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Abstract: The Pinghu Formation is a low permeability sandstone reservoir in the KQT Region, East
China Sea. Its porosity ranges from 3.6 to 18.0%, and permeability is distributed from 0.5 to 251.19 mD.
The relationship between porosity and permeability was poor due to strong heterogeneity. This led
to the difficulty of quantitatively evaluating effective reservoirs and identifying pore fluids by using
common methods. In this study, to effectively evaluate low permeability sandstones in the Pinghu
Formation of KQT Region, pore structure was first characterized from nuclear magnetic resonance
(NMR) logging based on piecewise function calibration (PFC) method. Effective formation classifi-
cation criteria were established to indicate the “sweet spot”. Afterwards, several effective methods
were proposed to calculate formation of petrophysical parameters, e.g., porosity, permeability, water
saturation (Sw), irreducible water saturation (Swirr). Finally, two techniques, established based on the
crossplots of mean value of apparent formation water resistivity (Rwam) versus variance of apparent
formation water resistivity (Rwav)—Sw versus Swirr—were adopted to distinguish hydrocarbon-
bearing formations from water saturated layers. Field applications in two different regions illustrated
that the established methods and techniques were widely applicable. Computed petrophysical
parameters matched well with core-derived results, and pore fluids were obviously identified. These
methods were valuable in improving low permeability sandstone reservoirs characterization.

Keywords: low permeability; sandstone reservoirs; pore structure; fluid identification; formation
classification

1. Introduction

With the development of oil and gas exploration techniques, exploration targets have
transformed from original high-amplitude structure and simple lithologic reservoirs to low-
amplitude, low permeability of tight sandstone reservoirs [1,2]. Tight reservoirs became
the main battlefield to ensure oil and gas resources supplements [2]. Low permeability to
tight sandstone reservoirs accounted for more than 60% of the newly added oil reserves in
recent decades in China [3].

The Pinghu Formation in KQT Region, East China Sea, belonged to typical low perme-
ability sandstone reservoirs. It exhibited characteristically high detritus and clay contents,
complicated carbonate cements, and mesopores to small pores. Tubular and sheet-like
throats dominated the structure [4,5]. It was difficult to quantitatively identify and evaluate
such types of reservoirs with common methods [6]. The traditional rock volume model,
which was used to calculate formation parameters from well logging data, was poorly
adaptable for this purpose. The reasons can be summarized into four aspects: First, matrix
parameters to calculate porosity were difficult to acquire due to complicated lithologic
type and composition. Second, the relationship between porosity and permeability was
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poor due to complicated pore structure and strong heterogeneity; permeability cannot
be calculated from porosity based on current methods because they were established in
formations with relatively simple pore structures [7,8]. Third, Archie’s equation, which
was valuable in conventional reservoirs, cannot express electrical conductivity in low
permeability sandstones. Relationships between porosity versus formation factor, water
saturation and resistivity index are not a simple power function, and fixed cementation
exponent m and saturation exponent n cannot be acquired. Fourth, pore fluids cannot be
easily identified by using single resistivity or porosity due to a slight contribution to the
logging response. Physical properties differences between oil-bearing reservoirs and water
saturated layers are not obvious.

Porosity calculations are as mainly determined by density, neutron and interval transit
time, and many models have been proposed [9–12]. In low permeability gas-bearing
reservoirs, the geophysical well logging response is affected by many factors, e.g., lithology,
pore size and pore fluids. Thus, current models cannot be directly used in our target
formations before formation properties are firstly assessed. Permeability calculation always
face great challenges in low permeability reservoirs due to complicated pore structure and
strong heterogeneity, leading to a weak relationship between porosity (ϕ) and permeability
(K) (Figure 1) [13,14]. Generally, multiple regression statistical methods or hydraulic flow
unit (HFU) approaches are ere used to calculate permeability [15–17]. In addition, models
of calculating permeability based on nuclear magnetic resonance (NMR), dipole shear wave,
resistivity image logging, fractal theory and neural networks have also been established.
Good results have been acquired under certain conditions. The wide applicability of these
models was not verified [18–22].
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Figure 1. Relationship between core-derived porosity (ϕ) and permeability (K) in the Pinghu For-
mation of KQT Region, East China Sea. Relationship between these two parameters are poor. This
makes it impossible to accurately calculate permeability from porosity.

