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Abstract: The demand for critical metals for net-zero technologies, including electric vehicles and
wind/solar energy, puts pressure on extraction and recycling processes. As the treatment of solutions
is becoming more and more complex and associated with the decreasing concentration of critical
metals and the concentration of contaminants increasing, the development of separation techniques
is required. Among them, membrane separation has been evaluated for hydrometallurgical pro-
cesses with similar results to traditional techniques. This work aimed at reviewing the literature on
membrane applications to obtain critical metals—lithium (Li), cobalt (Co), and rare earth elements
(scandium—Sc, yttrium—Y, lanthanum—La, and neodymium—Nd). The main novelty is that this
literature review focuses on the application of membrane techniques in industrial processes, not
only water and wastewater treatment. For this, we searched a scientific database for different key-
words, and the bibliometric analysis demonstrated a strong linkage between membrane separation
and critical metals. The application of membranes to obtain critical metals from primary and sec-
ondary sources, acid mine drainage (AMD), industrial wastes, and the recycling of electronic wastes
(e-wastes) and brine was revised. Among these traditional technologies, no relation was found with
reverse osmosis. The outstanding use of membranes included combinations of solvent extraction
techniques, including supported liquid membranes and polymer inclusion membranes.

Keywords: membrane separation; electrodialysis; supported liquid; polymer inclusion; nanofiltration

1. Introduction

Due to the economic importance and potential risk of the supply chain both in the short
and medium-term, several countries worldwide have classifications of the most critical
and strategic raw materials, including metals. These metals are crucial to the production
of key technologies in three strategic sectors—renewable energy, e-mobility, defense, and
aerospace—including Li-ion batteries, fuel cells, clean energy generation (solar and wind),
robotics and drones, and digital technologies [1]. In addition, these metals are essential for
technologies to achieve a low-carbon society [2]. For instance, the European Union classifies
rare earth elements (Sc, Y, and lanthanides) as very high risk in the supply chain [3].

Several metals are included in different lists, including rare earth elements, Co, and Li.
This has occurred due to primary production being controlled by a few countries associated
with low recycling rates. For example, the production of rare earth elements is controlled by
China, which is responsible for 70% of global production [4]. In the case of Co, about 68%
of global production is provided by the Democratic Republic of Congo [5], and Australia
and Chile [6] provide 82% of Li’s global supply

Due to the limitation of primary sources associated with the social and environmental
impacts of extractive metallurgy [7,8], several stakeholders worldwide have led the search
for new sources of critical metals. Studies and processes have been developed to obtain
critical metals from mining waste, for instance [9,10]. For example, Sc may be obtained from
bauxite residue, the primary residue generated in the Bayer process to obtain alumina [11].
Another example is the recycling of electronic equipment (e-waste). For example, recovering
Li and Co from Li-ion batteries is critical for the promotion of a circular economy and
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reusing these elements to produce new batteries. For instance, replacing the internal
combustion engine with electric vehicles requires more of both elements than the current
production [12]. In both cases (the recovery of metals from mining waste and recycling of
e-waste), the dependence and impact of extractive processes from primary sources decline.

There are two main industrial processes to obtain metals from secondary sources:
pyrometallurgy (thermal process) and hydrometallurgy (aqueous processing). The py-
rometallurgical process has drawbacks regarding the emission of greenhouse gases and
energy consumption. In addition, it is possible to obtain high-pure products [13]. For
example, in the recycling of Li-ion batteries, the recovery percentage for Li is lower than
80% in highly acidic conditions (when possible) since the element is presented in the slag
phase after thermal treatment [14]. Moreover, the hydrometallurgical process may achieve
more Sustainable Development Goals [15–17].

The hydrometallurgical route involves leaching and separation/purification steps.
First, after pretreatment as comminution and physical separations, the source of critical
material is leached to transform the metals into an ionic form. In most cases, leaching occurs
in acid conditions, as most metals are leached in a pH lower than 2 [18]. Furthermore, the
solution contains the target metals, and contaminations may be purified to obtain high-pure
products. The most common techniques are solvent extraction [19], ion exchange resins [20],
and precipitation [21].

Although separation and purification techniques meet industrial processes, techno-
logical challenges are changing, such as obtaining metals from sources with ever lower
levels, contaminants in very high concentrations, increasingly complex solutions to work
with, and the use of greener technologies. In this case, membrane separation technology
has received attention in hydrometallurgical routes for separation and purification with
less reagent consumption. Recent developments have aimed at using membranes beyond
water and wastewater treatment but also in the separation and concentration of metals in
hydrometallurgical processes [22–25].

The present review of the literature aimed at the analysis of membrane technologies
for the separation of critical metals. This review focused on rare earth elements such as
scandium, yttrium, lanthanum and neodymium, cobalt, and lithium. A database search
was carried out for the leading membrane technologies: microfiltration, nanofiltration,
ultrafiltration, reverse osmosis, and electrodialysis. Through this search, the manuscripts
were divided by source and discussed. In addition, a bibliometric analysis was carried out
to observe leading relations among the keywords.

