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Abstract: A methodology for the computation of the thermal energy efficiency of modes for the
heat treatment of frozen wooden prisms in an autoclave with saturated water vapor at changing
operational conditions has been proposed. The methodology includes computer simulations with two
own-coupled unsteady models: one to calculate the 2D temperature distribution in the cross-section
of prismatic wood materials during their heat treatment, and the second to determine the heat balance
of industrial autoclaves for such wood treatment. Simulations were carried out in order to determine
the duration, energy consumption, and thermal efficiency of different modes, caused by changed
operational conditions, for the autoclave steaming of frozen beech prisms with industrial parameters
in the absence and presence of dispatcher intervention. The influence of nine combinations between
the time of dispatcher intervention and the degree of reduction of the constant maximum temperature
from the 130 °C of the basic mode on the thermal efficiency of the autoclave was investigated. The
results show that all studied dispatching interventions cause an increase in both the duration and the
thermal efficiency of the modes. This efficiency in the modes at changing operational conditions has
values between 68.7% and 74.6%, while the efficiency in the basic steaming mode is equal to 68.0%.

Keywords: frozen wooden prisms; autoclave steaming; changing operational conditions; dispatching
intervention; energy consumption; energy efficiency; veneer production

1. Introduction

It is well known that for the decorative coating of details intended for the production
of high-quality furniture as well as for the furnishing of office premises, the most frequently
utilized practice is to use a veneer, obtained from variable wooden species, with different
thickness, texture and color than the wood being heat treated [1-4]. In the manufacture
of veneer, wood materials are subjected to heat treatment with saturated steam or hot
water in various facilities in order to plasticize them before cutting the veneer [5-16]. This
is determined by the circumstance that the heated wood has an increased deformation
capability and is susceptible to cutting.

To reduce the duration and energy consumption of heat treatment, instead of using
equipment operating at atmospheric pressure, autoclaves are used [11-14,16-27].

Heat treatment modes are usually presented in the literature sources, which are
applied in practice to ensure the minimum possible duration of the wood heating process
and maximum productivity of the equipment [5-14,28-36]. These sources completely
lack data on modes in which dispatcher intervention increases their duration in order to
ensure the necessary wood plasticity is achieved later than the usual time due to changed
operational conditions. Only in [37,38] are results given for a computer-simulated study of
the duration of modes for the steaming of non-frozen beech prisms in an autoclave and of
the energy needed for heating the wood itself, when applied to the operations of various
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dispatcher interventions. It was established that during the steaming of prismatic materials
with a cross-section of 0.4 x 0.4 m, u = 0.6 kg-kg ™! and t,0 = 0 °C in a basic mode with
tm-max = 130 °C = const and a duration of 9.15 h, maximum productivity of the autoclave is
ensured at an energy consumption of 65.35 kWh-m~3, which is required only for warming
up of the wood. The dispatcher’s lowering of ¢y, from 130 °C to 100 °C in the 3rd, 5th
and 7th h of the basic mode causes an increase in its duration to 14.15, 13.15 and 12.15 h,
respectively, while the indicated energy consumption is reduced in all studied cases to
about 58.0 kWh-m 3. Information only on the duration of analogous modes with dispatcher
intervention, intended for the heat treatment of frozen beech prisms with saturated water
vapor, is published in [39]. The partial results are reflected below in the last column
of Table 1.

In [14], it was found that during the steaming of beech materials with cross-sectional
dimensions of 100 x 100 mm and u = 0.6 kg-kg~! in an autoclave for 7 h on separate
modes with ty, =100, 120 and 140 °C, the consumption of heat energy changes from 97.8 to
155.4 kWh-m 3 at initial wood temperature ¢, = 0 °C; and from 135.1 to 196.3 kWh-m—3
at tyo = —20 °C. References [9,10] note that the efficiency of the heat treatment of wood
materials with saturated water vapor in pits during veneer production does not typically
exceed 18%.