In conventional reservoirs, water saturation can be calculated from resistivity and
porosity well. The calculation is based on Archie’s equation and uses the fixed cemen-
tation exponent m and saturation exponent n [23–26]. However, m and n are divergent
in low permeability and tight sandstone reservoirs due to complicated pore structures
(Figure 2a,b). To accurately calculate water saturation, many valuable models have been
proposed. The Waxman–Smits model and the dual water model, which consider addi-
tional conductivity caused by clay minerals, were raised to calculate water saturation in
shaly sand reservoirs [27–30]. Givens (1987) and Givens and Schmidt (1988) proposed
a conductive rock matrix model (CRMM) to calculate water saturation after introducing
additional conductivity of matrix [31,32]. In addition, some empirical equations, such as
Simandoux’s equation, Indonesia saturation equation and Nigerian saturation formula,
were also raised to introduce the effect of shaly to conductivity [33,34]. These models and
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equations were all established based on the contribution of shaly or clay to additional
conductivity: the impact of pore structure was ignored. In low permeability and tight
reservoirs, no specific water saturation calculation equation was available, and Archie’s
equation was still used [35]. This made greatly decreased the accuracy of the water satu-
ration calculation. Many scholars proposed models to optimize the involved parameters
in Archie’s equation [36–41]. Mao et al. (2000) and Li et al. (2012) proposed a theoretical
model to calculate various cementation exponents from porosity [36,37]. Xiao et al. (2013)
used parameters: percentage of macropore and small pore components to characterize low
permeability sandstones pore structures. They introduced an optimal saturation exponent
calculation model [38]. In addition, Arifianto et al. (2018) pointed out that formations
can be classified into several types, and respective values of m and n should be used to
improve water saturation [42]. These methods were established based on resistivity and
NMR experiments of core samples; plenty of data should be first acquired. These data are
available only in exploration wells where abundant well logging occurs and experimental
data can be acquired. However, in development wells, especially in offshore wells, the
limitation of data acquisition reduces their applicability.
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Figure 2. Relationship between porosity versus formation factor (a) and water saturation versus
resistivity index (b) in the Pinghu Formation of KQT Region, East China Sea. Divergent relations
among these parameters led to low water saturation calculation accuracy based on the traditional
Archie equation.

Pore structure characterization is of great importance in improving low permeability
to tight sandstone formation evaluation [43]. Generally, the mercury injection capillary
pressure (MICP) curve was optimal in characterizing pore structure [44,45]. By using MICP
curves, formations can be classified into several types. The best type always corresponds to
the highest quality and, thus, good hydrocarbon production [46]. However, formation pore
structure cannot be consecutively characterized due to limitation of quantity that is caused
by environmental and economic factors [47]. Nuclear magnetic resonance (NMR) logging
has unique advantages in consecutively evaluating formation pore structures [48,49]. The
common method to evaluate pore structure was to synthetize capillary pressure curves (Pc)
from NMR logging; several techniques have been raised in the last 12 years [20,43,47,50–52].
Volokitin and Looyestijn (2001) and Looyestijn (2001) proposed a linear scale function to
transform the NMR T2 distribution as a pseudo-Pc curve to characterize formation pore
structure [43,50]. This function was verified to be available in conventional formation with
a high quality. However, in low permeability sandstone reservoirs, pore structure was
overestimated [20]. Although Xiao et al. (2016) raised an alternative method to construct
pseudo-Pc curve form NMR logging based on formation classification, it had regional
limitations [20]. In different regions or for different types of formation, the classification
criteria were varied, meaning that it cannot be widely used.
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The purpose of this paper was to reach several objectives: (i) characterizing low per-
meability sandstone reservoirs pore structure from NMR logging based on the improved
model; (ii) establishing several effective models to calculate formation petrophysical param-
eters; (iii) raising the criteria to distinguish low resistivity contrast hydrocarbon-bearing
reservoirs from water saturated layers by using geophysical well logging data. Good
consistency between calculated results with core-derived results illustrated the reliability
of the proposed models. This would be very valuable in improving characterization of our
target: low permeability sandstone reservoirs.

2. Geological Setting

Xihu Sag is located in northeastern East China, in the Sea Shelf Basin. From west
to east, Xihu Sag was divided into three structural sub-units: the western slope belt, the
central inversion belt and the eastern fault belt (Figure 3). The Pinghu slope belt is located
in the middle of the western slope belt, and it can be further sub-divided into four regions
from south to north: the Pinghu, Baoyunting, Wuyunting and KQT Regions. The KQT
Region is located in the nose-shaped uplift belt. In the Paleocene–Eocene rifting period, the
KQT Region developed contemporaneous faults and structural traps and became the group
of fault blocks that had fallen steadily along the trend. The main oil and gas producing
layers were Eocene Pinghu Formation [53]. The sedimentary period of the Eocene Pinghu
Formation was in a warm and humid climate and in a freshwater environment. The tidal
river-controlled delta facies were mainly developed, and two sedimentary models occurred:
In the period of low water levels, the sediment was mainly in the river-controlled delta. In
the period of transgression, the salinity of the water body increased, and the tides had a
certain influence on sediment distribution [54].
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3. Reservoir Petrophysical Characteristics

Mineral composition, grain cementation and arrangement determine reservoir quality,
as well as porosity and permeability [56]. Petrophysical characteristics are the basis that
determine reservoir diagenesis, pore structure and physical properties. Thin slices of
analysis data acquired from 134 core samples in our target formation illustrated that
the lithology was mainly composed of feldspar lithic sandstone (Figure 4a). The main
composition of debris was metamorphic rocks (9.15%), and the interstitials were dolomite
(2.28%) and kaolinite (2.12%) (Figure 4b,c). Formation porosity ranged from 3.6 to 18.0%,
and the average porosity was 12.53%. Permeability was distributed from 0.50 to 251.19 mD,
and the average permeability was only 7.86 mD (Figure 5). Meanwhile, two interval
distributions of permeability revealed complicated pore structures. This resulted in a
disordered relationship between porosity and permeability (Figure 1).
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Figure 5. Histograms of core-derived porosity (a) and permeability (b) in Pinghu Formation of KQT
Region, East China Sea.