2. Membrane Technology

The most traditional membrane technologies are microfiltration, ultrafiltration, nanofil-
tration, and reverse osmosis. These techniques are usually involved in water and wastewa-
ter treatment for water reuse, both urban, agricultural, and industrial wastewater; however,
they have also been explored for industrial purposes [26]. Microfiltration is used to separate
particles with an average particle size of between 0.1 and 10 µm and pressure applied
around the 2 bar, with membranes capable of high temperature, pressure, and corrosive re-
sistance. Among the chemical composts that may be separated, this includes bacteria, yeast
cells, pain pigments, clay, silts, and dust [27,28]. In the case of ultrafiltration, the technique
removes particles in the size range of 0.001–0.02 µm and the pressure 1–10 bar to separate
macromolecular solutes and colloidal materials [29]. Nanofiltration and reverse osmosis
are similar in application, where nanofiltration operates at a lower pressure (5–35 bar) than
reverse osmosis (15–150 bar). Nanofiltration is used for Na, Mg, and Ca rejection. Reverse
osmosis is usually applied to separate all chemical composts, including ions, and obtain
high-pure water [29].

In addition to such techniques, electrodialysis has been explored. This technique uses
membrane ion-selective, which separates ions according to their charge. These membranes
have fixed charged groups bound into the polymer matrix to which mobile ions have
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opposite charge–cationic and anionic membranes. The separation process occurs through
an electrical current [29].

In addition to such techniques, other membrane configurations have attracted attention
for industrial applications to improve acid/alkali resistance and selective separation and
antifouling. The metal-organic framework is one of these techniques that have been
explored, which comprises metal ions or metal ion clusters linked with organic ligands via
coordination. These membrane types have milder synthesis methods, a higher porosity,
and surface area. The metal-organic framework has been classified as a potentially new
generation of membranes for the selective separation of metals [25].

Supported liquid membranes and polymer inclusion membranes have similarities
in their application and selectivity. Supported liquid membranes use simple membranes
(PVDF or PTFE) impregnated with an organic extractant (as a carrier): the same used in
the traditional solvent extraction process. Therefore, it sums up the advantages of the
membrane technique with the selectivity of a solvent extraction separation [25,30]. On the
other hand, polymer inclusion membranes are liquid membranes with a base polymer (such
as PVC or cellulose triacetate), a carrier immobilized into the polymer, and a plasticizer
achieving high stability, selectivity, efficiency, and durability [31]. Most recently, there have
been studies using ionic liquids as a carrier in supported ionic liquid membranes since
these compounds are more viscous than traditional organic extractants, which is a great
advantage in reducing carrier losses [32,33].

3. Review Methodology

In the present study, a systematic review was carried out to evaluate the literature on
the use of membrane technology when separating critical metals. This study focused on rare
earth elements (specific in Sc, Y, La, and Nd) due to market criticality [9,34] and Li and Co
due to the demand for electric vehicles to meet SDGs [12]. The review strategy was focused
on manuscripts published in scientific journals using the Scopus database. Therefore,
only manuscripts published in journals were considered, excluding books, book chapters,
patents, and conference papers. The literature was revised from 2018 to 2022 [9,35,36].

For this, different keyword combinations were used to find the manuscripts related to
the topic of this review of the literature. Figure 1 shows the keyword combinations, which
were searched for each topic to obtain publications for each membrane technique. For
instance, “rare earth elements” and “microfiltration”, “rare earth elements” and “nanofil-
tration”, and “rare earth elements” and “ultrafiltration” combinations were used. The same
was applied to all critical metals. The choice to use rare earth elements and Sc, Y, La, and
Nd was related to the search for specific publications on the use of membrane technology
in relation to them.
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As depicted in Figure 2, after the search, it was found that 1458 articles adopted
the following criteria: language (English), type of article (research or review), and
date of publication (2018–2022). Further, the manuscripts were organized (in an Excel
spreadsheet) and filtered according to the title/abstract, agreed topic, and repeated
publications (360 articles). The manuscripts were separated into three main classifi-
cations: separation, purification, and industrial applications. Then, the manuscripts
were evaluated.
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4. Results and Discussion
4.1. Bibliometric Analysis between Keywords and “Membrane Separation”

Figure 3 presents the bibliometric analysis between “rare earth elements” and
“membrane separation”. Five clusters were found, differentiated by colors, where a
strong connection was found in the separation/recovery process of rare earth elements
by membranes. The main cluster (fourteen items in red) showed the highest occurrence
of research interest in the adsorption process and the synthesis of membranes using
rare earth elements. These studies were not considered for further chapters since they
are out of the scope of this literature review. Cluster 2 (eight items in green) relates
the focus on ion exchange separation and solvent extraction process to recover these
elements. In the case of Cluster 3 (seven items in blue), the interest in the extraction
process to obtain rare earth elements, scandium, and yttrium was highlighted due to
their economic importance and high applications, respectively. Cluster 4 (four items in
yellow) and Cluster 5 (four items in purple) are related to membrane technologies for
the selective separation of metals, including liquid membranes and polymer inclusion
membranes. Figure 3 highlights the connections between the membrane (in red) and
rare earth elements (in blue) according to the literature review.
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Figure 4 depicts the relationship between scandium and membrane separation. A
strong connection was observed in the separation techniques involving membranes (hollow-
fiber membrane and solvent extraction), metal recovery, rare earth elements, and a circular
economy. It might have occurred since scandium is associated with other rare earth
elements, the main yttrium, and obtaining it is associated with a circular economy, as
mainly scandium is obtained from secondary sources. In addition, the search for new
sources of scandium to supply the demand (which is scarce) makes this element one of the
main and most critical ones [9].

