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Abstract: The objective of this paper is to introduce some new logarithm operational laws for intu-
itionistic fuzzy sets. Some structure properties have been developed and based on these, various
aggregation operators, namely confidence logarithmic intuitionistic fuzzy Einstein weighted geo-
metric (CLIFEWG) operator, confidence logarithmic intuitionistic fuzzy Einstein ordered weighted
geometric (CLIFEOWG) operator, confidence logarithmic intuitionistic fuzzy Einstein hybrid geo-
metric (CLIFEHG) operator, confidence logarithmic intuitionistic fuzzy Einstein weighted averaging
(CLIFEWA) operator, confidence logarithmic intuitionistic fuzzy Einstein ordered weighted aver-
aging (CLIFEOWA) operator, confidence logarithmic intuitionistic fuzzy Einstein hybrid averaging
(CLIFEHA) operator have been presented. To show the validity and the superiority of the pro-
posed operators, we compared these methods with the existing methods and concluded from the
comparison and sensitivity analysis our proposed techniques are more effective.

Keywords: CLIFEWG operator; CLIFEOWG operator; CLIFEHG operator; CLIFEWA operator;
CLIFEOWA operator; CLIFEHA operator; MAGDM problem

1. Introduction

Multiple Decision-making plays a significant role in several disciplines, such as
medicine, social sciences, engineering, business management, computer science, auto-
motive industries, management science, information technology, robotics, and several other
disciplines of science and technology. Decision-making is one of the appropriate processes
to find the more suitable alternative from all the possible alternatives. Traditionally, it has
been generally assumed that all the information that accesses the alternative in terms of
criteria and their corresponding weights are expressed in the form of crisp numbers. But
most of the decisions in real-life situations are taken in an environment where the goals and
constraints are generally imprecise or vague in nature. In order to handle the uncertainties,
vagueness, and fuzziness, there are several theories, namely soft sets theory [1], rough sets
theory [2], and fuzzy sets theory [3] are developed to handle imprecision and uncertainty
that occurs in practically all the real-life problems.

All of these theories have their own applications, but Zadeh’s fuzzy set is a noteworthy
and mostly useable among them in several cases of uncertainties including clustering,
pattern recognition, networking, decision making problems and some other fields. Zadeh’s

fuzzy set can be defined as let U be a universal set, then fuzzy set X can be written
as: X =
called the degree of membership function. Hence, the fuzzy set allows us to describe

0,1x (O) ’O eU }, where 7 be a mapping from U to the closed interval and
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only the membership degree means the degree of satisfaction of an object numerically,
and not provide any information about the non-membership degree means the degree of
dissatisfaction. For example, if an element’s satisfaction is 0.4, then its dissatisfaction should
be calculated as 1 — 0.4 = 0.6. Thus, scholars and decision makers have not considered
dissatisfaction independently in the fuzzy set.

Later on, Atanassov [4] introduced intuitionistic fuzzy sets (IFSs) by presenting each

element in the form order, such as (17, ¢) , where 77, ¢ stand for membership degree (MD)

and non-membership degree (NMD) with the condition 0 < 7 4 ¢ < 1. Atanassov and
Gargov [5] developed interval-valued intuitionistic fuzzy sets (IVIFSs) by presenting each

element in the form of ([C, 1], [d, q ), where [c, 7] and {d, ¢} stands for membership degree

(MD) and non-membership degree (NMD) with condition, such as 0 < # 4 ¢ <1

One of the most important tools is aggregation operators. Yager and Kacprzyk [6]
developed several basic roles based on intuitionistic fuzzy numbers. Yager [7], Xu and
Yager [8], Xu [9] respectively introduced the OWA operator, IFHG operator, IFOWG opera-
tor, IFWG operator, IFHA operator, IFOWA operator, and IFWA operator, and presented
their advantages in our daily life problems. Ye [10,11] presented the notion of accuracy
under environments, such that intuitionistic fuzzy numbers and interval-valued intuition-
istic fuzzy numbers. Wang and Liu [12,13] and Zhao and Wei [14] presented numerous
new methods using Einstein’s operation laws, namely IFEWG operator, IFEOWG opera-
tor, IFEWA operator, IFEOWA operator, IFEHA operator and IFEHG operators and their
structural properties and applications. Xu et al. [15] presented the idea of Einstein Choquet
integral using intuitionistic fuzzy numbers under Einstein operations. Many generalized
novel methods have been presented by Garg in [16-18] introduced the accuracy and score
function for interval-valued intuitionistic fuzzy numbers. Some new related methods
are found in [19-21]. Yu and Shi [22], Garg et al. [23], Dahlman et al. [24] and Kumar
and Garg [25] presented several new methods and apply them to group decision making.
Gou et al. [26], Rahman et al. [27], Jamil et al. [28], introduced generalized operators us-
ing intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. Some related
researches are found in [29-31]. Atanassov et al. [32] introduced a generalized net model
for decision-making, presented advanced fuzzy logic, and applied them to group decision-
making problems. Some related works are found in [33-39].

Li and Wei [40] introduced logarithmic aggregation operators based on intuitionistic
fuzzy numbers and proposed many aggregation operators, namely LIFWG operator, LI-
FOWG operator, LIFWA operator, LIFOWA operator, and their applications. Rahman [41]
introduced several new logarithmic approaches using Einstein t-norm and t-conorm and
applied them on decision-making problem.

In all of the above methods, we found that all researchers checked their decision
and that all of the decision-makers are surely specialists about the objects information.
However, in daily life problems this is sometimes fulfilled. Therefor Ma and Zeng [42] and
Yu [43,44] introduced the notion of confidence level, and settled several methods, namely
the CIFWG operator, the CIFOWG operator, the CIFWA operator, the CIFOWA operator, the
CIFEWA operator, the CIFEOWA operator, the CIFEWG operator, the CIFEOWG operator,
the CIFHA operator respectively. Rahman [45] presented several Trapezoidal intuitionistic
Fuzzy Einstein aggregation operators under confidence level.

Motivated by the methods defined in [43,44], where the authors introduced the con-
cept of confidence level and develop several aggregation operators based on algebraic
operational laws and Einstein operational laws. But in this paper, we combine the idea
of confidence level with logarithmic operational laws and developed several methods,
namely CLIFEWA operator, CLIFEOWA operator, CLIFEHA operator, CLIFEWG opera-
tor, CLIFEOWG operator, CLIFEHG operator along with examples and applied them on
decision-making. To develop the above stated operators we investigated some of their
structure properties.

The contributions of the paper are stated as:
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(i) To present logarithmic laws using intuitionistic fuzzy numbers.

(ii) To present the aggregation operators based on Einstein t-norm and t-conorm, such as
CLIFEWG operator, CLIFEOWG operator, CLIFEHG operator, CLIFEWA operator,
CLIFEOWA operator, CLIFEHA operator.

(iii) To show the efficiency of the novel operators, a decision making problem is considered.

The following paper is planned as: Section 2 presents fundamental definitions and
logarithmic operational laws. In Section 3 different operators under intuitionistic fuzzy
environment. Section 4 includes emergency decision-making model under the novel
approaches with an illustrative example. Section 5 presents comparative and sensitive
analysis. Section 6 presents limitation and conclusion.

2. Models and Method

In this section, some basic definitions and results related to IFSs and IFNs on the
universal set U have been discussed.

Definition 1 [4]. Let X be an intuitionistic fuzzy set defined on a universal set U as: X =
{<O, 17X (O), x (O)>‘O eU }, where 17: U — [0,1] and ¢ :U — [0,1] defines the degree

of membership function and the degree non-membership function of the element O € U to X
respectively with condition, such as 0 < 17 + £ <1

Definition 2 [4]. Let y = (17, ¢) be an intuitionistic fuzzy number, then its score function,

accuracy degree can be defined as: s(y) = n — ¢ and h(p) = n+ ¢ with conditions, such as
s(u) € [=1,1] and h(u) € [0, 1] respectively.