Studying the impact of time- and size-varying dispatcher interventions on the duration
and energy parameters of wood heat treatment modes has significant scientific and practical
interests. In the event of organizational or technical problems in the production lines for the
cutting and drying of veneer, it is required to extend the modes for the heat treatment of the
wood until the problem is solved, while at the same time ensuring the necessary plasticity
of the material. In such cases, it is necessary for the dispatcher or automated control system
to intervene in a timely manner and to change the temperature-time parameters of the
current mode in an appropriate way.

The proposal and application of a methodology for studying the influence of different
dispatcher interventions in wood heat treatment modes will allow, in the future, for the
development of software for advanced model-based systems for the automatic control
of various types of such treatments [21,25,40-43]. Solving a task with such a great com-
plexity and multifactorial nature [16,39] can only be done using adequate multiparameter
temperature-time-energy models.

This paper presents a methodology for the application of two personal coupled non-
stationary models for computing the thermal energy efficiency of different modes of
autoclave steaming on frozen wood prisms intended for the production of veneer for
the cases of time- and magnitude-variable dispatch interventions.

2. Materials and Methods
2.1. Materials for Research

Two coupled models, created and verified in [20], and the methodology suggested
in [44] were used for simulated research of the thermal efficiency of modes for the steam-
ing of frozen wooden prisms in an autoclave in cases of dispatcher intervention in the
temperature-time modes’ parameters.

The study was carried out with ice-containing beech (Fagus sylvatica L.) prisms above
the hygroscopic range, which are commonly used in veneer production.

During numerical simulations with the mathematical models presented below, the
following parameters of the prisms, which influence T,,4e and n, were set: d x b x [ =0.4
x 04 x 25m, tyo = —20°C, pp =560 kg'm 2, u = 0.6 kg-kg ™!, and uf 1 = 0.31 kg-kg L.
Beech prisms of such dimensions and with a moisture content above the hygroscopic range
are relatively often subjected to steaming in veneer production in practice. Such prisms,
with an initial temperature of —20 °C, contain significant amounts of both free and bound
water in a frozen state, the thawing of which will favor the increase of the differences in the
durations between the individual steaming modes studied.
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The simulations were performed under the following industrial parameters of a well-
insulated wood steaming autoclave used in practice: D =2.4m, L =9.0 m, y = 50%, and
Gsource = 500 kW. Detailed structural and thermo-physical characteristics of such autoclaves,
as well as their application in the woodworking industry, is described in [12,14,20,22,23].

2.2. Modelling of the 2D Unsteady Temperature Change in Prisms

The following 2D model of the temperature change in prismatic wood materials during
their heat treatment with saturated water vapor and subsequent cooling (conditioning) in
an air medium before veneer cutting was created and verified in [20]:

oT i
Cw-eff1,23 Pw 3 = div(Aw-crgrad T) 1)

at T(x,y,0) = Two @)
and at the following prism surface temperatures:

. during the steaming process:

T(x,0,7) = T(0,y,7) = Tm(T) ©)]

s during the subsequent conditioning process:

dT(x,0,T) Xy cond (%,0,T)
oy —W[T(x/ 0,7) = Tyir-cond ()] 4)

OT(0,%,7) _ _ %yecona(O¥ T B
ax B }\w-cr (O/ y/ T) [T(OI y’ T) Tair—cond (T)] (5)

The defrosting process of ice-containing wood materials during steaming for the
purpose of plasticization in the production of veneer takes place in three stages [14,20,32].
Figure 1 shows these three stages, as well as the symbols of the thermo-physical charac-
teristics of the wood in each of them, for which it is necessary to have a mathematical
description when solving the model (1)—(5).