The literature map shows co-occurrences between the keywords grouped in four
clusters. The first one (ten items in red) relates aspects of the membrane in the separation
process (hydrophobicity and extractants, for instance). Cluster 2 (eight items in green)
highlights membrane technologies for scandium separation, including a hollow-fiber mem-
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brane, liquid membrane, and supported liquid membrane. Cluster 3 (eight items in blue) is
related to the use of critical metals, which are rare earth elements, for membrane synthesis.
Finally, Cluster 4 (seven items in yellow) is strictly related to the promotion of a circular
economy using membranes, as corroborated by the keyword “liquid membrane” linked to
all clusters.
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Figure 5 presents the keywords relation between yttrium and membrane separation.
It could be observed that there was a strong connection between yttrium and membrane
technologies. The literature review observed that the element was used for materials
synthesis in water treatment. For instance, Jiang the al. (2021) used the Y3Al5O12-Al2O3
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membrane to obtain ultra-high pure water by ultrafiltration [37]. Despite that, it was found
that papers linked to the goal of this literature review. Cluster 1 (ten items in red) is related
to the extraction of rare earth elements using liquid membranes, where yttrium is involved.
Within Cluster 2 (eight items in green), the adsorption of the synthesized membrane (by the
sol-gel process) is highlighted. Cluster 3 (six items in blue) relates the ceramic membranes
prepared by yttrium oxide, and Cluster 4 (four items in yellow) links the separation and
purification techniques by membrane using yttrium compounds.
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For lanthanum, it was observed that, as occurred for yttrium, this element may be used
to improve the efficiency of the membrane technique. Koh et al. (2021) manufactured a
nanofiltration membrane using lanthanum incorporated into polyethersulfone/sulfonated
polyphenylenesulfone for phosphorous treatment. According to the authors, this membrane
achieved a performance 20 times higher than commercial membranes [38]. Cluster 1
(nine items in red) depicts a high connection to barium, cerium, and cobalt compounds
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related to the synthesis of membranes. The adsorption and separation techniques are
reported in Cluster 2 (eight items in green), while Cluster 3 (six items in blue) links ceramic
membranes using nickel and sulfur compounds. Cluster 4 (six items in yellow) connects the
extraction processes used to obtain rare earth elements through liquid membranes. Figure 6
shows a connection between lanthanum in the extraction process using membranes and
the synthesis of materials for separation.
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Figure 7 depicts the connection between neodymium and membrane separation.
As reported by other rare earth elements, neodymium could improve the separation
efficiency when used in membrane synthesis. For example, Wu et al. (2021) reported



Processes 2023, 11, 1256 9 of 24

using a neodymium-imprinted nanocomposite membrane in a natural wood [39]. Cluster 1
(twelve items in red) relates the separation of metals (such as cobalt and dysprosium) using
liquid membrane and adsorption, and Cluster 2 (nine items in green) depicts the separation
of rare earth elements using membranes associated with the solvent extraction process
(supported liquid membranes). Cluster 3 (eight items in blue) and Cluster 4 (six items in
yellow) link the synthesis of membranes using metals for separation.
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In this review of the literature, the search using lithium and membrane separation
keywords found the highest number of manuscripts. For this reason, Figure 8 presents
several connections. Indeed, there are several studies involving membrane separation
to obtain lithium due to several reasons, one of them being the demand to supply the
Li-ion battery market. First, about 59% of lithium resources are salt-lake brines; the
primary contaminant is magnesium (Mg+2). Due to the difference in the electric charge
of the electrons, where lithium is presented in solution as Li+, monovalent ion selective
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membranes have been largely studied to obtain a lithium-concentrated solution. It is
advantageous to separate lithium from a multi-elementary solution under low-pressure or
low-voltage environments [40].
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Cluster 1 (eighteen items in red) is related to membrane separation to obtain lithium
and the effect of other ions in separation, which include magnesium and sodium as the
main ones. Cluster 2 (fifteen items in blue) and Cluster 3 (eleven items in blue) depict the
use of membrane technology (nanofiltration and ultrafiltration) to obtain lithium from brine
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and Li/Mg separation. Finally, Cluster 4 (eight items in yellow) reports using different
membranes (ceramic and ionic liquids) in Li-ion batteries as separators.

As occurred in the literature review for lithium, many keywords were found for cobalt
related to Li-ion batteries, as both elements are crucial to the largest types of batteries
(around 95%) [12]. Furthermore, the presence of nickel is linked to cobalt sources, where
the element is obtained in nickel and copper sources [41,42]. Cluster 1 (20 items in red)
depicted in Figure 9 relates to the use of membrane technologies for water treatment, as
cobalt may be used for membrane synthesis [43]. As occurred in Cluster 1, the use of cobalt
in membranes for separation is depicted in Cluster 2 (13 items in green), but in addition,
showed the use of gas separation, where the main focus is on CO2 separation [44]. Cluster
3 (11 items in blue) relates the extraction of cobalt and the presence of copper and nickel by
novel membrane technology (ionic liquid and polymer inclusion membrane), and Cluster 4
(eight items in yellow) has less interaction. It is related to ceramic membranes synthesized
using cobalt, strontium, and lanthanum.
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4.2. Application of Membranes for Ores/Primary Sources

The main sources of Li are brine and spodumene. The extraction of Li from brines and
the use of membrane technologies are discussed in Section 4.6. Spodumene ores mainly
contain about 8% of Li2O as a lithium-aluminum silicate (Li2O.Al2O3.4SiO2 or LiAlSi2O6),
which is closely associated with quartz, feldspar, and micas. The hydrometallurgical route
is commonly used to obtain Li after thermal treatment [45]. The literature review follows
the methodology depicted in Section 4 reports the possible Li resource from lepidolite
ore using membrane technology. It is considered a hard-rock ore with the chemical for-
mula KLi1.5Al1.5AlSi3O10F2 but lower Li concentration than spodumene. Despite that, the
urgency to find sources of Li to supply the battery market may result in lepidolite or a
potential Li source [46,47].