4. Method of Pore Structure Characterization and Evaluation
4.1. Formation Pore Structure

To quantize formation pore structure, 34 core samples were recovered from Pinghu
Formation and applied in mercury injection capillary pressure (MICP) experiments. The
measured MICP and corresponded J function curves are displayed separately in Figure 6a,b.
During the MICP experiment, the used maximal mercury injection pressure reached
182.04 MPa: this ensured that the whole pore throat size was well exhibited. The threshold
pressure of the Pinghu Formation ranged from 0.03 to 1.0 MPa; the maximal pore throat ra-
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dius was distributed from 0.15 to 33.78 µm; the median pore throat radius was distributed
from 0.015 to 13.07 µm; and the pore structure dominated permeability (Figure 7). To
effectively indicate high-quality reservoirs, precisely calculate formation permeability and
predict deliverability, formation pore structure should first be characterized.
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Figure 6. MICP and corresponding J function curves acquired from 34 core samples. These core
samples were drilled from the Pinghu Formation in KQT Region, East China Sea. In this figure, Pc

represents mercury injection pressure in MPa and SHg represents for mercury injection saturation
under every mercury injection pressure in %. J function can be used to express the pore structure and
formation type after the effect of physical properties of rock was removed. The shape and position
of MICP and J function curves were reflected in rock pore structure. The MICP curve located in
the bottom once rock pore structure was good, because mercury can be easily injected into the pore
space under the same Pc. On the contrary, MICP curve located in the top for rock contains poor
pore structure.
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Figure 7. Relationships between median pore throat radius (R50) versus permeability (a) and maximal
pore throat radius (Rmax) and permeability (b). These two figures indicate that pore structure was
the main factor that controlled permeability in the Pinghu Formation. With the increased of R50 and
Rmax (reflecting formation pore structure), formation permeability increased.

In this study, we improved the pore structure characterization method that was raised
by Xiao et al. (2016). Based on NMR and MICP experimental data of 34 core samples,
we established the transformation model between T2 time and Pc based on the piecewise
function calibration (PFC) method [20]. By using the PFC method, NMR T2 distributions
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were transformed as pseudo-Pc curves. Then, low permeability sandstone reservoirs pore
structure was characterized in Pinghu Formation.

4.2. Theory of Characterizing Pore Structure Based on NMR Logging

Based on NMR theory, NMR T2 relaxation time of a water-wettable rock is dominated
by surface relaxation and bulk relaxation; diffusion relaxation can be ignored due to
negligible contribution [57]:

1
T2

= ρ2

(
S
V

)
por

= FS
ρ2

rpor
(1)

where ρ2 is the surface relaxation rate; S is the pore surface area in µm2; V is the pore
volume in µm3; subscript por stands for rock pore size; rpor is the pore radius in micrometer;
and Fs is the pore shape geometric factor. Its value is constant once pore shape is assumed
as regular.

In an air–mercury fluid system, the relationship between capillary pressure and pore
throat size can be expressed:

Pc =
0.735

Rc
(2)

where Pc is the capillary pressure in MPa; Rc is the pore throat radius in µm.
Xiao et al. (2016) reported that the relationship between pore size and pore throat

radius can be expressed as a power function [20]:

rpor = p× (Rc)
q (3)

where p and q are the proportionality coefficients that connect pore size with pore throat radius.
Combined with Equations (1)–(3), a derivative formula that connects pore throat

radius with T2 relaxation time can be expressed:

p× (
0.735

Pc
)q ≈ ρ2 × T2 × FS (4)

Then,

Pc = C× (
1
T2

)

1
q

(5)

where,

C = 0.735× pq × (
1

Fs × ρ2
)

1
q

(6)

Once p and q were first calibrated, C can be determined. By using Equation (5), the
Pc value can be acquired from NMR logging. If we normalize NMR T2 amplitudes and
reversely accumulate them based on the principle displayed in Figure 8, a pseudo-Pc curve
can be constructed from NMR data.

4.3. Constructing Pseudo-Pc Curves from NMR Logging Based on Formation Classification

Our target low permeability sandstone reservoirs were strongly heterogeneous. To
make the extracted Pc curves from NMR logging reliable, the PFC method was used. This
method covered several procedures:

First, a certain number of core samples was chosen to simultaneously apply for NMR
and MICP experiments. NMR T2 distributions and MICP curves were collected as the basic
dataset. In the Pinghu formation of KQT Region, 34 core samples were recovered.