Definition 3 [4]. Let y; = (171, ¢1>, and yy = (172, ¢2> are two intuitionistic fuzzy numbers,
then

1. If,s(p1) < s(u2), then py < pa

2. If,s(p2) < s(p1), then py < 1y

3. If,s(u1) = s(u2), then the following cases hold:
(i) If, h(}ll) < h(]/lz), then py < yp
(i) If, h(p2) < h(p), then pp < pq
(i) If, s(u1) = s(p2), then py = pia

Definition 4 [8]. Let y = (17, ¢), = (171, ¢1), Uy = (172, ¢2) are three intuitionistic fuzzy

numbers, and a real number U = 0, then

(i) 1 @y = (11741;1’3722’ 1+ (1;;11;2(1%))

y ¢ ¢
— i +
(W) @ pz = (1+(17711)2(1'72)' L F, ¢22>

u
(iii) ﬁ(}i): (1+’7)Zfl:—(1—’7)lfl:, 2<¢> _
et +a-n” <2,¢>”+<¢>”

i) (= | " ,<1+¢> _ 1_¢>..
u u

(1-4)
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(vi) pUpp = (max{iyl,iyz} mm{ £, ¢ })
(vit) pp Nyp = (min{iyl,iyz},max{ ¢, )
(vili) y = (¢,,1)

(ix) py < po, this means that 11 < 1o and £, < 4
(x) 1 = o, this means that 51 = 17, and ¥, = %,

Definition 5 [8]. Let U be a universal set and X = {<O, 17X (O), ¢y (O) > ’O ev } be an intu-
itionistic fuzzy set, then logarithmic operational laws of IFS X can be defined as:

log, X = {<0',1—1oga17X(0'),log“(1—¢X(O))>‘O€U} witha # 1and 0 < a <

n <L
It can be proved that log,, X is also an IFS. By the definition of IFS the membership function and

the non-membership function of X satisfy the conditions: nx : U — [0,1],YO € U — yx € [0,1],
by U - [0,1,Y0 € U — £x € [0,1] andognx( )+¢ ( )<1 OeU. 50'7)((0) <

1— ¢y (O) and 0 <1 — £y (0) <1.0=<a<n<landa #1,then the membership function:

1—log, nx:U —[0,1],V0 € U — 1 —log, 17x (0) € [0,1], the non-membership function:
log, (1 - ¢X> :U —10,1],¥0 € U — log, (1 - ¢X) € [0,1], and the indeterminacy function:
0<1— (1-1log,yx(0)) +1log, (1~ ¢x(0)) 1,0 € 0.

Thus, log, X = { (0,1~ log, 1x(0),l0g, (1~ ¢x(0'))>]0' €U} (0<a<p<lasrl)
is an IFS.

Definition 6 [8]. Let u = (17, ¢> be an IFN. If log, X = (1 —log, 11,log, (1 - ¢>), where

0 <a <5 <1landwa # 1. The function log, X is called a logarithmic operator, and the value
log, X is called a logarithmic IFN (Log-IFN).
It can be proved that log, X is also IFN. Let 0 < a < n < 1,& # 1, by the definition of

IFN, we have0 < < 1,0 < ¢§1and0<17+¢§1. It can be written as: 0 < §1—¢,
then 0 < 1—1log, 7 < 1,0 < loga(l—fé) <1land0 < 1—log“+loga(1—¢) < 1. So

log, X = (1~ log, 1,10g, (1~ ¢) ) is also IFN.

Theorem 1. Let y = (;7, ¢) bean IFN with e # 1,0 < a < min{iy, (1 — ¢)} < 1, then
()8 = .

Proof. Since, we have
| 1-(-tog, (bt | s e
(0)°8F = | & o V(THy)+(1-n) @+H)-(1+%)

¢
(1+1y) log { ————}
_ el 1 b ®)

- §1+71)+51:77;’1 a <2+¢;?1+¢)> - (17’ ¢) ol
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Thus, the proof is completed. [
Theorem 2. Let y = (17, ¢) witha #1,0 < a < min{n, (1 — ¢)} <1, then ()'%8# = p.
Proof. As, we know that

¢
17((1%7)*(1*11)) ¢ ¢
loglx at = log“ o A +1-n)’ 1 — g @+7)-(1+7)

(I4n)—(1—y — ¢ ¢
1~ log, a' (@700 log | 1— | 1= @08

1—-1+ ((1+71)7(1777)

(1+77)+(1777))’ <2+¢> —?1+¢>) - (17’ ¢> - ¥
Thus, the proof is completed. [

Theorem 3. Let pi; = (17]-, ¢j) (j < 3) with o #1,0< aj < min{nj, (1 — ¢j)} <1, then

(i) log, p1Ulog, pa = log, 2 Ulog, 1
(it) 1ngx p1 loga H2 = loga p2 N loth H1
(iii) log,(n1Up2) Nlog, po = log, pa

(iv) log,(u1 Np2) Ulog, o = log, pa

(v)  log,(u1 Upz) Nlog, us = log, (u1 N p3) Ulog, (p2 N p3)
(vi) log,(u1 Np2) Ulog, pz = log, (1 U pz) Nlog, (u2 U pi3)
(vii) log, (k1 Upz) & log, uz = log, (u1 & uz) Ulog, (2 ® u3)
(viii) log, (11 U p2) @ log, s = log, (11 @ ps) Ulog, (p2 © p3)
(ix) log, (1M p2) ®log, us = log, (41 @ ps) Nlog, (p2 © u3)
(x) log, (k1 Upz) ®log, s = log, (41 ® pz) Ulog, (42 @ u3)
(xi) log,(n1Mp2) ®log, us =log, (11 ® puz) Nlog, (p2 ® pu3)

(xii) log(p1 U piz) @ log(pr N p2) = log(p & pi2)
(xiii) log, (i1 U p2) @ log, (1 N pz) = log, (11 @ p2)

Proof. Here we prove only (i, ii, iii, iv) parts and the remaining parts can be proved by the
same process.

(i) Sincep; = (171, ¢1) and pp = (172, ¢2) are IFNs, then we have

log, 1 Ulog, up = log, ( max{#n1,7}, ming (1 — ¢1 L1 — ¢2
= log, (max{#, 71}, minqg (1 — ¢2 11— ¢1
= log, o Ulog, 11

(i) Since, we have

log, u1 Nlog, up = log, (min{ny, 72}, maxq (1 — ¢1 (1= ¢2
= log, (min{#y, 71}, maxq (1 — ¢2 11— ¢1

= logzx M2 N loga M1
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(iii) Since, we have

log, (11 U pz) Nlog, pa {( ¢ ) ( ) )}) ( ( ) ))
= log, (max{n1, 72}, min¢ (1 - %), (1-% Nlog, (12, (1 —%
= log, min{max{;yl,nz},nz},max{min{ (1 - ¢1>, (1 - ¢2> } (1 - ¢2) })

o, 1 (1)

= loga H2

(iv) Again, we have

ot (40, 8)}) . 1)
=log, (min{ny, 72}, maxs (1 - %), (1—-% Ulog, (72, (1 — %>

= log, max{min{ﬂl,qz},qz},min{max{ (1 - ¢1>, (1 - ¢2) }, (1 — ¢2) })
= loga 12, (1 — ¢2)>

= log, 12

Thus, the proof is completed. [

Theorem 4. Let p; = <17j, ¢j) (j < 3) be a collection of intuitionistic fuzzy numbers with a; # 1
and 0 < aj < min{nj, (1 — ¢j>} <1, then

(i) (log, p1 ®log, 2) & log, us = log, p1 & (log, p2 &log, p3)
(i1) (loth M1 ® logzx ]/lz) & logzx H3 = 1ngx M1 ® (logzx H2 ® 1Ogo¢ ‘Mg)
(ii1) loglx U1 P loga Uy = loga U P loga U1
(iv) log, p1 ®log, p2 = log, pz ®log, 1

Proof. We prove (iii), the remaining parts can be proved by the same process. As
log, 1 = (1 —log, 111,1og, (1 - ¢1)) and log, yo = (1 —log, 12,10g, (1 — ¢2)), then

log, 111 & log, 2
- ((1 — log, 111,log, (1 - ¢1)) @ (1 —log, qz,loga<
log, <17 ¢1> log, <1f¢2>
EEEEc)
_ ( 1-log, 1p+1-log, 11 log,, (17 ¢2> log, (17 ¢ )
o5, (1-%2) ) (115,

= log, iz ©log, 111
Thus, the proof is completed. [

1-¢,

(1-log, 71)+(1-log, 772)
1+(1-log, 71)(1-log, 12)”

Theorem 5. Let y; = (17j, ¢j) (j < 2) be a collection of intuitionistic fuzzy values and U = 0 with
conditions, & # 1land 0 < a < min{iyj, (1 — ¢]~)} <1, then