As reported by the studies found in the literature review [46,48,49], the main goal is
the selective separation of Li and Al after lepidolite leaching. Gao et al. (2020) leached the
lepidolite material with sulfuric acid—60 wt% H2SO4, solid–liquid ratio 1/2.5 at 160 ◦C
for 4 h—with 97% of Li extraction. The authors tested nanofiltration to separate Al/Ca
and Li using a DK membrane (150–300 Dalton). In the separation process, the authors
used Ca(OH)2 to neutralize the excess acid (until pH 2.2). According to the authors, the
nanofiltration process exhibited high retention for SO4

2− ions. In the case of Li separation,
the retention rate followed the order: Al > Ca > K > Na > Li. Al and Ca retentions were
over 96% and 94%, respectively, while Li was 52% at pH 2.2 [46].

In this process, to obtain Li form lepidolite, in another study, Guo et al. (2020)
evaluated different commercial membranes for nanofiltration (commercial membranes:
DK, DL, NF270, and Duracid NF). According to the authors, the Li/Al separation rate
was 471.3 using the DK membrane due to the pore size, smooth membrane surface, and
appropriate zeta potential. In addition, the Ca retention rate was also high due to a similar
pore size between the ions and the membrane. The order of the separation factor of Al and
Li was as follows: DK > Duracid NF > DL > NF270 [48]. The Al/Li separation in different
conditions represented an excellent opportunity to use nanofiltration to obtain Li from the
processing of lepidolite or other sources. In addition, it may represent an essential source
of Li shortly [49].

4.3. Application of Membranes for AMD and Industrial Wastes

Acid mine drainage (AMD) is a global problem causing negative impacts on the
environment and living beings. It is formed by the oxidation of pyrite (or materials-bearing
pyrite) or other sulfate compounds as waste piles, coal mine piles, tailing pits and dams,
and mines underground upon exposure to air, microbial activities (as a catalyst), and water.
As a result, H2SO4, Fe(II), and Fe(III) are released, and the acid solution reacts with the
material as it is percolated, leaching other metals. Therefore, if not properly controlled, it
may be released into the environment, causing several negative impacts on living beings,
such as mortality, growth disorders, lower reproduction rates, deformities, and injuries. In
addition, adverse economic impacts are also observed due to the AMD treatment [50,51].

The issues caused by AMD raise the search for remediation approaches for treatment
and management [50]. Conventional techniques are used for AMD treatment, which in-
cludes precipitation using gypsum, lime, and limestone, adsorption, or alternative methods
such as biological treatment (as wetlands), the use of waste materials and by-products from
other industries, and membrane technology [52].

Among membrane technologies, nanofiltration is the main one used for AMD
treatment—about 80% of the publications are related to nanofiltration. In addition, the
literature reports the potential use of reverse osmosis as well, owing to the good quality
of water produced for reuse [23,50,52,53].

López et al. evaluated nanofiltration as a treatment technology for AMD containing
rare earth elements. According to their work, an acid solution (H2SO4) may be recovered
from a pH lower than 3.0 using semi-aromatic polyamide, poly-pyperazinamide/proprietary
polyamide, and sulfonated polyethersulphone membranes. The solution containing about
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2200 mg/L of Al, 9500 mg/L of SO4, and 10 mg/L of rare earth elements (La, Pr, Nd, Sm,
Dy, and Yb) can be concentrated almost 20 times, where after nanofiltration may be sent to
the precipitation step to obtain the phosphate of rare earth elements [54,55].

As observed, the high acid concentration in AMD damages the membrane [56]. For
this reason, an acid-resistant ceramic and polymeric nanofiltration membrane was prepared
and evaluated for acid recovery and to concentrate rare earth elements. The membrane,
when synthesized, allows the transport of H+. The metal rejections achieved around 80%
with high resistance again acid action keeping their selectivity [57]. Another problem to be
solved with AMD treatment using membrane technology is fouling and scaling events due
to the presence of microorganisms and high concentrations of Al and Ca [58].

In addition, water may be recovered from AMD using nanofiltration [59,60]. Fonseka
et al. (2022) evaluated a polyamide membrane (NF90) with positively charged functional
groups on its surface, where the rejection rates of Na were 90% and for other elements were
over 98%. The authors also observed biofouling due to organic matter, which declined
the flux [59]. Although most of these publications are related to acid or water recovery
from AMD, rare earth elements may be concentrated for further steps, as described by
López et al. (2019). The authors stated that rare earth elements might be recovered after the
nanofiltration step, in which H2SO4 can be recovered as phosphate salt [55].