Second, core samples were classified into several types based on physical properties.
MICP curves and NMR T2 distributions were also classified by using the same criterion. In
this study, 34 core samples were classified into three types. The classification criteria are
listed in Table 1.
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Table 1. Establishment of rocks classification criteria based on MICP curves and physical properties
in the Pinghu Formation of KQT Region.

Rock
Type

Porosity
(%)

Permeability
(mD)

Median
Pore Throat
Radius (µm)

Median
Pressure

(MPa)

Maximum
Pore Throat
Radius (µm)

R35 (µm)
Threshold
Pressure

(MPa)

MICP Curve
Morphology

I 11.3~16.4 15.4~402.0 1.02~14.57 0.05~0.72 9.51~33.78 2.82~19.69 0.02~0.08
Demarcation of large
and small pore throat

is obvious

II 10.0~18.9 1.41~8.14 0.44~1.48 0.50~1.67 1.36~6.99 0.78~2.18 0.07~0.49
Demarcation of large
and small pore throat

is obvious

III 7.9~10.0 0.16~0.44 0.11~0.48 1.53~6.79 0.49~1.45 0.22~0.73 0.25~1.67
Demarcation of large
and small pore throat

isn’t obvious

Third, MICP curves for every type of core sample were processed. Three average
MICP curves were obtained. These three MICP curves represented the pore structure of our
target low permeability sandstones. Three types of MICP curves and the corresponding
three average MICP curves are displayed in Figure 9.

Fourth, NMR T2 spectra were processed by using the same criteria used to obtain three
average NMR T2 distributions. These three average NMR T2 distributions are reversibly
accumulated and normalized to extract NMR inverse accumulative curves (Figure 10).

Fifth, the transformation model between T2 relaxation time and Pc is established for
every type of core sample based on the principle illustrated in Equation (5). It should be
noted that the used parameters in the transformation model were different in large pore
throats and small pore throats for the same type of core sample. These transformation
models were expressed as Equations (7) and (8).

Large pore throat:

Pc = Cl × (
1
T2

)

1
nl (7)

Small pore throat:

Pc = Cs × (
1
T2

)

1
ns

(8)

where Cl and nl are the parameters involved to transform T2 time as a Pc in the large pore
throat; Cs and ns are the involved parameters to transform T2 time as a Pc value in the small
pore throat.
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Figure 9. MICP curves of three types of core samples (a–c) and the average MICP curves (d) in the
Pinghu Formation. Each color in a-c represents a capillary pressure curve that belongs to different
formation types. These figures indicated that the first type of formation was dominant in our
target formation.
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Figure 10. Inverse accumulative curves of three types of core samples (a–c) and the average inverse
accumulative curves (d) in the Pinghu Formation.
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In Figure 11, we exhibited the crossplots of porosity versus permeability and porosity
versus R50 for three types of core samples. Obviously, three types of core samples contained
differentiated physical characteristics. From the third to the first type of core sample, with
the increase of porosity, the corresponding permeability and median pore throat radius also
increase; they were clearly separated. This verified the reliability of the listed formation
classification criteria in Table 1. Through Figures 9–11, we could notably conclude the
difference among these types of formations. The first type of formation contained the best
pore structure: it had the lowest threshold pressure and highest median pore throat radius.
The corresponding permeability was also high. Potential hydrocarbon productivity of this
type of formation was enormous. Pore structure of the second type of formation closely
followed. Formation physical property parameters were moderate, and medium to poor
pay zone developed. Pore structure and production capacity of the third type of formation
were the worst. No effective pay zone can be extracted from such a type of formation.
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Figure 11. Crossplots of porosity versus permeability (a) and porosity versus R50 (b) for three types
of core samples in Pinghu Formation.

By combining with Figures 9 and 10, models of constructing pseudo-Pc curves from
NMR data were established and displayed in Figure 12. Good power functions existed
in two parts for every type of core sample. Once these models were extended into field
applications, pseudo-Pc curves can be consecutively synthesized, and they can be used to
replace MICP curves to characterize formation pore structure.
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Figure 12. Models of transforming NMR T2 distribution as pseudo-Pc curves based on PFC method.

5. Estimation of Reservoir Petrophysical Parameters
5.1. Porosity Calculation

In gas-bearing formations, porosity cannot be precisely calculated from a single well
logging curve due to the excavation effect [58]. Meanwhile, the effect of rock matrix to
well logging responses cannot be ignored in low permeability sandstone reservoirs. In the
Pinghu Formation, a triangular chart, established based on density and neutron porosities,
was used to calculate formation porosity.
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The principle of calculating porosity based on triangular chart is shown in Figure 13a.
In this method, determining clay point is the key (point B in Figure 13a). Generally, it is
determined by using a crossplot of density and neutron (Figure 13b). Afterwards, Equations
(9)–(12) were used to calculate density porosity, neutron porosity, clay density porosity and
clay neutron porosity, respectively.