(i) log, (11 Umz) = log, w1 Ulog, u2

(ii) loguc (‘1/11 N “l/lz) = 1Ong M1 N loga H2

(iii)  (log, (41U p2))" = (log, 1) N (log, p2)*
(iv) (log,(p1 Np2))" = log, p1 Ulog, pa

Proof. Since y; = (nj, ¢]-) (j < 2) be IFNs, then we have
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(i) Since, we have

log, (u1 Upuz) =log, (max{;yl,m},min{ (1 — ¢1), (1 — ¢2) })
= log,u1 Ulog pin
(i) As, we have
log, (11 Npu2) = log, (min{;yl,ng},max{ (1 - ¢1>, (1 — ¢2) })
= log,u1 Nlog po

(iii) Again, we have

(log, (11 U )"

log, max{nl,iyz},min{ (1 - ¢1), (1 - ¢2)} ‘
éloga Emin{ (1 — ¢1), (1 — ¢2) },max{m,ﬂz}
= (log, #1) N (log, #2)*

(iv) As,wehave

(1o, (11 N12))° = (log, (min{ (1= 1), (1= &) },max{m, 12}) )
gloga Emax{m,iyz},min{ (1 — ¢1), (1 — ¢2)}
= (log, p1) U (log, i2)

Thus, the proof is completed. [

3. Some Aggregation Operators under Confidence Level

In the literature review, we have studied that all of the scholars have explored their
decision that all of the experts are surely experts about the information of objects. But, in
daily life problems, this type of situation is some time fulfilled. Therefore, the focus of
our paper is to develop the confidence level. Confidence level plays an important role
in decision making in daily life problem. With the help of confidence level, we explore
some new operators, namely CLIFEHA operator, CLIFEOWA operator, CLIFEWA operator,
CLIFEHG operator, CLIFEOWG operator, CLIFEWG operator, along with their three
structure properties such as monotonicity, idempotency and boundedness.

Definition 7. Let pj = (17]-, ¢j> (= 0j < n) be a family of IFVs with their weighted vector
n

b= (by,by,. ..,PH)T and confidence level ﬂj(j < n) with condition: b€ [0,1], ¥ bj=1and
j=1

0 < 0; <1, then CLIFEWA operator can be defined as:

CLIFEWA (i1, 1), (42, 92), - - -, (jin, 92))

n n n @.ﬁ.
_]_[l(Z—log,X qj)gfbf—_]_[l(logaqj)gfbf 2_ 1(loga<1—¢j>> I
= j= =
n g.b. n apr’ ab g.b.
]_E[l(Z—log’X nj) I ]+j£[1(10ga11j) i jgl(Z_Ingx(l_séj)) j j+j1;11(108a<1—¢f)) i
where, « #land 0 < a < min{;y]-, (l — ¢j)} <1
- n a.p, n ag.b. n a.p.
_ (2*10331 m) : J*_H<10g1 '11) H 211 (10g1 17¢,~>> ”
j=1 w j=1 3 j=1 3
" gb agpr’ a.b, a.b,
11 (2—logl i7,~> ! ]+_H <logl 177> m 11 (2—logl <Z—¢,~> ! ]+_H <logl <Z—¢j>> i
j=1 x j=1 x j=1 x j=1 x
where, & # 1 and 0 < % < min{iyj, (l — ¢j) <1
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Example 1. Let we have consider the following five intuitionistic fuzzy values: y1q = ((0.7,0.2),0.8),
11 = ((05,04),0.6), 13 = ((04,04),0.7), 1z = ((04,05),04), u5 = ((04,0.4),0.5) and & = 0.2
with weighted vector b = (0.10,0.20,0.20,0.20,0.30). First, we calculate:

5
Hl(z ~log, ;) 9;b; _ (2- 10g0.2(0.7))0.8><0.1 (2— 10g0.2(0.5))0'6><0'2 (2- 10g0.2(0.4))0'7><0'2
]:
(2 p_ 1080.2(0-4))0'“02 (2- 1080.2(0-4>)0’5X0'3 =1.261
5 0.b
TT(2-log, (1= %)) " = (2~ logy(1-02))"¥* (2~ logy, (1 - 0.4)) "
]:

(52 log,,(1 —0.4))07X02( 2 —log;,(1— ))0'4X0'2( _10g02(1_0~4))0'5X0'3:1.348
H(loguﬂ]) 9;bh; _ (logg (0.7 )08><01(1 60(0.5 )06><02(10 g0, 04))0”0.2
]:

(10g0‘2(0.4))0‘4><0'2(10g02 04 )05><03 0,650
5 9,b;
I (108, (1= 47)) "= (0802(1 ~ 02)°** " (log05(1 ~ 0.4))°* logy (1 - 0:4)) "7
]:

0.5x0.3

0.4><O.2< — 0.498

(logy,(1—0.5)) b%ﬂl—aﬁ)
Next, using CLIFEWA operator, we have
CLIFEWA ,((p1, 91), (42, 22), (43, 93), (114, 94), (15, 95))

ag.b.
I1(2-log, ﬂ/)gfb’— {1 (tog, 1) %t 211 <1°ga (1— ¢/>> Y
j=1

j=1

oF 5 o0’ o 2,
I1(2-log, 17;) ]]+]_];Il(10g1x'7f) i ﬁ(z-loga(l—fé,-)) ”+L[<loga<1—¢f)) "
]

1 ;
=1 =1
1.361-0.650 _ 2(0.498
= (1261+O.650’ 1.34£8+0.4)98) = (0.321,0.539)

:wE:m

-
Il

Theorem 6. Let pi; = (17]-, ¢j) (j < n) be a collection of intuitionistic fuzzy values with weighted

vector b = (b1, by, .. .,bn)T and confidence level 0;(j < n), then their resulting value is still
intuitionistic fuzzy value by using CLIFEWA operator, and

CLIFEWA])((PIL @1), (‘142, 01),. cey (}ln, gn))
o.b.

g.b g.b. n
(2 loguq]) ]]—]_[(log“q]) 7 2]_[<logu< ¢/)) I (1)

j=1
b’ o.b. a.b

a.b 9.0 , " '
(2 log, 17]) ] ]+]];[1(10ga’7j) 7 HI(Z_IOgu(1_¢j>> ! ]+]_[1<10ga( ¢,)) "
j= =

-

T= [T

-

Proof. By mathematical induction. For n = 2.

91P11
61]71
o0,h, 2<loga (1—¢1

> a.b
o (4)) "

>g2]12
a,b

o (5) "

(2-tog, 1) %171 —(10g, m)
(2-1og, 1) 711+ (og, 1) 11 (2—10g,x (1— ¢1> ) 7 +

)
Drbyuy <
)
(

(2-1og, 1) 72”2~ (log, 1) 722 ? <1°g“ (1_ &
9,b,’ 9,b

(o (12)) "

(2—log, nz)gzpﬂ(bga 2)" 22
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By Definition 6, we have
CLIFEWA],((‘ML @1), (;/lz, @2))
ag.b.

11 (2-log, v,)gfﬁf—ﬁ(logm)gfpf 2L21<logm<1—¢/>> o
=1 =1

ag.p. 2 ag.p.’ ag.p. ag.b.