Regarding the application of membrane technology from industrial wastes, a central
focus was given to nuclear power and electroplating industries. Kim et al. (2020) compared
reverse osmosis and nanofiltration for the separation of radioactive nuclides—Sr, Co,
and Cs. Nanofiltration showed a 64% rejection, while reverse osmosis achieved 80%
rejection using commercial membranes (NF90, NF270, TW-2540, and XLE-2540). According
to the authors, the concentration of nuclides increased while water was recovered [61].
Chen et al. (2020) synthesized PEI membranes for reverse osmosis. Although the focus was
on water recovery, this process concentrated Co ions almost 3500 times [62], which may be
used for other processes to obtain Co. Lazarev et al. (2021) evaluated electro-nanofiltration
for the treatment of electroplating wastewater containing Cu, Zn, Co, and Ni. In this case, a
current density was applied and associated with nanofiltration separation, which may be
an alternative for ions migration on a membrane–solution interface [63].

Electrodialysis has been applied for wastewater treatment due to the possibility of
separating cationic and anionic ions in different streams. For instance, in a nuclear plant,
cationic membranes can be used to separate cations (Co, Li, and Cs) and obtain water for
reuse, where about 98% of cationic ions are separated [64]. Moreover, the electrodialysis
process can use the organic phase with a recovery efficiency of over 95% [65].

Despite the traditional technologies, studies have focused on membrane preparation
for the selective separation of metals and cationic ions from complex wastewater. For
example, Kedari et al. (2020) studied wastewater containing Am, La, Ce, Nd, Sm, Sr, Pr, and
Y in a lactic acid solution from nuclear waste to separate Am. The authors used a hollow
fiber liquid membrane with diethylene triamine pentacaetic acid (DTPA), and the process
selectively separated Am with lactic acid from the other metals, where the emulsion phase
contained di(2-ethylhexyl) phosphoric acid (HDEHP), achieving a decontamination factor
of 412 [66].

The search for new sources of critical metals promotes the technological development
of separation processes from wastes [9,67,68]. In this review of the literature, an interest was
observed in the recovery of rare earth elements from coal fly ashes, which are generated
during coal combustion. This residue may contain about 30% of rare earth elements, higher
than ores. It results in the development of the separation of these elements after leach-
ing [69]. Mutlu et al. (2018) evaluated nanofiltration to concentrate rare earth elements [70].
The application of electrodialysis was studied by Couto et al. (2020), where the cationic
membrane was used to concentrate the catholyte solution, achieving a recovery efficiency
of 70% [71]. The combination of membrane technology and the solvent extraction technique
was explored by Smith et al. (2019) using a liquid membrane and supported liquid mem-
brane with D2EHPA. The separation of rare earth elements was higher using a supported
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liquid membrane, achieving 70%, and was more selective than common elements such as
Na, Al (less than 5%), Ca, and Fe (less than 10%). The extraction of Y achieved 100% using
a supported liquid membrane [72].

The search for new sources of Sc is important due to its critical and high market
price [9]. The interest in extracting Sc from red mud could be related to the amount of
residue stored worldwide—about 4 billion tons [73–76]. However, it is not the only potential
Sc source to be explored. Hedwig et al. (2022) evaluated polymer inclusion membranes
combined with an organic extractant to separate scandium from titanium dioxide pigment
production waste. The authors combined the PVDF membrane with D2EHPA, where a
high separation rate was observed even in a solution containing 30 other elements [77].
Similarly, in another study, Hedwig et al. (2022) combined nanofiltration with solvent
extraction, which removed Sc from Fe, where D2EHPA and Cyanex 923 were selective for
Sc [78].

In addition to using membrane technology to obtain critical metals from mining,
Feijoo et al. (2021) demonstrated that electrodialysis can be used to concentrate Co from
nickel laterite waste processing. The use of cationic and anionic membranes concentrated
the Co from a stream, and H2SO4 was recovered from being recycled in the process.
Extraction efficiencies achieved about 98% within 136 h [79].

4.4. Application of Membranes for the Recycling of e-Waste and Li-ion Battery

The search for new sources of critical metals (primary or secondary) leads to studies
and process design from urban mining [80]. It occurs due to the amount of waste generated
in the cities and growth rates. For instance, e-waste generation worldwide increased by 38%
from 2010 to 2019, representing about 53.6 Mt of residue. In addition, the e-waste growth
rate is three times higher than any other waste (3–5% per year) [81]. These residues contain
critical metals such as Li, Co, and rare earth elements in concentrations 20–100 times higher
than primary sources [16,82–84]. Moreover, it may be a source of critical metals in countries
with no primary source. For instance, there is no primary source of Co in Europe [85], and
spent Li-ion batteries may represent a source for the continent [12].

Korkmaz et al. (2018) evaluated the nanofiltration process when recycling Ni-metal
hydrate batteries. The authors leached anode and cathode materials with HCl, and the
leach solutions were treated by nanofiltration to recover the HCl solution to be reused in
the leaching step. The process was carried out at 20 bar and 19 L/m2·h, where the permeate
stream contained a concentration of rare earth elements lower than 8 mg/L and 47 mg/L
of Ni [86]. Therefore, this process may be important to concentrate the leach solutions for
further treatments.

In addition, several studies in the literature report the use of membrane technology to
separate the critical metals selectively after leaching. For example, Yuksekdag et al. (2022)
studied supported liquid membranes to separate rare earth elements. The authors tested
polyvinylidene fluoride (PVDF) supported with organic extractants, from which bis-
2-Ethylhexyl phosphoric acid (D2EHPA) and di-2,4,4,-trimethylpentyl phosphinic acid
(Cyanex 272) were evaluated. As a result, Sc was separated selectively using a membrane
supported by Cyanex 272, while D2EHPA separated Ce, Dy, Er, Eu, Gd, Ho, Nd, Pr, Sm, Tb,
Y, and Sc. For this reason, the use of the PVDF membrane supported with Cyanex 272 can
be used to separate Sc from rare earth elements (with small quantities of Dy, Er, Ho, Tb,
and Y) and can be supported with D2EHPA to separate the remaining rare earth elements
from common elements (as Fe, Cu, Al, Ca, Mn, Cr, Cd and Co) [87].