ϕD =
ρb − ρma

ρ f − ρma
(9)

ϕN = CNL + 0.015 (10)

ϕDclay =
ρclay − ρma

ρ f − ρma
(11)

ϕNclay = CNLclay + 0.015 (12)

where ϕD is the porosity calculated from density logging in fraction; ϕN is the porosity
calculated from neutron logging in fraction; ϕDclay is the porosity calculated from density
logging in clay point in fraction; ϕNclay is the porosity calculated from neutron logging in
clay point in fraction; ρb is the bulk density, ρclay is the bulk density in clay point; ρma and
ρf are the bulk density of rock matrix and pore fluid, respectively. The units are is g/cm3;
CNL is the neutron logging value; and CNLclay is the neutron logging value in clay point;
the unit is v/v.
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Combining with ϕD, ϕN, ϕDclay and ϕNclay, low permeability sandstone reservoir
porosity was calculated based on the triangular chart:

ϕND =

∣∣∣ϕN × ϕDclay − ϕD × ϕNclay

∣∣∣∣∣∣ϕDclay − ϕNclay

∣∣∣ (13)

where ϕND is the true formation porosity calculated from density and neutron logging in
gas-bearing reservoirs.

Meanwhile, the shale content can also be incidentally calculated:

Vsh =
ϕD − ϕN

ϕDclay − ϕNclay
(14)

where Vsh is the shale content in v/v.
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5.2. Permeability Calculation

Xiao et al. (2021) pointed out that permeability can be calculated after formation pore
structure was first characterized. Several models have been raised [35]. In this study, we
attempted to analyze the relationships among permeability, porosity and pore structure
parameters based on 34 core samples. Finally, we found that the highest frequency of
the pore throat radius statistical histogram was associated with 50% mercury injection
saturation (Figure 14). This meant that the biggest contribution to permeability was the
median pore throat radius R50 (pore throat radius corresponded to 50% mercury satura-
tion) [59,60]. Hence, R50 was extracted from 34 core samples, and a model of calculating
permeability from Pc curve was established (Figure 15). In this figure, the comprehensive
physical property index was defined as the square root of the ratio of permeability and
porosity (

√
K/ϕ). Compared with Figure 1, permeability calculation accuracy was improved

greatly. Combining with Figures 12 and 15, formation permeability can be calculated well
after pore structure was first characterized in the intervals in which field NMR logging was
acquired. The permeability prediction model based on R50 is expressed:

K =
(

0.557× R500.7985
)2
× ϕ = 0.31× R501.597 × ϕ (15)
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Figure 14. MICP curve and pore throat radius distribution for a representative core sample. This
figure illustrated that the highest frequency of pore throat radius statistical histogram corresponded
to 50% mercury injection saturation. This indicated that R50 was the main factor that controlled rock
permeability in the Pinghu Formation.
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Figure 15. Crossplot of median pore throat radius (R50) and comprehensive physical property index
for 34 core samples. Permeability could be precisely calculated after formation pore structure was
first characterized.



Processes 2023, 11, 1030 13 of 25

5.3. Water saturation Evaluation

In low permeability sandstone reservoirs with strong heterogeneity, no valid model
has been proposed. Archie’s equation was still used to calculate water saturation
(Equations (16)–(18)) [61,62]. To improve low permeability sandstone water saturation
estimation, optimizing the involved rock resistivity parameters (cementation exponent m
and saturation exponent n) was an effective approach [38].

F =
R0

Rw
=

a
ϕm (16)

I =
Rt

R0
=

b
Sn

w
(17)

Then

Sw = n

√
a× b× Rw

ϕm × Rt
(18)

where ϕ is the porosity in v/v; R0 is the rock resistivity with fully water saturation; Rt is the
rock resistivity with hydrocarbon saturated; and Rw is the formation water resistivity. The
unit of the parameters is Ω.m. Sw is the water saturation in v/v. F is the formation factor. I
is the resistivity index, m is the cementation exponent, n is the saturation exponent, a and b
are the coefficient that associated with lithology. a, b, m and n are collectively referred to as
rock resistivity parameters.

5.4. Optimization of Cementation Exponent

Figure 2a illustrated that the relationship between porosity and formation factor was
not a simple power function, especially in core samples with porosity lower than 8.0%. If
we took the logarithm of porosity and formation factor and put log10(ϕ) and log10(F) in a
linear coordinate, the relationship between porosity and formation factor can be expressed
by a quadratic function:

log10(F) = x× log2
10(ϕ) + y× log10(ϕ) + z (19)

where x, y and z are the undetermined coefficients.
Considering the boundary condition that the trendline of log10(ϕ) versus log10(F)

should pass (0.0), the value of z was defined as 0.0.
Combined with Equations (16) and (19), the value of a was found to be 1.0. m can be

calculated from porosity using the following equation:

m = x× log10(ϕ) + y (20)

Afterwards
F =

1
ϕx×log10(ϕ)+y

(21)

By using the mentioned method in Equation (21), measured data displayed in Figure 2a
were reprocessed. A model of calculating cementation exponent from porosity in the Pinghu
Formation was acquired in Equation (22). A novel relationship between porosity and for-
mation factor was displayed in Figure 16. Compared with Figure 2a, dependency between
these two parameters greatly improved. Meanwhile, various cementation exponents, but
not a fixed value, can be extracted to calculate water saturation.

m = 0.358× log10(ϕ) + 1.95 (22)
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Figure 16. Novel relationship between porosity and formation factor in low permeability sandstones
in Pinghu Formation. This figure illustrated that the relationship between porosity versus formation
factor was well expressed by using various cementation exponent, especially for rocks with porosity
lower than 8.0%. If we directly used Archie’s equation, cementation exponent would be overestimated
and water saturation should be underestimated.