(2 IOga'71> / ]+j];[](10gw'7f) I ﬁ[(z-logw<1—¢j>> ! ]+ﬁ<logw<1—¢/)> 7

j

=1

—
NS

For n = 2, Equation (1) is true. Next, for n = k, we have
CLIFEWA ((pi1, 21), (2, 92), ..., (4, k)
g.b & a.b. k ¢ 9.b;
(2 log, 17/) ] /—j];[l(loglx 17]) 1 2]_];11 <loga (1— ]>>
0.b,

Tk o.b’ o;b
(2 logaﬂ/) ]]""j]:[l(lOgchf) i ]f[(Zfloga(lfféj)) ]]+ﬁ<loga< ¢]>) Y

= = j=1 j=1

j

[:x- l‘[:x-

Equation (1) true for n = k, Next, for n = k + 1, for this we have Equation (2)

CLIFEWA ; ((p1, 21), (12, 92), - - -, (Hxr 9%), (Bks1, P 11))

k ag.b. k ag.b. a.b
1‘[1(2 log, 1)/ ]*Hl(log“r/j) i ZH(IOga( ¢/>> ¥
— = j= j=1
= k ag.b. k agp.’ 70 3
2—1 i 1 Ni% k iPi ok P
H e, 0" +11 (o) 1131(2 log“( ¢’>> +1131<10g“ <1f¢f>>
(2—1°g,x('7k+1))(g"+1)('bk+1)—(loglx( I 9 0P )
(z_loga('ik+1))(gk“)('bk“)+(loga(qkﬂ))(gkﬂ)('bkﬂ) ’

@ 2<log ( k+1>> k+1 k+1
Db (
(2—10gw (1_ ¢k+1) ) o k+1 + <logu < ¢k+1> )

k g.b, Kk 0.,
Let @1 = I1(2—log, ;)" = I1(log, 1) /", A2 = 2(10g, (1 - 1)
= =

0P

) Oi1Prin

k o.b kK o.b, k ob;
P = H (2,10&)‘,7].) i H (1Oga,7].) j /,7L1 =2 H (log“(l — ¢j>> ivi
j=1 j=1 =1
= (2— loga(ﬂkﬂ)) G k+1 + (log (nkﬂ))@k;ﬁkﬂ
¢2 = (2 —log, M+ (10g, 1) 71 e
@2 = (2 log (12)) 11 = (log, () "
k a.b. k ;b
—log, (1= ¢)) "+ 11 (log, (1—¢)) "
M= H( ga( J)) ]£I1( g“( 7))

j=1

Oyl k1 4

Next, placing the above mentioned terms in Equation (2), and get Equation (3).

CLIFEWA ,((p1,21), (42, 92), - . ., (1, Pks1))
AR,

-(R3)en - (’;)@) ( )( %> ®

71 12

‘1>1¢2+§2§1
J'_ 7
P12t P12 27172*71x2*x172+xlx2
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Again, placing the values of ®1¢p + Pogp1, P12 + P1P2, 27172 — ™ 7&2 — xlvz + 7L1 xz,
lez in Equation (3), and the result below:

CLIFEWA ,((p1, 21), (2, 92), ..., (pix, k)
0b.

k+1 ag.p. k+l ag.p. k+1 it
_H](Z—log,xryj) ] ]—_LIl (IOg,x”Ij) I 2_]_[1<10glx<1—¢j>>
= = =

g.p. k+l ag.b.’ a.b. a.b.
H (2=tog ) L (oBa) 77 Y (510g, (1-9,) ) 7411 (10, (1) )

j=1 =1 ] =1 ]

For n = k + 1, Equation (1) is true. Thus, the given Theorem is true for all positive
numbers. O

Theorem 7. Let p; = (11]-, ¢j) (j < n) be a collection of intuitionistic fuzzy values, under confi-
dence level @;(j < n), then the properties defined blow are hold:

1.  Commutativeness: Let ]/t]*-‘ = (17]*, ¢;) (j < n) be another collection of intuitionistic fuzzy

values, under confidence level ﬂ;-k (j < n), then
CLIFEWAZ,((yl, 01), .., (yn, 0,1)) = CLIFEWAp((yi‘, @T),. .., (y;kl, @:)) (4)
where, (pt]’-‘, 0;-“) (j < n) is the permutation of (u;, 2;)(j < n).

Proof. Since, we have

CLIFEWAI,((PLL 91>,. ..y (]/ln, @n)) = ﬂlbl(log“ ;l/l]) D...D Hnbn(loga ]/ln> (5)

CLIFEWA, ((p1,91), .-, (43, @3)) = 0171 (log, pi) ® ... @ 0, Pu(log, i) (6)
From Equations (5) and (6), we have Equation (4) is always holds.

2. Idempotency: Let yi(j < n) = pwith 01 = 0, = ... = 0, = 0, then

CLIFEWA[,((yl, 21), (42, 92), ..., (Hn, 9n)) = log, (1, 2) (7)

Proof. By Definition 6, we have

CLIFEWA#((‘ML gl)/ (],{2, gz),. cey (”l/ln, @n>)

‘]1—111(2710gar]j)gjl)ffﬁl(logaqj)gfﬁf 2‘111<10ga<17¢j>> I
_ | = =
- n ag.p. n ag.b.’ ag.p. a.b.
2—1 . 77 log n: 77 L 77 " 77
11;11( O8u '7]) +j];[1( 084 77/) jl=ll <27loga <1f¢j)) +jl;[1 <loga (17 ¢]))
n n 7] % b.
gy b gy b = I
_ | eotog,m It ' —(tog, ) I 2<log"‘<1f¢>> -
- 0% b o3 b’ 0% b o3 b
(2—log, 1) =1 +(log, 1) j=1 <2710ga(17¢>> =1 +(loga<1f¢>) j=1
¢ a
1 _
_ (2-10g, 1)? ~(1og, 1) 2<°g“ (1 ))
g g’ 7] a
(2—log, 17)" +(log, 1) <2—10g,x<1—¢>> +<log“(1_¢>>
= log, (1, 9)

O
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3. Boundedness:  Let p; = (17]-, ¢j) (j<mn) be a family of IFVs, with

Hmax = (m]gzx{ﬂjnj},m]in{@jféj}) and iy = (m]in{ﬂjnj},m]qzx{ﬂjféj}), then
Equation (7) hold.

log, (Hmin) < CLIFEWA ,((p1, 21),-- -, (Hn, @n)) < log, (Hmax) 8

Proof. From Equation (8) we have mjn{ﬂj¢j} < 17]-¢]- < max{@j¢j}. This means
] ]
that pmin < Hj < MPmax- Next, we have the new form in term of logarithm, such that

log,, (#max) = (Umax, ¢min) and log,, (}imin) = (qmm, ¢max), then we have

1 (2-tog, max{n;}) 7177~ 11 (g, max{;}) /"1
=1

(2 log, max{;yj } ) gjijr ﬁ (loga max{qj})gfp/
=1

—log, max{y; } )~ (log, max{r; }) _

2-log, max{y; )+ (log, max{; }) 1M

=
M=

Il
—

a.b. g.b.
I1(2-log, 7;) "/ ’*fll(logw;) i
=

=
|
T
[
IN

=
=

g.b. a.b.
(2 log&n]) ] 7+ﬁ(logaq1) I
j=

-
Il
—
-
Il
I\J o

——

ag.p.

n g_};_ n Z,f)_ n g_b_ n
]1:11(2 log, 7j)" f—jljl(logm) 1 ][g(z—logumin{w}) ] f—jljl(logamin{w}) 1
= Gh a N z Gh a b
1> log, ) 1 (togy ) 1 T, (2 togy min{y;}) 777+ T1 (log, min{ }) =
_ (2-log, min{y; })—(log, min{n;}) _
oh (2—loga min{ﬂj})-‘r(loga min{tyj}) Zm;n
2H<loga<lf¢j>> " ZFnI logﬂmax{lfféj}) "
p =

IN

¢ = =
]Ii[1 (2 log, (1 ¢/>> 0]17] +]£I <loga <1—¢j>> @]-19/- ]E[l (2—log ) max{1—¢j}> @ 17 + ﬁ (log max{ }) /

2log, max{l ¢ ¢

N (2710&1 max{lf ¢]}> +log, max{l ¢]}

a.b, " b,
211 <loga <1*¢j>> Y 211 <loga min{1*¢f}> "

— j=1 j=1
F= ag.b. ag.b ag.b ag.b

(s (15)) e en (15)) T i (ommini ) e (o mni£)

2log, min{lf¢]}

= .
(2—10ga min{l— ¢j }) +log, min{17 ¢]} min

Thus, we have s(log, ) < s(log, pimax) and s(log, #) > s(log, #min). Thus
s(log, pmin) < s(log, 1) < s(log, tmax)- Now we have three cases:

—

v

N

(i) If, s(log, pimin) < s(log, #) < s(log, #max), then we have

log, (Hmin) < CLIFEWA ,((p1, 21), - - ., (Hn, @n)) < log, (#max) ©)

Hence, case 1 is proved by Equation (9).

(i) If, s(log, #) = s(log, pmax), this means that 1 — ¢ = Jmax — Pmin, this show that
7 = fmax and ¢ = €., Hence, h(log, u) = h(log, #max). Thus, we have the
following Equation (10).