It occurs due to a strong connection between rare earth elements and organic extrac-
tants with P ions in functional groups [11]. Furthermore, Ni’am et al. (2020) tested hollow
fiber membranes supported with D2EHPA and Cyanex 272 separate rare earth elements
from magnet recycling. The traditional solvent extraction process did not separate the
elements from Fe and was not extracted using membrane support. The extraction of Nd,
Dy, and Pr were 63.13 %, 15.21 %, and 56.29 %, respectively, without iron co-extraction [88].
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Islam et al. (2022) evaluated a membrane supported with a neutral extractant to
separate rare elements—tetraoctyl diglycolamide (TODGA)—from scrap magnets. Instead,
the authors used a hollow fiber membrane. As a result, the concentration of rare earth
elements increased over time in the permeated stream, where the purity of the final product
was 99.5% in rare earth elements [89]. In addition, Ni’Am et al. (2020) evaluated hollow
fiber membranes supported with D2EHPA in recycling scrap magnets. In contrast to
the results obtained by Islam et al. (2022), which used a neutral extractant, the use of
organophosphorus extractants, such as D2EHPA, achieved the best separation rate for Nd
against Dy and Pr, where 90.82% of Nd was permeated through the membrane, while Dy
and Pr were 11.89% and 1.50%, respectively [90]. As aforementioned, this occurred due to
a strong connection between rare earth elements and phosphorous organic extractants.

Yadav et al. (2019) also studied the separation of rare earth elements from scrap magnet
recycling using a hollow fiber membrane, where the authors supported the membrane with
2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA). In this case, the process was more
selective for Dy than Nd and Pr, even owing to the concentration difference between the
elements, in which Nd is the main component in permanent magnets. As a result, Dy was
obtained with 97% purity [91].

Due to the growing demand for net zero technologies, the market of electric vehicles
has grown worldwide, mainly in Europe, North America, and BRICS countries [12]. As a re-
sult, the demand for metals, mainly Li, to supply this market is over current production [92].
Along with searching for sources of Li from a primary source, recycling these batteries
is important to promote the circularity of materials. Membrane technology comes as an
alternative for selective separation to obtain pure or high-pure Li solution. According to
Swain et al. (2018), reverse osmosis is a cost-effective alternative for Li concentration from
battery recycling. It may also overcome technical limitations from traditional separation
technologies [93].

Gao et al. (2019) studied the ultrafiltration technique to separate Li from a simulated
leach solution. After Al and Fe removal by precipitation at pH 7, the solution containing Li,
Ni, Co, Mn, and Cu was mixed with polyacrylate sodium (PAAS). As a result, PAAS reacted
with all the metallic ions except Li, and in the ultrafiltration process, Li ions permeated the
membrane, which rejected the complex compounds. Therefore, about 94.6% of complexed
ions (Ni, Co, Mn, and Cu) were separated, while the Li separation rate was 96.1% [94].

Kumar et al. (2022) evaluated the nanofiltration process for Li concentration and
separation from Ni, Co, and Mn. First, spent Li-ion batteries were leached by H2SO4 and
followed by precipitation to remove Fe and Al as impurities. Then, ultrafiltration was used
to concentrate Li, where 92.5% of Ni, 94.6% of Co, and 95.8% of Mn, were rejected, while
89.6% of Li was permeated throughout the membrane with 7.5 L/(m2·h) and 10 bar [95].
According to Swain (2018), reverse osmosis may also be used for Li concentration from
recycling Li-ion batteries [93].

Electrodialysis has been studied for the selective separation of metals from Li-battery
recycling. The process can be carried out using a monovalent cation-exchange membrane to
separate Li from other metallic ions or complexing agents (such as EDTA) to form negatively
charged compounds and apply cationic membranes for selective separation [96]. Figure 10
presents a schematic diagram for separating Li ions from PO4

3− and HPO4
2− ions, which

are present in the recycling of LFP batteries (LiFePO4). First, the electrodialysis device is fed
with the solution, and an electrical potential difference is applied; as a result, the Li ions are
permeated to the cationic membrane, and the phosphate ions are not. Song and Zhao (2018)
described how the Li ions were separated from other elements by precipitation at pH 12
using a phosphate salt, where Li remained in the solution. Then, the membrane Nagion-117
(monovalent membrane) was used to separate Li from PO4

3− and HPO4
2− ions. After

electrodialysis separation, the final product contained 99.3% purity (Li2CO3) [97].
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For recycling LFP batteries, electrodialysis can be used as a separation technique. After
leaching, He et al. (2020) obtained a high-pure LiOH using a monovalent cation-exchange
membrane. In this case, the authors evaluated a slurry electrodialysis, as described by Li
et al. (2020), where the cathode was mixed with water in an electrodialysis cell, and Li was
released and separated by the membrane under an electrical potential difference. Cationic
and monovalent membranes may be used for ion separation [98,99].

