steady temperature and power consumption. The thermal conduction angle is an effective
intermediate variable for deriving the equivalent thermal resistance based on the heat
source and boundary conditions. In power cells constructed using multiple fingers in
modern power amplifier designs, the spacing between fingers, the location and geometry
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of the active area, and metal interconnections all influence the thermal conduction angle [2].
In the literature [5], the authors presented a method to estimate the junction temperature
and thermal resistance of HBTs by analyzing the temperature dependence of thermal
conductivity. This approach is flexible enough to be applied to various structures and
processes, whether they include trench isolation and metal layers or not. However, it may
not be appropriate for materials with non-linear temperature dependence of thermal con-
ductivity, which must be precisely measured, especially at high temperatures. To address
this issue, a new method to calculate the junction temperature, which better accounts for
the non-linear variation of thermal conductivity, was introduced in the literature [6]. This
method is applicable to different semiconductor materials and device structures. However,
it overlooks the influence of other factors inside the device on the junction temperature,
such as current density and electric field distribution. On the other hand, the temperature
dependence of the current gain of the transistor can also be used as an effective variable for
calculating the junction temperature. In the literature [7], the authors used the RF signal to
correct the power dissipation of the transistor and estimated the junction temperature and
thermal resistance of the transistor by analyzing the thermal dependence of the current gain.
Nevertheless, accurate calibration of the RF signal generator and current gain measurement
system is necessary, and the method is susceptible to noise or interference from other
sources in the RF signal or current gain measurement. As output power increases, the
maximum temperature is affected by higher-order effects of power consumption and is
corrected using a non-linear expression of power series. The above methods are based on
polynomials that assume power consumption is the only excitation factor leading to an
increase in junction temperature. However, according to the literature [8], when analyzing
lattice heating with the electric field and current density distribution under a fixed bias
voltage, the center of the heat source will drift with increasing current. Consequently, the
device temperature is presumed to be voltage and current-dependent rather than solely
dependent on their production. Therefore, a temperature prediction model that considers
bias voltage and current is more accurate than one based solely on power consumption.

The conventional methods above are physics-based and require knowledge of the
thermal parameters, such as the thermal conductivity and heat capacity of the HBT, as well
as the geometry and material properties of the device. Then, they apply methods, such as
thermal networks or finite elements, to solve the thermal equations and obtain the junction
temperature and thermal resistance. Neural networks are a more versatile and robust
tool that can establish highly nonlinear and complex relationships through training data
without requiring explicit mathematical expressions. Therefore, neural networks have been
increasingly used by researchers in the field of microelectronic device junction temperature
calculation. In this regard, BP neural network is one of the most commonly used methods.
It has a powerful nonlinear mapping ability and can be trained by a backpropagation
algorithm. Literature [9] constructed an IGBT junction temperature prediction model using
this advantage of the BP neural network and achieved better prediction accuracy than
polynomial fitting methods. However, BP neural network also has some disadvantages. For
example, it may cause overfitting during the training process and require a large amount of
computing resources and time. Moreover, its prediction accuracy is affected by network
structure and parameters, which need to be constantly manually adjusted to obtain the best
results. To overcome these problems, some researchers have explored other types of neural
network models. For example, literature [10] combined BP, interpolation and Kalman
filtering to further improve the accuracy of neural networks in IGBT junction temperature
prediction. Literature [11] proposed a knowledge-based neural network (KBNN) method
that further reduces the computational complexity of modeling. KBNN method uses basic
physical principles to constrain the structure and parameters of neural networks and can
optimize network performance through adaptive learning. In contrast, an extreme learning
machine only needs to set the number of nodes in the hidden layer of the network and does
not require adjustment of the input weights and biases of the hidden layer nodes during the
algorithm execution in order to produce a unique optimal solution [12,13]. Therefore, it has
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the advantages of fast learning speed and good generalization performance. Its disadvan-
tage lies in that the accuracy of the model depends on the input weights and thresholds. To
improve the stability and accuracy of the ELM model, intelligent optimization algorithms
are usually used to determine the optimal weight and threshold parameters of the network.
Literature [14] used the particle swarm algorithm (PSO) to optimize the parameters of
ELM and achieved accurate results in estimating daily evapotranspiration. Literature [15]
proposed using the genetic algorithm (GA) to optimize ELM for modeling the relevant
characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large
signals. The GA algorithm is complex to encode, has insufficient local search capability
and random wandering phenomenon, and relies on empirically selected parameters to
influence the optimal solution. Moreover, the convergence and search efficiency of the
algorithm is poor. Another popular optimization method is the PSO algorithm, which
converges quickly but easily gets stuck in local optima. Therefore, it is prone to premature
convergence. Recently, a new optimization method called Atomic Search Optimization
(ASO) was proposed [16]. This method has fewer adjustable parameters and better search
capability than GA and PSO. The ASO algorithm uses the gravitational force and the
repulsive force between atoms to motivate them to explore space more extensively and
efficiently. The ASO algorithm has fast convergence and strong search ability, which can
significantly improve the efficiency of solving complex problems. In this work, we use the
ASO algorithm to optimize ELM and construct the ASO-ELM model to predict the junction
temperature of GaAs HBT transistors.