The effective specific heat capacities of the wooden prisms during their defr-
osting, cy.eff123, which participate in Equation (1), are described mathematically as
follows [6,20,26,32,45]:

First stage : Cy-efft = Cw-fr T Cice-fw (6)
Second stage : Cw-eff2 = Cw-nfr T Cice-fw ()
Third stage : cy-eff3s = Cwonfr (8)
where

526 4+ 2.95T + 0.0022T2 + 2261u + 1276-u2’>1

Cotr = K fsp )
w-fr c-fr 1+u
0.00075(T — 272.15
Kegr = 1.06 + 0.04u + gm ) (10)
ufsp
Cicebw = (69.344T +119.183T-In — 15) : (ufsp - 0.12)- T (11)
1
Cunt = T (2862u + 2.95T + 5.49u-T + 0.0036 T2 + 555) (12)
u— u272.15

Cieofw = 334 x 105 — =P (13)

1+u

g = ug > +0.021 (14)
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Figure 1. Stages of the wood defrosting process and thermo-physical characteristics of wood used
in them.

The mathematical descriptions of the wood thermal conductivity, Ay.cr, wood density,
pw, and heat transfer coefficient, oy_cong, given in [20,26,32,46,47] were used in solving
models (1)—(5).

It can be noted that the experimentally established data for Ay, = f(t,u) and ¢y =f(t,u) in
the dissertations [6,48] were used as a basis in the mathematical descriptions of Ay-cr, Cyy-fr,
and cyy_nf, which were involved in Equations (1) and (4)—(12). These data are often used in
both the European [8,10-14,28,47,49] and the American [29,50-56] literature sources, which
consider approaches for calculating processes of the defrosting and/or heating of different
wood materials.

2.3. Modelling of Thermal Efficiency of Modes for Steaming of Wooden Prisms in Autoclaves

To calculate this efficiency, it is necessary to have a mathematical description of the
energy consumption of the entire autoclave and separately of the part of it that is used to
heat the wood placed in the equipment.

In the simulations, the total energy consumed by the autoclave, Q}, was calculated
using the following unsteady model of its thermal balance, which was proposed and
experimentally verified in [20]:

Qa = Quw + Qnp + Qi + Qe + Qf + Qdw (15)

Dependence of all the components of the thermal balance on the multitude of influ-
encing factors have been considered in [14,16,20].

The thermal energy consumption used for heating of the frozen prismatic wood
materials at any time, n-At, Q},, was calculated by the following equation [20,32,57]:

p Cov-etf1 2,32t T7 ) + €4 efrn At Two
Q= 5651055 {f 5 (T} = Two)dS. (16)
Sw
where b
Sw = T (17)

The thermal energy efficiency, 1, of the separate steaming modes of prisms in an
autoclave is equal to

Q:/Zv—max
le-max
where Q. and Qf_ ., are calculated by the models as the maximum values of Q,, and
Q, for each of the autoclave steaming modes given in Table 1.

n = 100 (18)
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Table 1. Change in the temperature f;,,; and duration Tgteam Of the studied autoclave steaming modes.

Steaming Ist Stage of tp1, IInd Stage of t;,1, Ist Stage of tpy1 IInd Stage of ;1 Tsteam =
Modes °C °C TI, h TII, h T1 + T11, h
Mode 0 130 — 13.9 - 13.9
Mode 1 130 120 3.0 13.2 16.2
Mode 2 130 120 7.0 8.7 15.7
Mode 3 130 120 11.0 4.2 15.2
Mode 4 130 110 3.0 15.7 18.7
Mode 5 130 110 7.0 10.7 17.7
Mode 6 130 110 11.0 5.7 16.7
Mode 7 130 100 3.0 17.7 20.7
Mode 8 130 100 7.0 12.1 19.1
Mode 9 130 100 11.0 6.5 17.5

2.4. Change in the Steaming Medium Temperature Ty, of Modes in Cases of Absence and Presence
of Dispatcher Intervention

In the numerical simulations with the models (1)—(5) and (15), the change of T\, shown
in Figure 2, whose mathematical description is presented in [14,20,58], is assumed.