5.5. Extraction of Saturation Exponent Based on Formation Classification

To acquire accurate saturation exponents, core samples displayed in Figure 2b were
classified into three types by using the criteria listed in Table 1. For each type of core sample,
the relationship between water saturation and resistivity index was established. The results
are shown in Figure 17. From the first to the third type of rock, the saturation exponent
increased. This meant that saturation exponent increased with deterioration of formation
pore structure. After core samples were classified into three types, the correlation between
water saturation and resistivity index improved greatly. Precise saturation exponents can
be obtained.
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Figure 17. Improved relationships between water saturation versus resistivity index in low per-
meability sandstones in the Pinghu Formation. This figure illustrated that saturation exponent is
heavily affected by pore structure. From the first to third type of rocks (green dots, yellow trian-
gles and gray diamonds, respectively), saturation exponents were gradually increasing due to pore
structure declining.
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5.6. Estimation of Irreducible Water Saturation (Swirr)

Irreducible water saturation (Swirr) is an important parameter in evaluation of low
permeability sandstone reservoirs and identification of pore fluids, because high Swirr is a
key factor that causes contrast of low resistivity in such type of reservoirs [3]. Generally,
Swirr is calculated from NMR logging by using a T2cutoff. However, since a reasonable
T2cutoff cannot be consecutively acquired in a whole well, a fixed T2cutoff of 33 millisecond
(ms) was always used [63]. In the Pinghu Formation, the experimental values of T2cutoffs
were divergent (Figure 18). It was difficult to calculate Swirr based on the method related to
the T2cutoff. To establish a model to calculate Swirr, relationships among Swirr with other
formation parameters were analyzed. Finally, we found that Swirr was heavily associated
with comprehensive physical property index (Figure 19). Hence, Swirr can be calculated
once porosity and permeability were available, even if no NMR logging data were acquired.
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Figure 18. Experimental NMR T2cutoffs of core samples in the Pinghu Formation. The measured
T2cutoffs were not a fixed value; this resulted in the difficulty of the Swirr calculation.
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ability sandstones in the Pinghu Formation. With the formation pore structure becoming better, the
corresponding Swirr decreased.
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6. Identification of Pore Fluids Based on Geophysical Well Logging
6.1. Identifying Pore Fluids Based on Apparent Formation Water Resistivity

Generally, pore fluids are always identified based on resistivity and many crossplots,
e.g., the crossplot of porosity versus resistivity, and water saturation versus resistivity, were
raised [64]. However, resistivity cannot be directly used to identify pore fluids due to a
contrast of low resistivity in low permeability sandstones [55]. In this study, we raised a
method, named the improved apparent formation water resistivity, to identify pore fluids.

For rocks fully saturated with water, the relationship among R0, Rw and porosity
is expressed in Equation (16). Combined with Equations (16) and (20) and after some
transformation, a derivative equation can be written as

Rw = R0 × ϕx×log10(ϕ)+y (23)

If we displace R0 by Rt in Equation (23), formation water resistivity can still be
calculated. However, it was not true formation water resistivity. Thus, we named it as
apparent formation water resistivity and defined it as Rwa:

Rwa = Rt × ϕx×log10(ϕ)+y (24)

where Rwa is the apparent formation water resistivity in Ω.m.
Generally, Rwa is equal to Rw in water saturated layers, because measured Rt was

equal to R0. However, in hydrocarbon-bearing reservoirs, Rt deviated from R0 and its
value varied due to the effects of many factors. These factors included porosity, content
of saturated hydrocarbon, pore structures, and so on. Thus, the calculated Rwa was not a
fixed value in a whole interval, but rather, fluctuated around a certain value as a normal
distribution. In hydrocarbon-bearing reservoirs, the distribution range of Rwa was wide.
On the contrary, Rwa was narrowly distributed in water saturated layers. The distribution
range was situated between these two in hydrocarbon and water formation (Figure 20a,c).
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Figure 20. Distributions of Rwa in formation with different pore fluids. Based on the morphology
of Rwa distribution, pore fluids can be qualitatively identified. Hydrocarbon-bearing reservoirs
contained wide Rwa distribution (a), Rwa distribution of water saturated layers was narrow (b).
Hydrocarbon and water formation is situated between these two (c).