This paper presents a constructed ELM model that takes bias voltage and current as
inputs and junction temperature as output. The ASO algorithm is utilized to optimize the
input weights and hidden layer thresholds of the model to establish the optimal combined
model. To validate the effectiveness of the model, actual temperature measurements were
conducted using a 2W HBT power cell with the QFI InfraScope TM temperature mapping
system. The results indicate that the proposed model accurately and reliably predicts the
maximum junction temperature of the devices.

2. Measured Devices and Data Processing
2.1. Measured Devices

The power cell is comprised of 64 HBTs, where each HBT’s emitter area is 80 µm2.
The substrate has a 100µm thickness [17]. Two backside thermal vias (BTVs) are situated
between two adjacent transistor arrays. The bare slice area measures 1100 µm × 690 µm.
Figure 1 shows the temperature distribution measured by the QFI infrared device at
Uce = 5 V, Ic = 400 mA, and a fixed substrate temperature of 75 ◦C. Under steady opera-
tion conditions, the lowest temperature is 83.36 ◦C, and the highest temperature reaches
171.49 ◦C.

2.2. Data Processing

To ensure the temperature measurement system’s accuracy, the power cell’s substrate
temperature on the test bench is fixed at 75 ◦C. The device is connected to two power
sources and operated in the forward state. The collector bias voltage Vc is initially set at 4 V,
and the base voltage Vb is adjusted to alter the base current Ib. Subsequently, the collector
current Ic varies from 100 mA to 600 mA with an increment of 5 mA. When the device
reaches a steady state temperature, the corresponding Vc and Ic are used to determine the
maximum junction temperature at the center. This process is then repeated for collector
bias voltages of 5 V and 6 V. To minimize the influence of data noise and dimensionality; the
maximum and minimum norm method is employed to normalize the input and output data
within the range of [0,1]. Following the elimination of outliers, a total of 293 sets of actual
data, comprising collector bias voltage, collector current, and corresponding maximum
junction temperature data, are obtained. Finally, 270 training samples are designated as
training sets, and 23 samples are set aside as test sets.
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3. Method
3.1. ELM Principle

ELM [18] is a feedforward neural network with a single hidden layer that determines
the output weight matrix using a generalized inverse approach rather than an iterative
approach. In contrast to traditional BP neural networks, ELM has a simpler structure and
trains considerably faster. During the training process, the connection weights of the input
and hidden layers and the hidden layer threshold are randomly generated and do not
require pre-setting, reducing the need for human intervention. The only parameter that
must be established is the number of neurons in the hidden layer to obtain the optimal
solution under specific conditions.