A
T Dosed introduction of steam Use of accumulated heat
ml 7
“\_ ___________________ lf_AT ml-a T
\ > Alwy |7,
¥ Tho ___\_._'_._'_ v ml-c
[E N— . " . — _‘;_
& N : Removal of residual steam
% T3 * and condensed water
2 . -
= \ |\~ Conditioning of steamed
g \ : L .
R R \ wood in air medium
.
\‘ \
T m-cond \_‘_‘. ~
TrnO } 1. } ! >
0] At,T1 T2=Tsteam | T4 Tf| Tfa [Teb Tic

B 4 AT], T3

D AT,

P Tmode-base |

P Tmode-a N

Tmode-b
Tmode-c
Time T, h

Figure 2. Change of Ty, during steaming modes in absence and presence of dispatcher intervention.

The following values of the parameters of the modes, whose symbols are given in
Figure 2, were set: Tp,g =253.15 K (i.e., tyo = —20 °C); Ty =403.15K (i.e., tmy = 130 °C);
ATm1.a=10K =10°C, AT 11 =20 K =20 °C, and ATy =30 K =30 °C; Tpyp =383.15K
(i-e., tmy =110 °C); Tz =353.15 K (i.e., tm3 =80 °C); Tr-cond =293.15K (i.e., tm-cond = 20 °C);
Aty =3h, At, =7 h, and At = 11 h. These values of the Tr, parameters fully correspond to
those applied in the regimes for the industrial steaming of wood materials in the production
of veneer [12,14,22].

With these values, one basic mode without dispatcher intervention (Mode 0) was
calculated, as well as 9 modes with dispatcher intervention, which in Table 1 are described
as Mode 1 to Mode 9.
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Table 1 also provides the temperatures and durations of the two stages (before and
after the dispatcher’s intervention) of Mode 1 to Mode 9, and also the total duration of the
introduction of steam into the autoclave, Tsteam, for all of the investigated modes.

For joint numerical solving of the experimentally verified coupled models presented
above and aimed at computation of the duration, thermal energy consumption, and energy
efficiency of the modes given in Table 1, a personal software program was created in the
Visual FORTRAN computing environment. Using this program, the modes shown in
Table 1 were developed.

An explicit finite-difference scheme was used to transform the individual model equa-
tions into a FORTRAN-friendly programming form, which excludes any simplifications of
the models.

The development of the modes consisted in selecting the values of the parameters
shown in Figure 2 and Table 1, and that at the end of the conditioning of the steamed
prisms, to ensure the required good plasticity of the wood before cutting the veneer. The
degree of plasticity of the steamed prisms is assessed when the temperature distribution
in their central cross-section falls completely within the optimal limits recommended for
beech wood in veneer production fopt.min = 62 °C and fopt-max = 90 °C [14,59].

Simultaneously with the solution of the models, computations of ty.avg, Qw, and
Qa were carried out. After determining the maximum values of Q. and Q,, the energy
efficiencies n of each of the studied modes were calculated.

3. Results
3.1. Computing the 2D Unsteady Temperature Change in Prisms during Studied Modes

In Figure 3, as an example, the calculated change in f;, tw-avg, and ¢ of 2 representative
points t; (with coordinates /8, b/8) and t, (with coordinates d/2, b/2) of the prisms during
Mode 0, Mode 5, and Mode 8 is presented. Analogous figures for modes 1, 3, 4, 6, 7, and 9
can be seen in [39].

140 ‘ ‘ ——ts: Mode 0
120 ——ts: Mode 5
ts: Mode 8
100 ——t1 Mode 0
o ——t1:  Mode5
= 80 t1:  Mode8
e
2 = tw-avg: Mode 0
© 60
g ——tw-avg: Mode 5
g 40 ——tw-avg: Mode 8
|
—e—t-opt-max
20 —a—t-opt-min
——t{2: Mode 0
0
| ——1t2 Mode 5
20 K ‘ ‘ ——12:  Mode8
0 2 4 6 8 10 12 14 16 18 20 22 24
Time 1, h

Figure 3. Changes in t5, tw-avg, 1, and f; of the prisms during steaming Mode 0, Mode 5, and Mode 8,
depending on T.