To quantitatively identify pore fluids by using Rwa distribution, we extracted two
parameters: Rwa mean value and Rwa variance. These two parameters, respectively, rep-
resented the position and width of Rwa distribution in an interval and are expressed
as follows:

Rwam =
∑k

i=1 Rwa(i)× amp(i)

∑k
i=1 amp(i)

(25)

Rwav =

√√√√∑k
i=1 amp(i)× (Rwa(i)− Rwam)

2

∑k
i=1 amp(i)

(26)

where Rwam is the mean value of apparent formation water resistivity, Rwav is the variance
of apparent formation water resistivity, Rwa(i) is the ith Rwa, and the unit of them is Ω.m.
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Amp(i) is the amplitude that corresponds to Rwa(i), k is the number of calculated Rwa in a
whole interval.

By using Equations (25) and (26), we processed 11 intervals that contained drill
stem test (DST) data in the Pinghu Formation in the KQT Region. Rwam and Rwav were,
respectively, calculated. We found that the crossplot of these two parameters was very
effective in distinguishing hydrocarbon-bearing reservoirs from water saturated layers
(Figure 21). This figure indicated that hydrocarbon-bearing reservoirs always contain high
Rwam and Rwav, whereas values of these two parameters were low in water saturated layers.
Criteria of identifying pore fluids based on Rwam and Rwav are listed in Table 2.
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Figure 21. Identification of pore fluids based on crossplot of mean value of apparent formation water
resistivity (Rwm) and variance of apparent formation water resistivity (Rwv).

Table 2. Criteria of identifying pore fluids based on two methods raised in this study.

Pore Fluid Rwam (Ω.m) Rwav (Ω.m) Sw (%) Swf (%)

Hydrocarbon-bearing formation Greater than 0.80 Greater than 0.05 Less than 60.00 Less than 27.00
Hydrocarbon and water formation 0.69~0.80 Lower than 0.05 60.00~70.50 27.00~60.00

Water saturated layer Lower than 0.69 Lower than 0.05 Greater than 70.50 Greater than 60.00

6.2. Identifying Pore Fluids Based on Sw and Swirr

In addition to above-mentioned method, we also proposed the second method, named
the overlapping method of Sw and Swirr, to identify pore fluids. In hydrocarbon-bearing
reservoirs, hydrocarbon occupies the big pore space; irreducible water is adsorbed on
the pore surface and occupies in the small pore space; and there was no movable water.
Hence, Swirr was infinitely close to Sw. On the contrary, besides irreducible water, abundant
movable water was present in water saturated layers. Hence, we raised a parameter of free
water saturation (Swf), which was defined as the difference of Sw and Swirr, to characterize
movable water content. We established a crossplot of Sw versus Swf to indicate pore fluids
(Figure 22). Based on this crossplot, we raised the criteria of identifying pore fluids and
listed them in Table 2.
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Figure 22. Identification of pore fluids based on crossplot of Sw and movable water saturation (Swf)
in the Pinghu Formation.

7. Field Applications

Based on the proposed technique and models, five wells in the KQT Region were pro-
cessed. Figure 23 displays a field example of processing and interpreting low permeability
sandstone reservoirs based on conventional and NMR logging data. In the first track, we
displayed the natural gamma ray (GR), spontaneous potential (SPSD) and caliper (CAL)
curves; they were used to identify effective sandstone formations. Bulk density (DEN),
neutron (CNL) and interval transit time (DT) were displayed in the second track; they were
usable in porosity calculation. Deep laterolog (RD) and shallow laterolog (RS) resistivities
were exhibited in the third track, and they reflected formation electrical properties. In the
fourth track, AMP_DIST was NMR T2 spectrum, which was acquired from Halliburton’s
MRIL-Prime tool. In the fifth track, we compared constructed pseudo-Pc curves (PC_DIST
exhibited as variable density) and measured laboratory capillary pressure curves of core
samples (red line). It should be noted that the exhibited pseudo-Pc curves and experimental
capillary pressures had been transformed from an air–mercury system to an oil–water
system to make them much reasonable in reflecting in-suit formation pore structure. The
transformation formula is expressed as Equation (27).

(Pc)w_o = (Pc)air_Hg ×
σw_ocosθw_o

σair_Hgcosθair_Hg
(27)

where (Pc)w_o and (Pc)air_Hg are, respectively, the capillary pressure in water–oil and air–
mercury systems in MPa. σw_o and σair_Hg are the surface tension between two phases of
fluids in water-oil and air-mercury systems in dyn/cm, respectively, whereas θw_o and
θair_Hg are the contact angles between the two phases of fluids in (O).