For Q arbitrarily different samples (xi,yi), x = [xi1,xi2, . . . , xin]T∈Rn,
yi = [yi1,yi2, . . . , yim]T∈Rm, a single hidden layer feedforward neural network with L neu-
rons can be represented as

L
∑

i=1
βig(aixj + bi) = uj

i = 1, 2, . . . , L, j = 1, 2, . . . , L
(1)

where ai = [ai1, ai2, . . . , ain]T is the input weight, bi is the bias of the i-th hidden layer neuron,
xj = [x1j, x2j, . . . , xnj], βi = [βi1, βi2, . . . , βim] is the output weight, uj = [u1j, u2j, . . . , umj],
and g(x) is the activation function. Equation (1) can be expressed in the matrix as

Hβ = UT (2)

where U = [u1, u2, . . . , uQ], UT is the transpose matrix of matrix U, β = [β1, β2, . . . , βL]T,
and H is the hidden layer output matrix, which can be expressed as

H =

 g(a1 · x1 + b1) · · · g(aL · x1 + bL)
... · · ·

...
g(a1 · xQ + b1) · · · g(aL · xQ + bL)


Q×L

(3)
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The ELM network is designed to minimize the error between the actual output and
the desired output, allowing for the output weight β to be obtained by solving the least
squares solution of the following equation

min
β

∥∥∥Hβ−UT
∥∥∥ (4)

The final solution of this equation is obtained as

β̂ = H+UT (5)

H+ is the generalized inverse matrix of the output matrix H.
Firstly, the input weights and threshold b of the ELM network are randomly initialized,

and the activation function is set. Then, the hidden layer output matrix H is computed.
Finally, the output weight matrix β is calculated. In this process, random initialization
of input weights and threshold can increase the randomness of the network and reduce
the risk of overfitting. The activation function is used to increase the nonlinearity of the
network, enabling it to handle more complex problems.

3.2. ASO Principle

ASO is a mathematical model that is based on the physical laws of motion governing
atoms in molecular dynamics. It stimulates the displacement of atoms in a molecular
system due to mutual and systemic binding forces [19]. The ASO algorithm assumes that
atomic motion satisfies Newton’s second law. Atoms experience two forces, one being the
interaction forces generated by the Lennard-Jones potential and the other being the binding
force generated by the atomic covalent bond.

The interaction force Fd
i can be expressed as the sum of forces acting on the i-th atom

by other atoms inside the molecule and can be written as

Fd
i (t) = ∑

j∈Nbest

randjFd
ij(t) (6)

where randj is a random number distributed within [0,1], d is the number of dimensions
in which the atoms are located, and Nbest is the set of n atoms with good fitness function
values. Fd

ij(t) is the Lennard-Jones potential force acting on the i-th atom by the j-th atom
at the current iteration number t and is defined as

Fd
ij(t) = −η(t)

{
2
[
Sij(t)

]13 −
[
Sij(t)

]7} (7)

Sij(t) =
rij(t)
σ(t)

(8)

Here, η is the depth function to adjust the repulsion region or the attraction, rij is the
Euclidean distance between i atom and j atom, and σ(t) is the length scale represented as

σ(t) =

∥∥∥∥∥∥∥xi(t),

∑
j∈Nbest(t)

xj(t)

Nbest(t)

∥∥∥∥∥∥∥
2

(9)

where xi (xj) is the position of i(j) atom. To improve the exploration range, Equation (8) for
calculating Sij will be further modified accordingly to reference [18].

Taking into account the binding forces of G in covalent bonds to highlight the guiding
role of the population’s best atom, it is assumed that each atom has a covalent bond with
the population’s best atom. Therefore, each atom is subjected to the binding force of the
best atom, which can be expressed as follows.

Gd
i = λ[xd

best(t)− xd
i (t)]e

−20 t
T (10)
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where λ is the coefficient factor, xd
best(t) is the best atomic position of the population in the

t-th iteration, xd
i(t) is the current position of the atom in the t-th iteration, and T is the total

number of iterations.
The acceleration of the i-th atom with the mass of mi under the action of the interaction

and binding forces can be calculated as follows

ai = (Fi + Gi)/mi (11)

In each iteration, the velocity and position of an i-th atom are updated based on the
obtained acceleration as follows

vd
i (t + 1) = randd

i vd
i (t) + ad

i (t)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

(12)

where vd
i is the velocity of the atom.