CLIFEWAI,((yl, 01), (42, 92), ..., (Un, 9n)) = log, (Umax) (10)

Hence, case 2 is roved by Equation (10).
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(i) If, s(log, 1) = s(log, tmin) this means that 1 — £ = #min — ®max. This means that

7 = Hmin and ¢ = €. Hence, we get h(log, u) = h(log, pimin). Thus, we have the
following Equation (11).

CLIFEWA (41, 21), (M2, 92), -, (pin, @n)) = 108, (Hmin) (11)

Hence, case 3 is proved by Equation (11). Combining the above results from
Equation (9) to Equation (11), we get Equation (8) holds. O

1.  Monotonicity: Let ;4;-“ = (17]?“, ¢;) be a collection of intuitionistic fuzzy values, with

*
conditions, such as 7 i < r}‘ and ¢j > ¢j , then we have the following:

CLIFEWA ,((#1,21), - -, (Hn, 9n)) < CLIFEWAI,((VT, 0’{), o (g 0:‘1)) (12)

Proof. Proof is similar as above, so it is omitted. [

Definition 8. Let y; = (17]-, ¢]-) (j < n) be a family of intuitionistic fuzzy values with weighted

n

vector and confidence level b = (b1, by,. ..,bn)T, 9;(j < n) with condition: Y b; = 1 and
j=1

0 < 0; < 1respectively. If (01,0, . ..,0n) be any permutation of (1,2, ..., n) with Ho, < o1y

then CLIFEOWA operator can be stated as:

CLIFEOWA];((]JL @1), (],{2, @2),. “ey (V}’l/ gn))
9.b, o.b

ﬁ 2-1 " ah " 217 (10g [1-¢ Y
O . (0] O — .
Il Balg, {1ty 11 Los. Oj

a.b a.b

—log, 11 5 0g, —log, . + 0g,
= g ’70j /: g ’70] i g Oj ) g Oj

where,oc;«éland0<1x§min{170,<l—¢n <1
a.b

i on jvi n ¢ it
2-logy s, — I leg1 7 211 {logy | 1=,
= j j= i

a.b ag.b.’

2-1 jj+ﬁ1 ”ﬁzl ¢ gjp]+ﬁ1 ¢ "
T\ tomy 1. I {5y 1 I 2tesy (=5 I (1o (=%,

l .
where, & # 1and 0 < ¢ < mm{qéj, (l — ¢0]v>} <1

B

-

.

T::[:

\:]:

Example 2. Let we have five intuitionistic fuzzy values, such as y; = ((0.6,0.3),0.8),
1w = ((0.8,0.1),0.6), s = ((05,0.2),0.7), s = ((0.4,0.3),04), us = ((0.4,0.4),05),
a = 0.2 with weighted vector » = (0.1,0.2,0.2,0.2,0.3). First, we are calculating the score
functions: S(pu1) = (0.6,0.3) = 0.3, S(y2) = (0.8,0.1) = 0.7, S(u3z) = (0.5,0.3) = 0.2,
S(us) = (04,03) = 0.1, S(us) = (0.4,0.4) = 0.0. Next, the ordering values are below:
iy, = ((08,0.1),0.6), = ((0.6,03),08), uy = ((05,03),07), g5 = ((04,03),04),
Mo, = ((0.4,0.4),0.5). Next, calculating the values are below:
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5 .
I1(2~log, ’70.> - =(2- 1080‘2(0-8))0“0'1 (2- 10%0.2(0~6))0'8X0'2 (2- log0.2(0.5))0'7xo'2
j=1 i

(2 _ 10g0.2(0‘4))0.4><0.2 (2 o 10g0.2(0'4))0.5><03 — 1.304
— (logy (1 —0.1))"***! (log, , (1 — 0.3))****? (log, , (1 — 0.3)) 702

(log, (1 — 0.3))0'4X0'2 (logy, (1 — 0‘4))0.5><0.3 040

a.b.
2~ log, (1 - ¢0],>) TS (2 logg, (1 0.1)) " (2 “logy (1 - 0.3)) 02 (2 — log, ,(1 — 03)) %702

(2 —1logy,(1—03))***?(2 — log, ,(1 — 0.4))"**** = 1.399

e

~.
=P
S N /3 A
o
aQ
2
/N
—
\
ASS
S
N~
"
D
=

-
Il
—_

= (10g(0.8))"**! (logy ,(0.6))****? (log, , (0.5)) *7* 2 (logy , (0.4)) 402

(logy (0~4))

Next, by using the CLIFEOWA operator, we have

log, 11, )

-.
Il
—_

05x03 _ 577

CLIFEOWA ,((p1, 21), (2, 22), (43, 93), (Ha, 94), (M5, 95))
a.b a.b a.b

i i 5 ¢ it
2-log, 115 —IT | logy 715 21T | log, [ 1-7 5
_|i= j j j Ui /

a.b. a.b’ ag.b. g.b.
; 2—1o; ! ]+H lo; Y I1(2-1o: 1— ! j+I§I lo 1,¢ n
]H Salles. 2 8u 770] I S O]- 2 Eu 0]-

=1 j
_ (1304—0577  2(0.403 -
= (1304+0.577/ 1.39(99+o.2103> = (0.386,0.447)

\:]Ln
T

[

a1

ASS

Definition 9. Let yi; = (’7]" ¢j) (j < n) be a collection of intuitionistic fuzzy values, and p be
]

. . P \T
the highest p; = (’7]‘/ ¢j) (j < n) suchas p; = nljp;, where U = (Ml, uy,..., un) the weighted

vector such as, their sum be is equal to 1, and n is a constant number. Also b = (b1, by, ..., bn)T
be associated vector with condition, such as, their sum is equal to 1, and @ i be the confidence level
under conditions, such that 0 < 9;<1, then the CLIFEHA can be stated as follows:

CLIFEHA ; (1, 01), (12, 02), -, (jtn, 0)
i o.b

2-1 "0 (g g 277 (1og, (1-¢ H
(0] 9 - (0] - og — "
8 170,‘ L {logig L {los 15

T::

o.b

—10, w . 0! " o — 10! " — a 0! " — .
B2, i\ o, j ® 9 = o)

T[::
PR
N
cT
0‘0
FNN
=
<
v
-
-
|
=
Y
o
0
BN
-
S
N~
L
=F
T
Q
aQ
ENN
—_
|
ASS
S
N~
N~

Definition 10. Let p; = (17]', ¢j> (j < n) be a collection of intuitionistic fuzzy values along with

their weighted vector and confidence level b = (b1, b,,. .., bn)T, 9;(j < n) with conditions, such
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n
as ) b; =1and 0 < 0; < 1 respectively, then CLIFEWG operator is mathematically presented
j=1
as follows:
CLIFEWG]J((VL 01), (1’[2/ @2), ceey (.uﬂ/ g”))
n ‘ a.b. n _¢ o _¢ iti
2]_1;[1(1—1% i) 11 <1+loga (1 ]> I1 (1 log, (1 />>

n ag.p. n ag.b.’ " b, b.
j:1(1+loglx'ﬁ) ! ]+].1;[1(1_10g,x’7j) i ]_[(1+10g“ 1_¢j>> ! ]+H<1—logu<1—¢j)) i
j=1
Where,oc#land0-<oc§min{170j, (l—¢0j } <1
a.b.

n n 017 n . .
2fi(ionn) 7 filieey (5)) (s (5)
j= o = o j= o

o9.b.

n n itjon ok " i
H<1+1<>gl 17]) ”+n<1—1ogl ;7]> Y H<1+logl <1_¢j>> ”+H<1—10g1 <1—¢j>> Y
o 1 - : ; & j o

j=1

where, & # 1and 0 < % < min{ﬂd, (l - ¢0,>} <1
] ]

Example 3. We construct an example, to improve the above Definition. We have consider five intu-
itionistic fuzzy values, such as pq = ((0.6,0.2),0.8), o = ((0.5,0.3),0.6), u3 = ((0.4,0.4),0.7),
s = ((0.4,05),04), us = ((04,0.5),0.5) and = 0.2 along with their weighted vector
»=(0.1,0.2,0.2,0.2,0.3). First, we are computing the following Values:

5

H1(1 —log, ’Yj)gjpj =(1- 1080.2(0'6))0&0'1 (1- 1080.2(0'5)>0'6X0'2(1 - 1080‘2(0-4))0”0'2
]:

5 (1—1ogy,(0.4)) %% (1 —log,,(0.4))*** = 0.663

I1 (1-+log,;) " = (1+10g5(0:6)) """ (14 10g05(05)) " (1 + logo, (04))
]:

M (1+10gy,(0.4)) %% (1 4 log,,(0.4)) 7% = 1.260

5 b.