3.2. Computing the Qu, Quw, and 1 for the Cases of Absence and Presence of Dispatcher
Intervention in Steaming Modes

In Figures 4-6, the computed values of the energies Q, and Q, during the all studied
modes is presented.
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Figure 4. Changes in tm, Qa, and Qyw during steaming modes 0, 1, 2, and 3, depending on .
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Figure 5. Changes in tn,, Qa, and Qy during steaming modes 0, 4, 5, and 6, depending on 7.

160
g 140 o=
<
S
> 100
5 7 o
= p—2-2
E 80 _/ y. /(,.A:,._.,..——O—-‘
/ —e—tm1: Mode 0
33 60 r L A/M —o—tm1: Mode 7 | |
°. , V —e—tm1: Mode 8
E J ﬂ —e—tm1: Mode 9
40 —e—Qa: Mode 0 |
e rd —e—Qa: Mode 7
2 —=—Qa: Mode 8
S 20 4 —e—Qa: Mode 9
g_ —e—Qw: Mode 0
£ ~+—=Qw: Mode 7
£ 0 —o—Qw: Mode 8 ||
—o—=Qw: Mode 9
-20 ‘ ‘ ‘ 1 1
0 2 4 6 8 10 12 14 16 18 20 22

Figure 6. Changes in tm,, Qa, and Qy during steaming modes 0, 7, 8, and 9, depending on .

Time T, h

20
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In Table 2, the change in Ty = Tsteam, and T4 = Tode (see Figure 2) of all modes, and
also of the ty-avg, Qw-max, Qa-max, and n is given.
Figure 7 shows the change in Qw-max and Qa-max for all steaming modes.

£ €
< <
g 2
M x
g g
= ©
< <
5 5
] ]
1= o

w Mode 0 w Mode 0

Modes 7,8,9 Modes 7,8,9
Modes 4,5,6 Modes 4,5,6
Modes 1,2,3 Modes 1,2,3
11 11
13,9 13,9
Time of disp. intervention T, h Time of disp. intervention 7, h

(@ (b)

Figure 7. Change in Qw-max (a) and Qa-max (b) of the studied steaming modes, depending on t,,; and 7.

In Figure 8 the change in 1 of all studied modes is presented.

Energy efficiency 1, %

Mode 0
Modes 1,2,3
Modes 4,5,6
Modes 7,8,9

Time of dispatch.intervention T, h
Figure 8. Change in 1 of the studied modes, depending on ty,; and .

4. Discussion

It can be seen in Figure 3 that the temperature at the representative points of all the
prisms changes along extremely complex curves, both during the steaming modes and
during the subsequent conditioning of the heated prisms in an air environment. The
temperature of the processing medium in the autoclave at the beginning of all modes rises
gradually and reaches the maximum value of t;;,; = 130 °C after 2.65 h.

The violation of the smoothness of the line ty, = f(7) around the 1st h at the beginning
of the modes is caused by the phenomenon of the uneven melting of the ice formed by the
free water in the wood, which is adequately reflected in the mathematical models.
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Table 2. Change in Tsteam, Tmode~ tw-avg at T2, Qw-max, Qa-max, and 1 of the studied steaming modes,

depending on Ar.

Steaming AT, T2 = Tsteam, T4 = Tmoder tw-avg Qw-max, Qa-max, n,
Modes h h h at 1o, °C kWh-m—3 kWh-m—3 %
Mode 0 0 13.9 17.4 91.7 97.95 144.08 68.0
Mode 1 3 16.2 18.7 90.2 96.44 137.19 70.3
Mode 2 7 15.7 18.2 90.0 96.34 137.06 70.3
Mode 3 11 15.2 17.7 90.5 96.69 137.49 70.3
Mode 4 3 18.7 20.2 87.3 94.01 129.65 72.5
Mode 5 7 17.7 19.2 87.1 93.86 129.44 72.5
Mode 6 11 16.7 18.2 87.9 94.50 131.21 72.0
Mode 7 3 20.7 222 81.8 89.60 120.11 74.6
Mode 8 7 19.1 20.6 81.7 89.53 119.98 74.6
Mode 9 11 17.5 19.0 83.0 90.55 131.75 68.7

When this phenomenon occurs, a huge amount of heat is utilized to melt the afore-
mentioned ice, which disturbs the thermal balance of the autoclave in the considered case
of limited power of the steam generator, gsource, feeding it, and slows down the rise of tp,.