3.3. HBT Junction Temperature Prediction Model Based on ASO-ELM

The basic structure of the ELM predictive junction temperature model is presented
in Figure 2, consisting of an input layer, a hidden layer, and an output layer. The input
variables, Vc and Ic, are considered the key factors for predicting the maximum junction
temperature. Although ELM has a fast learning speed, the forecast outcomes are subjected
to the influence of random input weights and hidden layer deviations, leading to significant
differences in the results of each model training.
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Figure 2. Network of ELM for junction temperature prediction.

In order to enhance the performance and prediction accuracy of the ELM model
for predicting junction temperature, the ASO algorithm is utilized to optimize the initial
parameters of ELM. Thus, the core of the maximum junction temperature prediction
model proposed in this paper is to determine the optimal position of atoms through the
optimization of the ASO algorithm. The position information includes the initial input
weight and threshold of ELM. The ASO algorithm is employed to solve it iteratively until
the optimal parameter combination is obtained. The optimized ELM model is then utilized
to forecast the junction temperature. The steps for predicting the maximum junction
temperature of ASO-ELM are as follows:

1. Conduct a temperature test on the HBT power cell to obtain Tj, Vc and Ic data and
form a data set.
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2. After removing abnormal data, use the maximum-minimum normalization method to
eliminate the impact of data dimension and divide the normalized data into training
data and test data.

3. Set the parameters of the ASO algorithm, such as the number of atoms in the popula-
tion, the maximum number of iterations, dimensions, etc. Determine the topological
structure of ELM and initialize the parameters of ELM.

4. Initialize the position and speed of atoms in the atomic population, take the output
mean square error as a fitness function, calculate the fitness value of each atom, and
record the current optimal position and optimal solution.

5. Calculate the acceleration, velocity and position of individual atoms, and update the
objective function value of each atom.

6. Compare the objective function value of the updated space with that of the un-updated
space. If the updated position is better, the value will be retained for the next search.
Otherwise, it will be ignored.

7. Check whether the maximum number of searches has been reached. If yes, end the
search and output the optimal solution to the next step. Otherwise, return to continue
to perform step (5).

8. Establish the ELM model optimized based on the ASO algorithm. The optimal solution
is the input weight and deviation value of the ELM model.

9. Input the sample into ELM with optimal combination parameters for testing, and
obtain the predicted maximum junction temperature Tj after reverse normalization of
the data.

The maximum junction temperature prediction process based on ASO-ELM is shown
in Figure 3.
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4. Results

In actual infrared temperature testing, a dataset of 293 sets of HBT power cell data was
obtained for predicting the maximum Tj. The model’s two input variables are Vc and Ic,
while the output variable is Tj. The empirical formula indicates that the number of hidden
layer neurons is 12, and the ELM model structure is 2-12-1 with the sigmoid activation
function. MATLAB was used for the simulation. To demonstrate the advantages of the
proposed model, it was compared with BPNN, ELM and GA-ELM. The models’ parameters
were set as follows: 50 iterations and a population size of 50 for ASO and GA, an ASO depth
weight of 50, and a coefficient weight of 0.2. The GA crossover and mutation probabilities
were set to 0.7 and 0.01, respectively. The optimal input weight and deviation matrix
optimized by different algorithms were assigned to the ELM network, respectively. The
model evaluation was based on absolute error (AE), mean absolute error (MAE), relative
error (RE), and root mean square error (RMSE), which are defined as follows.

AE = |yi − y∗i | (13)

MAE =

n
∑

i=1

∣∣y∗i − yi
∣∣

n
(14)

RE =

∣∣yi − y∗i
∣∣

yi
× 100% (15)

RMSE =

√√√√√ n
∑

i=1

(
y∗i − yi

)2

n
(16)

where n is the number of predicted samples, yi is the measured data, and yi* is the
predicted value.