Hl(l —log, (1-4)) "7 = (1-1ogy2(1—02)) " (1~ logy, (1 - 0.3)) % (1 — log, (1 — 0.4)) 2
]:

(1—1ogy,(1—05))"***(1 —log, (1 — 0.5))*7** = 0.798

5
j=

o,
1+log, (1- %)) 77 = (1 +1ogy,(1—02))" % (1 +1ogy,(1 - 03)) "% (1 + logy, (1 — 0.4)) 72
]

[uy

0.5x0.3

(1+10gy (1 —05))***? (1 + log, ,(1 - 0.5)) = 1.168

Next, using CLIFEWG operator, we have

CLIFEWG,((p1, 21), (42, 92), (43, 93), (14, 94), (pi5, 95))
a.b. b.
5 a.p. 5
21‘[1(1710&17]-) i H1(1+1oga(1f¢j>) ]]71_[1<1710ga<17¢]->> a
1= = =
5 g.b 5 ag.b’ g.b, a.b.
I (1+log, ;) 1 +T1(1-logo ;) 17 2 (144 e 1 ¢
J s j j];[1<1+oga<1 j)) +jl;[1<l og‘X(l ]>>

j=1

2(0.663 _
= (1.26(0-1-0.6)63’ Hgnggﬁ;gg) = (0.689,0.188)

Definition 11. Let p; = (17]-, ¢j> (j < n) be a collection of intuitionistic fuzzy values with
weighted vector and confidence level b = (bq, by, ... ,ﬁn)T, 9; (j < n) with conditions, such as
i b; =1and 0 < 0; < 1 respectively. If (0,0y,...,0,) be any permutation of (1,2,...,n)
]ujilth 1 0, < Uy (-1)’ then CLIFEOWG operator is mathematically presented as:
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CLIFEOWG ,((p1, 21), (B2, 92), - - -, (Pin, Pn))
ag.b ag.b,

2 n 11 gj 17! n 141 ¢ v ﬁ 1] 1 ¢ 77
—lo; " 0o . o .
_ Blg, ! Bs o, u 8a o,

j=1
o)t o8 ) (a8 )
LL{1Hog ’70j ] 08, véj ]Hl 08, 0, Ll { 1-los, 0,
where, « #1and 0 < a < min{;yd, (l - ¢0.)} <1
] ]

- 0.b 0.b 0.b
1 ¢ "] n ¢ 1]

2]_[ 1- log1 7]0 1+log1 0. f']_I1 1-log; | 1— o

j = a i

j=1

9, 1) ag.b.’ ag.b. )
n ) ¢ 77 n ¢ 77
11 <1+10g1 5. > (1 10g1 5. ) <1+10g1 ( - 0)) +11 (lflogl <17 5 >>
=1 i i i ® i

j I

where, & # 1and 0 < E < min{nd, (l - ¢a>} <1
] ]

-

\
=
_

I ::
-
I
LA

IIE:

Example 4. Let we have the following five intuitionistic fuzzy values, such as y; = ((0.6,0.3),0.8),
u2 = ((0.8,0.1),0.6), u3 = ((0.5,0.3),0.7), us = ((0.4,0.3),0.4), us = ((0.4,0.4),0.5), and
= 0.2 with weighted vector » = (0.1,0.2,0.2,0.2,0.3). First, we are calculating the score func-
(0.6,0.3) = 0.3, S(u2) = (0.8,0.1) = 0.7, S(uz) = (0.5,0.3) = 0.2,
0.1,S(us) = (0.4,04) = 0.0. Next, the ordering values are:
7)., g, = ((0.4,03),04),

tions, such as: S(y1) =

= ((0.8,01),06), i = ((0:6,03),08), 5 = ((05,0.3),0
= ((0.4,0.4),0.5). Next, calculating the following values:
5 oibi 0.6x0.1 0.8%0.2 0.7x0.2
11 (1~ tog, 1) — (1 108y »(0.8)) "™ (1~ Log(0.6)) "1  logy,,(0.5))
j=
(1 —logy,(0.4))***%%(1 —log, ,(0.4))**** = 0.709
5 o;b;
Hl <1 +log, 775 > =(1+ log().2(0.8))0‘6xo'1 (1+ 10g0.2(0.6))0'8X0'2(1 + log().2(0.5))0'7xo'2
]:
(14 logg,(0.4)) "% (1 + log,, (0.4)) "7 = 1.228
5 9;b;
jgl (1 —log, (1 - ¢0;>> — (1=1logy,(1—0.1))****! (1 —log,, (1 —0.3))***"?(1 = log, , (1 — 0.3))*7**2
(1—1ogy,(1—03))**%?(1 — log, ,(1 — 0.4))"**** = 0.855
5 o;b;
]gl (1 + loga( ¢0;>> = (1+1ogy,(1—0.1))**1 (1 +1ogy (1 — 0.3))*¥**? (1 + log , (1 — 0.3)) 72
(1+1logy,(1 —0.3)) % (1 + logy, (1 — 0.4)) 7% = 1.128

Next, by using the CLIFEOWG operator, we have

CLIFEOWG ,((p1, 21), (42, 92), (43, 93), (44, P4), (Y5, 95))
a.b. a.b. a.b
5 ) / ] 5 141 ¢ 7] 5 1-1 1— ¢ 7]
_ ZQ 1-log, o, /I;I +log, 0, ng 08, o,
g;b 9" g:b g:b;
LI <1+logw g5, > +11 (1 log, 17 > 11 <1+10ga< ¢0 >> +11 (1 log, (1 ¢0 >)
N = i j=1 i

2(0 709)  1.128—0.855 \
= (1 22840 709/ T.12870. 855) (0.732,0.137)

Definition 12. Let p; = (17]-, ¢j) (j < n) bea family of IFVs and i 5 be the highest intuitionistic
]

: u . P \T ’
fuzzy values, such as i = (;4/-)” 7, where U = (”1/ uy,..., un> the weighted vector such as,
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their sum be is equal to 1, and n is a constant number. Also b = (b, b, ..., ﬁn)T be associated
vector with condition, such as, their sum is equal to 1, and @ i be the confidence level under condition,
such that 0 < 9; <1, then the CLIFEHG can be stated as follows:

CLIPEHGﬁ l,((l’lll @1), (y2/ @2), ey (F’li’l/ g”))

g.b, ‘ ag.b, a.b
2 <1_10ga,7 ) M ﬁ(mogA (1_¢.. )) / f_ﬁ<1_10g“(1_¢ )) "
j=1 0 =1 9 =1 9
n g],})] n g]_,b]_’ n ¢ gj’b/ n ¢ glh]
O A G A G G B GG )
where, &« # 1, and 0 < &« < min 770]_, (l — ¢0]->} <1
B Zﬁ o @i‘bf . 1_¢ g/"b]_n B ¢ @f‘bJ
fivs10) (em (%) i ()
" N\, \2h, ¢ g;b; ¢ o;b;
fwmra) e f{mwmig) B (5% )l (e (%)
where, & # 1, and 0 < % < mm{iyo , (1 ¢0]> <1

4. Proposed Application and Case Study

In this unit, we utilized the novel proposed techniques, namely the CLIFEWA operator,
CLIFEOWA operator, CLIFEHA operator, CLIFEWG operator, CLIFEOWG operator and
CLIFEHG operator for decision-making method.

Algorithm: Here we consider a fixed set of m options, such as £ = {£1,£5,...,£n},
and a fixed set of n conditions or criteria, such as X = {N1,N,,..., R, } whose weighted

n
vectoris » = (b1, by, ... ,l?n)T under conditions, such as (1 < 13]- < n) and ) 13]- =1. Let
j=1
0 = {5 1,02,...,0 k} be a group of k experts/decision makers whose weight is

k
= (31,3,..., Elk)T with settings, such as (1 < 3; < n)and ) 3; = 1. To find the suitable
=

option, we develop a MAGDM problem based on the logarithmic Einstein techniques under
confidence environment.

Step 1: Make some matrices using the decision maker’s information.
Step 2: If information of the decision makers having two forms means benefit form
and cost form. In this we can change the cost form into benefit form, and the containing
the further process.

e  Step 3: Make a single matrix out of all the separate matrices by combining them using
the specified operators.
Step 4: Using the given technique and calculate all preference values
Step 5: Calculating the scores uses all preference values.
Step 6: Choose the one with the highest score value.