Good consistency of constructed pseudo-Pc curves and experimental results in labora-
tory indicated the reliability of characterizing pore structure by using synthesized Pc curves.
RC_DIST displayed in the sixth track was pore throat radius distribution extracted from
the pseudo-Pc curve. In the seventh and eighth tracks, we compared calculated porosity
(PHIT) and permeability (PERM) with core-derived results. Meanwhile, median pore throat
radius (R50) and maximal pore throat radius (RMAX), extracted from pseudo-Pc curves,
were compared with core-derived results in the ninth and tenth tracks. Good consistency
between calculated parameters by using the proposed technique and core-derived results
illustrated the value of raised methods. In the last track, we compared water saturation
calculated by using the improved Archie’s equation (SWC) and irreducible water saturation
(SWIRR). Combined with constructed Pc curves, pore throat radius distribution and pore
structure parameters, we can conclude that the intervals of ×187.00 to ×202.50 m and
×231.30 to ×248.60 m were high-quality formations with good pore structure and superior
pore throat connectivity. Meanwhile, overlapping of SWC and SWIRR illustrated that
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the upper formation contained ultra-low water saturation, and no movable water existed.
Hence, this interval was identified as hydrocarbon-bearing reservoirs. However, although
the interval of ×231.30 to ×248.60 m contained relatively high resistivity and good pore
structure, SWC and SWIRR curves were separated, and SWC was higher than 60.0%. This
meant that the pore spaces contained plenty of movable water; it was considered as a
pure water saturated layer. In these two intervals, Rwam and Rwav also indicated that
the pore fluid of the upper layer was hydrocarbon, whereas the lower formation was
water (Figure 24). These interpretation results were verified by DST data. The DST data,
which were acquired from the interval of ×186.7 to ×202.4 m, indicated that approximated
338.5 bbl of oil and 22.87 × 104 m3 of gas were produced per day with no water. However,
in the interval of×231.70 to×244.00 m, approximately 48.15 m3 of water was produced per
day. This verified the reliability of the proposed methods. If we only observed resistivity
curves, this interval was easily misjudged as a hydrocarbon-bearing reservoir.
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Figure 23. A field example of characterizing formation pore structure, calculating formation pa-
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raised techniques, the upper layer was identified as a hydrocarbon-bearing formation, and the lower
interval was a water saturated layer. If we only used resistivity curves, the lower formation would
be misidentified.
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Figure 24. Pore fluids identification results of two intervals in a well displayed in Figure 23.
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8. Extensive Application

To further evaluate the applicability of the proposed methods, they were applied in
HG Formation of NB Region, East China Sea to characterize formation pore structure and
identify pore fluids. The difference was that HG Formation was divided into four categories
to calibrate involved model parameters in Equations (7) and (8) because the pore structure
of Huagang Member was very complicated. Figure 25 exhibits models of transforming
NMR T2 distribution as pseudo-Pc curves for four types of formations. Good relations
still exist for every type of formation. This ensures that formation pore structure can be
characterized well. Afterwards, formation porosity, permeability, water saturation (Sw)
and irreducible water saturation (Swirr) can also be calculated.
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Figure 25. Models of transforming NMR T2 distribution as pseudo-Pc curves based on PFC method
in HG Formation of NB Region, East China Sea.

In addition, we also established standards to identify hydrocarbon-bearing reservoirs
based on apparent formation water resistivity and two water saturation overlap methods.
Crossplots of Rwam and Rwav and Sw versus Swf were raised and shown in Figure 26a,b,
separately. High compliance demonstrated the superiority of the proposed method.
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Figure 26. Crossplots of Rwam versus Rwav (a) and Sw versus Swf (b) that used to identify pore fluids
in HG Formation of NB Region, East China Sea.
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In Figure 27, we exhibited a field example of characterizing formation pore structure
and identifying pore fluids in the HG Formation of the NB Region. Observing constructed
pseudo-Pc curves and pore throat radius distributions, an interval of ×455.3 to ×490.4 m
was considered as high-quality formations, with the exception of some interbeds with
high gamma rays. Based on the standards established in Figure 26a,b, this interval was
identified as a hydrocarbon-bearing formation. This identification was verified by DST
data acquired in the interval of ×462.0 to ×491.0 m, which showed that approximately
9.51 × 104 m3 of gas was produced per day.
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9. Conclusions

Complicated pore structure and strong heterogeneity limited formation evaluation
and characterization based on conventional well logging data. After formation pore
structure was quantitatively characterized from NMR logging, reasonable methods and
techniques were raised to predict petrophysical parameters and identify pore fluids. Several
conclusions can be summarized as follows:
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1. Combined with NMR and capillary pressure theories, a method which can be used to
transform NMR T2 spectrum as pseudo-Pc curve was established. The method was
named the piecewise function calibration method. It was used to quantitatively char-
acterize low permeability sandstone reservoir pore structure and classify reservoirs
into three categories in the Pinghu Formation.

2. The triangular chart of neutron and density was used to well calculate porosity. A
model which uses median pore throat radius as an input parameter was introduced
to estimate permeability from pseudo-Pc curve. For the water saturation calculation,
Archie’s equation was used, and the involved rock resistivity parameters were op-
timized. Field examples illustrated that the proposed methods are valuable in our
target Pinghu Member.

3. Two techniques, used to identify pore fluids based on the crossplots of mean value
of apparent formation water resistivity versus variance of apparent formation water
resistivity; and water saturation versus irreducible water saturation, were raised.
Field examples in two different regions illustrated that these techniques were valuable
in indicating pore fluids. They can be widely used in low permeability sandstones
with similar physical properties, whereas common methods would lose their role
due to low resistivity contrast. Our raised methods and techniques can further
improve complicated formation characterization and allow for high-quality reservoir
predictions.
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