Cerrillo-Gonzalez et al. (2020) demonstrated that electrodialysis might separate Li
and Co from recycling LCO batteries (LiCoO2). The authors tested the cation-exchange
membrane after leaching with HCl, and the recovery rates were 62% of Li and 33% of Co.
Furthermore, it was observed that cobalt tended to accumulate within membranes due to
their being a divalent cation [100]. In addition, compared to the results reported by He
et al. (2020), using a monovalent membrane is crucial to the separation of Li ions against
divalent and trivalent ions selectively.

Gmar et al. (2022) demonstrated that it is possible to separate Li from the recycling of
the NMC battery (LiNiMnCoO2) using a monovalent membrane. The authors observed
that the current applied in electrodialysis must be lower than the limiting current to
avoid the precipitation of metallic ions, such as hydroxide, into the membrane porosity.
Additionally, in the process, as exemplified in Figure 10, H2SO4 may be recovered and
reused for leaching [101]. On the opposite side, Chan et al. (2022) used different cationic
membranes to separate the ions from NMC battery recycling. However, in order to perform
a selective separation, the authors mixed EDTA in the solution to complex the metallic ions.
So, the first step was Ni complexing to separate from the Co-Mn-Li solution. Then, Co
was complexed with EDTA; after that, Mn reacted, and Li was separated from the solution.
Finally, different NMC batteries were evaluated (NMC111, NMC532, and NMC622), which
changed the proportion of Ni, Mn, and Co, and the results were similar [102].

In addition to traditional membrane technologies, the search of the literature reported
new potential applications. For example, Keller et al. (2022) treated a hydrophobic PTFE
membrane with D2EHPA to separate Mn from Co. This process demonstrated a high
selection for Mn, which occurred in only one reactor against the solvent extraction process
that required several steps (extraction, stripping, and regeneration) [103]. Regarding the
recovery of metals from Li-ion batteries, Li et al. (2019) synthesized a stable metal−organic
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framework, ZIF-8, to form a membrane composite to separate Li from Co. The synthesized
membrane exhibited a large surface area, a high channel density, and a short channel length,
with a Li/Co separation factor of 8.29 [104].

4.5. Application of Membranes for Brines Processing

About 53% of the literature review focused on industrial applications of membrane
technology to obtain critical metals from brine. In this case, it is an important source
of Li due to its abundance, which is crucial for market supply. In this view, membrane
technology may provide technical and economic feasibility for Li when obtaining it from
brine selectively [105,106]. In addition, rare earth elements may be found but in extremely
low concentrations (ppb). For this reason, metal−organic framework nanoparticles have
been explored as an alternative. For example, Liu et al. (2021) synthesized nanoparticles
with diethylenetriamine coated on the outside of the Fe3O4 and further modified with
polystyrene sulfonate, which can be used to capture rare earth elements [107].

Due to the number of manuscripts in the literature review, a few examples are further
presented and discussed. For example, Baudino et al. (2022) recovered Li from brine using
a graphene oxide membrane. Such material was used due to the functionalization in which
sub-nanometric hydrophilic channels are rich in oxygen groups, making them appealing
for separation with antifouling properties. As a result, the authors achieved up to 70% of Li
recovery [108].

Nanofiltration has been used to separate Li from salt lake brine due to the selectivity
of rejecting divalent/multivalent ions. As a result, Li ions (monovalent) permeate the
membrane. Using a commercial membrane (DK membrane), Li et al. (2019) observed that
the presence of Mg is the main contaminant in Li separation from brine, and the authors
achieved 97% of Li recovery and a separation factor of 13 [109]. To improve the separation
rate of Mg and Li ions, Li et al. (2022) synthesized a nanofiltration membrane with
polyethyleneimine bonded with a 15-crown-5 ether through hydrogen interaction, where
the Mg concentration declined from 1500 mg/L to 2.7 mg/L while the Li concentration
remained similar [110]. For the same reason, Soyekwo et al. (2022) synthesized a membrane
with an ionic liquid to improve the Mg/Li separation factor, which achieved 26.5 [111].
All these studies demonstrate the high efficiency of nanofiltration to separate Li from
brine, with Mg ions being the main contaminant of the process, reaching a 50 times higher
concentration than Li ions [109].

Electrodialysis was explored for Li obtained from brine. Zhou et al. (2018) used elec-
trodialysis to concentrate a Li sulfate solution in the brining process after acid leaching. In
this case, the authors used cationic and anionic membranes to increase the Li concentration
from 6 wt% to 17 wt%. According to the authors, the cost of the process was considered
competitive with conventional methods [112]. On the other hand, Ying et al. (2020) evalu-
ated the Li extraction directly from brine with Li and Mg concentrations equal to 7.99 g/L
and 78.67 g/L (Mg/Li equal to 9.85), respectively, using cationic and anionic membranes.
The process achieved a 90% Li recovery and reduced the Mg/Li ratio from 9.85 to 0.57 [113].

The electrodialysis process could be used to obtain material for Li-ion battery pro-
duction directly from brine with 98.8% purity and 118 g/L of Li nitrate solution [114].
Zhang et al. (2021) evaluated the use of monovalent membranes to separate Li from brine,
obtaining an 83.5% recovery percentage with 99.68% of purity [115]. As observed, nanofiltra-
tion and electrodialysis can be used to obtain Li from brine as a source for different markets.