Case study: Several cases were found in Pakistan of the COVID-19 on March 2020.
As, it was found first in China and declared by WHO a dangerous disease and may spread
through communication and social interaction. Keeping in view the government of Pakistan
wants to control the COVID-19 in Pakistan. For this, the government of Pakistan decided
to specify some Vaccine. For this purpose Govt make a group of five experts doctors, such
as 0 = {51,52,53, 54,55} for decision, whose weight is p = (0.1,0.2,0.2,0.2, 0.3)T. The
doctors considered four best vaccine to control the COVID-19, such as £1: Astra Zeneca
vaccine, £5: Sputnik V vaccine, £3: Johnson & Johnson'’s Janssen vaccine, £4: Pfizer BioNTech
Vaccine. Decision makers make a decision under some criteria of the proposed alternatives,
such as N;: Drawbacks of the proposed vaccine, Ny: Vaccine accessibility and availability,
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N3: Vaccine spending, Ry: Qualities of the vaccine, whose weight is » = (0.1,0.2,0.3, 0.4)T.
In the mentioned criteria, there are two form, such as ¥y, N3 are in the cost form and N;, Ny
are in the benefit form. The given data have two types. Therefore, we have to normalize the
given provided data. Tables 1-5 having information of the experts and Tables 610 having
information of the experts in normalized form.

Table 1. Decision matrix of 0.

Nq N, N3 Ny
£1 ((0.30,0.40),0.70)  ((0.50,0.40),0.30) ((0.30,0.60),0.80) ((0.50,0.30),0.60)
£ ((0.40,0.50),0.20) ((0.50,0.30),0.60) ((0.40,0.50),0.60) ((0.40,0.50),0.60)
£3 ((0.30,0.60),0.20)  ((0.60,0.30),0.80) ((0.50,0.40),0.50) ((0.60,0.30),0.50)
£y ((0.50,0.40),0.30)  ((0.60,0.30),0.20) ((0.40,0.60),0.04) ((0.50,0.40), 0.40)
Table 2. Decision matrix of 0.
Nq N, N3 Ny
£1 ((0.30,0.60),0.30)  ((0.50,0.30),0.60) ((0.30,0.50),0.60) ((0.50,0.40),0.70)
£ ((0.40,0.50),0.60) ((0.70,0.20),0.60) ((0.40,0.60),0.04) ((0.50,0.30),0.20)
£3 ((0.40,0.50),0.10) ((0.60,0.30),0.50) ((0.40,0.50),0.30) ((0.60,0.30),0.80)
£4 ((0.50,0.40),0.40)  ((0.50,0.40),0.50) ((0.50,0.40),0.30) ((0.60,0.30),0.20)
Table 3. Decision matrix of 0 3
Nq N, N3 Ny
£1 ((0.30,0.70),0.60)  ((0.50,0.20),0.70) ((0.40,0.50),0.30) ((0.50,0.40), 0.60)
£ ((0.40,0.60),0.04) ((0.70,0.20),0.60) ((0.40,0.40),0.30) ((0.50,0.30),0.20)
£3 ((0.40,0.50),0.30) ((0.60,0.30),0.80) ((0.40,0.50),0.10) ((0.60,0.30),0.50)
£4 ((0.50,0.40),0.30)  ((0.60,0.30),0.20) ((0.50,0.40),0.40) ((0.50,0.40),0.50)
Table 4. Decision matrix of 0.
Nl &2 N3 N4
£1 ((0.40,0.50),0.10)  ((0.40,0.40),0.30) ((0.30,0.60),0.80) ((0.50,0.30),0.60)
£ ((0.50,0.40),0.40) ((0.50,0.30),0.60) ((0.40,0.50),0.60) ((0.60,0.30),0.50)
£3 ((0.30,0.60),0.20) {(0.60,0.30),0.80) ((0.50,0.40),0.50) ((0.60,0.30),0.50)
£y ((0.50,0.40),0.30)  ((0.60,0.30),0.20) ((0.40,0.60),0.04) ((0.50,0.40), 0.40)
Table 5. Decision matrix of 0 5.
Nq N, N3 Ny
£1 ((0.40,0.50),0.10) ((0.50,0.40),0.50) ((0.40,0.60),0.04) ((0.60,0.30),0.20)
£ ((0.40,0.50),0.60) ((0.70,0.20),0.60) ((0.30,0.50),0.60) ((0.50,0.30),0.20)
£3 ((0.30,0.60),0.30) {(0.60,0.30),0.50) ((0.40,0.50),0.30) ((0.60,0.30),0.80)
£y ((0.50,0.40),0.40)  ((0.50,0.30),0.60) ((0.50,0.40),0.30) ((0.50,0.40),0.70)
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Table 6. Normalized matrix of O 1-

Ry Ny N3 Ny
£1 ((0.40,0.30),0.70) ((0.50,0.40),0.30) ((0.60,0.30),0.80) ((0.50,0.30),0.60)
£ ((0.50,0.40),0.20)  ((0.50,0.30),0.60) ((0.50,0.40),0.60) ((0.40,0.50),0.60)
£3 ((0.60,0.30),0.20) ((0.60,0.30),0.80) ((0.40,0.50),0.50) ((0.60,0.30),0.50)
£y ((0.40,0.50),0.30) ((0.60,0.30),0.20) ((0.60,0.40),0.04) ((0.50,0.40),0.40)
Table 7. Normalized matrix of O 2.
Ny Ny N3 Ny
£1 ((0.60,0.30),0.30) {(0.50,0.30),0.60) ((0.50,0.30),0.60) ((0.50,0.40),0.70)
£ ((0.50,0.40),0.60)  ((0.70,0.20),0.60) ((0.60,0.40),0.40) ((0.50,0.30),0.20)
£3 ((0.50,0.40),0.10) ((0.60,0.30),0.50) ((0.50,0.40),0.30) ((0.60,0.30),0.80)
£y ((0.40,0.50),0.40) ((0.50,0.40),0.50) ((0.40,0.50),0.30) ((0.60,0.30),0.20)
Table 8. Normalized matrix of O 3.
Nl Nz N3 N‘l
£1 ((0.70,0.30),0.60) {(0.50,0.20),0.70) ((0.50,0.40),0.30) ((0.50,0.40),0.60)
£ ((0.60,0.40),0.40)  ((0.70,0.20),0.60) ((0.40,0.40),0.30) ((0.50,0.30),0.20)
£3 ((0.50,0.40),0.30) ((0.60,0.30),0.80) ((0.50,0.40),0.10) ((0.60,0.30),0.50)
£y ((0.40,0.50),0.30) {(0.60,0.30),0.20) ((0.40,0.50),0.40) ((0.50,0.40),0.50)
Table 9. Normalized matrix of O 4
N1 Ny N3 Ny
£1 ((0.50,0.40),0.10) ((0.40,0.40),0.30) ((0.60,0.30),0.80) ((0.50,0.30),0.60)
£ ((0.40,0.50),0.40)  ((0.50,0.30),0.60) ((0.50,0.40),0.60) ((0.60,0.30),0.50)
£5 ((0.60,0.30),0.20)  ((0.60,0.30),0.80) ((0.40,0.50),0.50) ((0.60,0.30),0.50)
£y ((0.40,0.50),0.30) ((0.60,0.30),0.20) ((0.60,0.40),0.40) ((0.50,0.40),0.40)
Table 10. Normalized matrix of 0 5.
Ny N N3 Ny
£1 ((0.50,0.40),0.10) ((0.50,0.40),0.50) ((0.60,0.40),0.40) ((0.60,0.30),0.20)
£ ((0.50,0.40),0.60)  ((0.70,0.20),0.60) ((0.50,0.30),0.60) ((0.50,0.30),0.20)
£5 ((0.60,0.30),0.30)  ((0.60,0.30),0.50) ((0.50,0.40),0.30) ((0.60,0.30),0.80)
£y ((0.40,0.50),0.40) ((0.50,0.30),0.60) ((0.40,0.50),0.30) ((0.50,0.40),0.70)

In the following Figure 1, we show the step by step process.
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Figure 1. Flowchart of the proposed approach.

Step 1: Contract decision matrices based on the expert’s suggestions:

Step 2: Covert all decision-matrices into normalized matrices, and get Tables 6-10.