To demonstrate the validity of the prediction, junction temperature data at different
bias voltages and currents were randomly selected for prediction. The prediction results
based on ELM, GA-ELM, and ASO-ELM models are shown in Figure 4. The ELM model
takes power consumption as an independent variable, while ASO-ELM and GA-ELM take
Vc and Ic as independent variables. Figure 5 compares the absolute and relative errors of
junction temperature prediction among the models. In some cases, the ELM model fails
to guarantee the stability of performance, as shown by the steep slopes at the 8th and
21st sample points in Figure 5. In contrast, the error changes in the ASO-ELM model are
much more stable, with the absolute error and relative error remaining within 2 ◦C and
2.3%, respectively. This indicates that the ELM prediction model optimized using ASO
has a good fit, and the error fluctuation between the predicted and true values is small.
By optimizing the selection of weights and thresholds of ELM using the ASO algorithm,
the obtained model has good generalization, which can effectively solve the problem of
the low generalization ability of the model due to the random generation of weights and
thresholds of ELM.

Due to the randomness of the algorithm’s results, the maximum junction temperature
was predicted 100 times with ELM and tested 50 times with ASO-ELM and GA-ELM. BPNN
was also added for comparison. The average error obtained was calculated in Table 1. The
average MAE of ASO-ELM reached 1.7314, and the average RMSE of ASO-ELM was
still the lowest at 1.9526. The test results demonstrated that the accuracy of the ELM
model optimized by ASO has significantly improved the junction temperature prediction,
effectively reducing the error of the basic ELM model and improving the prediction effect.
Compared with the GA-optimized ELM junction temperature prediction model, the ASO
model offers better prediction accuracy and less modeling time.
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sample points in Figure 5. In contrast, the error changes in the ASO-ELM model are much 
more stable, with the absolute error and relative error remaining within 2 °C and 2.3%, 
respectively. This indicates that the ELM prediction model optimized using ASO has a 
good fit, and the error fluctuation between the predicted and true values is small. By op-
timizing the selection of weights and thresholds of ELM using the ASO algorithm, the 
obtained model has good generalization, which can effectively solve the problem of the 
low generalization ability of the model due to the random generation of weights and 
thresholds of ELM. 
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In order to demonstrate the efficacy of our proposed temperature prediction model,
we have selected eight groups of test data with varying voltage and current, all of which
have been tested under the same power consumption conditions. These data sets were
then predicted using the ASO-ELM model, and the comparison results are presented in
Figure 6. The gray curve in the figure represents the actual QFI measurement data, while the
square and triangle legends represent the maximum junction temperatures at 4 V and 5 V,
respectively. The red curve in the figure depicts the temperature values obtained based on
the ASO-ELM prediction. Results reveal that temperature values corresponding to different
voltages and currents vary; thus, it is not appropriate to rely solely on power consumption
as a factor to calculate thermal resistance and derive the junction temperature. The range of
variation of predicted values based on ASO-ELM is similar to the values measured by QFI,
indicating that our method is capable of predicting the maximum junction temperature of
HBT accurately.
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Therefore, the results indicate that the introduction of the ASO algorithm effectively
optimized the ELM model and improved its prediction accuracy. The average MAE of
the ASO-ELM model was reduced by 84.4%, 36.22%, and 24.64%, respectively, compared
to the ELM, BPNN, and GA-ELM models. Additionally, the average RMSE of ASO-
ELM was 62.9%, 27.56%, and 16.64% lower than ELM, BPNN, and GA-ELM, respectively.
Therefore, the established ASO-ELM model outperforms other models in predicting the
junction temperature.

5. Conclusions

In this paper, we propose a novel GaAs HBT maximum junction temperature pre-
diction model that considers voltage and current as influencing factors. The model uses
a machine-learning approach. It utilizes the ASO algorithm to optimize the input weight
and hidden layer deviation of ELM, with bias voltage and collector current as inputs and
maximum junction temperature as output. Experimental results demonstrate that the
maximum junction temperature prediction model proposed in this paper is more rigorous
compared to the model that only considers the effect of power consumption. The prediction
results are obtained more quickly with the help of ASO-ELM. In future work, the proposed
model can be utilized to analyze the temperature distribution of the entire power cell,
providing guidance for device layout design and temperature compensation.
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