4.6. Application of Membranes for Separation and Purification Processing

The literature reports on the use of membrane technology for the separation and con-
centration of metals in a solution. This was found in studies from different sources of critical
metals. The focus on Li, Co, and rare earth elements (Sc, Y, La, and Nd) was related to their
application in green technologies with low greenhouse gas emissions. Although membrane
technology is widely (and traditionally) used for water and wastewater treatment, the
bibliometric analysis (Section 4.1) demonstrated a strong link between these critical metals
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and separation techniques. Regarding the technologies, evaluations of nanofiltration, mi-
crofiltration, and ultrafiltration concentrate leach solutions and reuse water and acid after
leaching was observed. Electrodialysis was evaluated as an ion-exchange technique for the
selective separation of ions. It was observed that manuscripts regarding reverse osmosis
were not found for any critical metals.

The membrane technique may be used for purification to remove impurities. For ex-
ample, Khaless et al. (2022) purified industrial phosphoric acid by nanofiltration for sulfate,
fluorine, and arsenic removal. The authors evaluated the MPS36 membrane, which oper-
ated at 1700 L/h and 40 bar. In addition to anion removal, nanofiltration reduced the Cd, Al,
Fe, and rare earth elements concentration by over 95% [116]. Similarly, Mans et al. (2020)
evaluated hollow fiber membranes to purify the Ni-Co leach solution [117].

The literature review reported an increased interest in membrane technology for rare
earth element separation owing to higher selectivity, lower energy requirements, and the
possibility of zero liquid discharge [118,119]. To achieve the goals for selectivity, there were
two main membrane-based techniques: supported liquid membranes and polymer liquid
membranes. Both combine the high selectivity of the solvent extraction technique with a
smaller area and a smaller volume. The organic extractants studied were usually applied
in the traditional solvent extraction of rare earth elements, such as D2EHPA, Cyanex 272,
TBP, and TOPO [120,121].

The extraction of Sc has been evaluated by comparing solvent extraction techniques
and supported liquid membranes. As observed by Rout and Sarangi (2022), the recovery of
Sc achieved 99.9% using solvent extraction and 91% using a supported liquid membrane,
and Cyanex 272 was used as a carrier. According to the authors, the separation of Sc was
higher than Ni, Mn, Co, Zn, Fe, and Cu [122]: the most common contaminants of nickel
laterite waste processing to obtain Sc [123]. Polymer inclusion membranes with organic ex-
tractants, such as N-[N,N-di(2-ethylhexyl)aminocarbonylmethyl]-glycine (D2EHAG), and
N-[N,N-di(2-ethylhexyl)-aminocarbonylmethyl]phenylalanine (D2EHAF) also achieved
high extraction rates for Sc than Ni, Al, Co, Mn, Cr, Mg and Ca [124]. The literature also
reported the use of Nd and La using mono-(2-ethylhexyl) phosphoric acid (EHEHPA, or
P507) as a carrier in supported liquid membranes [125]; this included Dy, Ga, and Nd using
Cyanex 572 (organophosphorus-based extractant) as a carrier in emulsion liquid mem-
brane [126,127]; 2-thenoyltrifluoroacetone as a carrier in Y extraction [128]; and 2-ethylhexyl
phosphonic acid mono-2-ethylhexyl ester as a carrier for Y and Eu separation [129].

Membrane technology is an important alternative for Li extraction from different
sources. From primary sources, the main challenge to be overcome is the selective sep-
aration from alkali and alkaline earth metals, including Na, K, Ca, and Mg. Electro-
membrane extraction using a membrane supported with D2EHPA, TBP, heptafluoro-
dimethyloctanedione (HFDOD), and tri-n-octylphosphine oxide (TOPO) [130,131], a poly-
mer inclusion membrane supported with ionic liquids [132,133], metal–organic frame-
works [134], and graphene oxide membranes [135] have been studied, and the results
demonstrated a high separation rate. Electrodialysis has been demonstrated to be an
important technique for Li separation from battery recycling, as monovalent membranes
can separate up to 99.4% of Li without Co [136]. In the literature review, the interest in
developing new membranes to support acid and solvent solutions was observed, which is
important for designing hydrometallurgical processes [137].

Regarding the sources discussed in the present manuscript (Sections 4.2–4.5), increased
interest was observed in obtaining critical metals from secondary sources (such as AMD,
industrial wastes, and e-waste recycling). Moreover, the Li demand puts pressure on its
extraction from primary sources, which includes brines. Therefore, the present review estab-
lished a strong connection between the use of membrane technologies and the promotion
of a circular economy.
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5. Conclusions

The present study aimed at a literature review of membrane technology applications
for separating critical metals. It focused on Li, Co, and rare earth elements (Sc, Y, La, and
Nd) due to their growing demand for net zero technologies and their risk in the short and
medium-term supply chain. The bibliometric analysis demonstrated a high link between
critical metals and membrane separation. Among the most traditional technologies were
microfiltration, ultrafiltration, nanofiltration, and electrodialysis. Studies about reverse
osmosis were not found to separate critical metals since this technique is mainly applied to
obtain high-pure water. Compared to nanofiltration, reverse osmosis requires more energy,
and in hydrometallurgical processes, the main goal is to obtain metal or acid recovery.
Despite these traditional techniques, new membranes are being developed to improve
selectivity, including supported liquid membranes and polymer inclusion membranes.
Both techniques combine the high selectivity of the solvent extraction technique with a
smaller area and a smaller volume, but future developments are necessary to achieve a
pilot and industrial scale. This review of the literature demonstrates the development of
membrane technology and the potential to obtain critical metals from several sources. This
work acknowledges the potential use of several types of membranes to obtain metals from
primary and secondary sources, AMD, industrial wastes, recycling of e-wastes, and brines.
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