Step 3: By wusing CLIFEWA operator and CLIFEWG operator, with
p = (0.10, 0.20,0.20,0.20,0.3O)T and « = 0.2. Tables 11 and 12 having collective normal-
ized matrix under CLIFEWA operator and collective normalized matrix under CLIFEWG
operator respectively.

Table 11. Collective normalized matrix under CLIFEWA operator.

Ny Ny N3 Ny
£1 (0.630,0.256) (0.547,0.316) (0.663,0.304) (0.521,0.357)
) (0.624,0.314) (0.482,0.296) (0.558,0.229) (0.546,0.410)
£3 (0.665,0.321) (0.591,0.357) (0.628,0.246) (0.547,0.316)
£4 (0.568,0.234) (0.536,0.460) (0.619,0.324) (0.596,0.382)

Table 12. Collective normalized matrix under CLIFEWG operator.

Ny N, N3 Ny
£, (0.624,0.216) (0.544,0.312) (0.667,0.324) (0.527,0.351)
£ (0.614,0.310) (0.478,0.291) (0.558,0.229) (0.546,0.410)
£3 (0.665,0.321) (0.593,0.357) (0.628,0.246) (0.547,0.316)
£4 (0.563,0.224) (0.532,0.458) (0.623,0.322) (0.601,0.362)
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Step 4: Next, we make hybrid matrices, using Table 11, Table 12. First, we have to com-

puting the hybrid values, such that ji; = n Uipj, i = (uj) " where il = (0.10,0.20,0.30,0.40)"
and get, Table 13, Table 14 respectively. Tables 13 and 14 having hybrid averaging and
hybrid geometric data respectively.

Table 13. Hybrid averaging matrix.

Ry N N3 Ry
£1 (0.571,0.226) (0.588,0.295) (0.728,0.239) (0.660,0.192)
£r (0.627,0.320) (0.660,0.319) (0.624,0.170) (0.611,0.288)
£3 (0.622,0.352) (0.475,0.238) (0.694,0.185) (0.494,0.245)
£4 (0.578,0.254) (0.676,0.337) (0.685,0.258) (0.536,0.336)

Table 14. Hybrid geometric matrix.

N1 Ny N3 Ny
£ (0.714,0.258) (0.524,0.389) (0.562,0.374) (0.765,0.214)
£ (0.830,0.106) (0.528,0.348) (0.610,0.352) (0.520,0.306)
£3 (0.825,0.144) (0.479,0.315) (0.464,0.268) (0.574,0.226)
£4 (0.848,0.134) (0.566,0.297) (0.572,0.287) (0.577,0.202)

Step 5: Using Tables 11-14, where » = (0.1,0.2,0.3, 0.4)T, and get Tables 15 and 16
respectively. Table 15, contains all preference values and Table 16 contains their score

functions respectively.

Table 15. Preference values of all operators.

£1 £ £5 £
CLIFEWA (0.537,0.328) (0.588,0.325) (0.523,0.295) (0.494,0.214)
CLIFEOWA (0.494,0.286) (0.491,0.229) (0.498,0.287) (0.488,0.239)
CLIFEHA (0.449,0.220) (0.489,0.297) (0.496,0.221) (0.510,0.218)
CLIFEWG (0.604,0.257) (0.549,0.311) (0.559,0.255) (0.598,0.224)
CLIFEOWG (0.546,0.273) (0.525,0.381) (0.546,0.273) (0.525,0.381)
CLIFEHG (0.489,0.243) (0.497,0.258) (0.581,0.345) (0.522,0.221)

Table 16. Scores of all methods.

Operators Score Functions Ranking
CLIFEWA 0.219, 0.266, 0.238, 0.282 £4 - £ = £3 = £
CLIFEOWA 0.218, 0.272, 0.231, 0.285 £y = £y = £3 = £
CLIFEHA 0.193, 0.286, 0.270, 0.294 £y = £y = £3 = £
CLIFEWG 0.348, 0.239, 0.305, 0.375 £4 - £ - £3 = £
CLIFEOWG 0.274, 0.146, 0.271, 0.328 £y~ £ = £3 £
CLIFEHG 0.256, 0.241, 0.250, 0.312 £y - £ = £3 = £

5. Comparative and Sensitive Analysis

Intuitionistic fuzzy set is one of the successful generalizations of their existing study
such as fuzzy sets, by considering much more information related to an object during the
process. For example, fuzzy sets contains only membership grade, but intuitionistic fuzzy
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sets contain both membership grade and non-membership grade under attentions, such
that their sum is less than or equal to one. In Table 17, we present the comparative analysis
of the novel approaches to their existing approaches.

Table 17. Comparisons with existing operators.

Averagin . Geometric .
Approagchfs Ordering Approaches Ordering
IFWA [9] £y - £1 > £2 > £3 IFWG [8] £4 > £1 > £y - £3
TFOWA [9] £y - £1 > £9 - £3 TFOWG [8] £y £ > £y > £3
TFHA [9] £4 > £ > £3 >~ £ IFHG [8] £y £ > £3 > £
IFEWA [13] £y £y > £1 > £3 IFEWG [12] £4 - £1 > £2 - £3
IFEOWA [13] £y £y >~ £1 > £3 IFEOWG [12] £4-£1 > £y - £3
IFEHA [14] £y > £y > £1 > £3 IFEHG [14] £4 > £ > £y > £3
LIFWA [41] £y - £ > £3 - £ LIFWG [41] £4 > £1 > £3 > £
LIFOWA [41] £y - £ - £3 > £ LIFOWG [41] £ -£1 > £3 £
CIFWA [44] Ay = A1 > Ay - Az CIFWG [44] £4 £ > £p > £3
CIFOWA [44] £y - £ > £9 >~ £3 CIFOWG [44] £4 - £1 > £2 >~ £3
CIFEWA [44] £y £y > £1 > £3 CIFEWG [44] £4 £y > £1 - £3
CIFEOWA [44] £y > £y > £1 > £3 CIFEOWG [44] £y £y > £1 > £3
CIFHA [43] £y > £y > £1 >~ £3 CIFHG [43] £4 > £1 > £3 > £
CLIFEWA £y > £y - £3 > £ CLIFEWG £4 £y > £3 - £
CLIFEOWA £y - £y = £3 - £ CLIFEOWG £4 > £y = £3 > £
CLIFEHA £y > £p > £3 > £ CLIFEHG £y > £y > £3 - £

In the following Figure 2, we show the graphical representation of all proposed
methods.

Ranking of methods
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B Astra Zeneca 0.219 0.218 0.193 0.348 0.274 0.256
B Sputnik V 0.266 0272 0.286 0.239 0.146 0.241
[ Johnson 0.238 0.231 0.27 0.305 0.271 0.25
W Pfizer BioNTech| 0.282 0.285 0.294 0.375 0.328 0.312

Figure 2. Graphical representation of the ranking of all methods.

6. Conclusions

In this paper, we have developed Einstein sum and Einstein product which are the
good alternatives of algebraic sum and product. We have developed several new LOLs
for intuitionistic fuzzy sets with real base number &, under confidence level. Additionally,
we have presented several Einstein operators under confidence environment, such as
the CLIFEWA operator, the CLIFEOWA operator, the CLIFEHA operator, the CLIFEWG
operator, the CLIFEOWG operator, and the CLIFEHG operator. A comparative study was
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performed with some recent studies to demonstrate their superiority and the legitimacy.
Finally, the proposed approaches are utilized on MAGDM problem to demonstrate the
legality, applicability and effectiveness of these new methods. But, the proposed methods
have some limitations, such that for all real numbers, such that log; (%) and log, (0) are not
defined. Similarly if « be a real number and y be an intuitionistic fuzzy value, then log,, (1)
cannot be calculated for 4 = 0 and & = 1. Hence throughout in this research, we consider
that y # 0and « # 1.

Furthermore, this study can be expanded to complex Dombi approaches under confi-
dence level, complex Logarithmic approach under confidence level, complex geometric
approach under confidence level, complex linguistic terms, complex symmetric opera-
tors under confidence level, complex power operators under confidence level, complex
Hamacher operators under confidence level, complex Einstein approaches under con-
fidence level, complex confidence level, complex interval-valued approaches, complex
Hamacher interval approaches, complex Einstein interval approaches, complex Dombi
interval approaches under confidence level, etc.
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