The duration of the basic Mode 0, in which there is no dispatcher intervention, is equal
to 17.4 h, and the duration of the supply of steam to the autoclave in this mode is equal to
13.9 h. The earlier such an intervention is carried out and the greater the reduction in the
maximum value of t,1, the longer these durations are compared to those in the basic mode.

Figures 4-6 show that the increase in the steaming time causes a gradual smooth
increase of Q and Q, in the basic mode for the prisms’ steaming. Due to the influence of
the last 5 terms in the right-hand side of Equation (15), the rate of increase of Q, is greater
than that of Q.. This means that the differences between the corresponding graphs Q, and
Qw are equal to the sum of the energies that provide the energy consumptions described by
the last 5 terms in Equation (15).

The increase of Qw is analogous to that of tw.avg of the prisms in all investigated
steaming modes, with and without dispatcher intervention.

The smoothness of increasing Qv and Q, during the steaming process is disturbed
at the moments of application of dispatcher intervention in the steaming modes of the
prisms. The earlier such intervention occurs or the greater the temperature change Aty in
the mode, the more significant the difference between the values of Q\ and Q, of the basic
mode when compared to the corresponding mode with dispatcher intervention.

The thermal efficiency 1 in the modes at changing operational conditions has values
between 68.7% and 74.6%, while in the basic steaming mode, efficiency is equal to 68.0%.
If the dispatcher’s intervention was provided in the 3rd or 7th h of the modes, with a
more significant reduction in t,,1, there was a greater increase in 1 compared to 1 of the
basic mode.

When applying a dispatcher interference closer to the end of the modes, for example
at the 11th h of the modes, this dependence is broken in the mode, with the smallest
investigated decrease in t,1 being from 130 to 120 °C.

When the efficiency 1 is equal to 0.67, i.e., it is quite a bit greater than that of the basic
steaming mode. The reason for this is the much higher Q,.max value at the 11th h compared
to the Qa-max Values at the 3rd and 7th h of the modes with a decrease in t,,; from 130 to
120 °C.

5. Conclusions

This paper considers a methodology for computing the energy consumption and
thermal efficiency of autoclaves during the treatment with saturated water vapor of frozen
prisms in veneer production at changing operational conditions. When such conditions oc-
cur, the parameters of the autoclave’s steaming modes have to be changed by the dispatcher
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or control system in such a way as to ensure optimal plasticity of the wood immediately
before cutting the veneer.

The change in the maximum values of Q. and Q,, respectively Qw-max and Qa-max,
and with their change, also that of of 0, calculated during computer simulations with two
own coupled models for each of the investigated modes for autoclave steaming of beech
prisms with industrial parameters, led to the following conclusions:

e  Atthe moment Ty = Tgteam = 13.9 h, when the introduction of water vapor into the auto-
clave ends, the greatest values Qw-max = 97.95 kWh-m 3 and Qa-max = 144.08 kWh-m 3
are established in the basic mode, which takes place at t;,; = 130 °C = const. These val-
ues of Qw-max and Qa-max determine the presence of the lowest value of n = 68.0% of the
basic mode compared to the thermal efficiency of all modes with dispatcher intervention.

e  When, upon application of dispatcher intervention, the temperature of the processing
medium in the autoclave is reduced from t,,; = 130 °C to t; = 120 °C, the energies Qy
and Q, reach their maximum values at moments T = Tsteam, Which depend on the occur-
rence times of this intervention. Then, they are equal to about Qw-max ~ 96.5 kWh-m—3
and Qa-max ~ 137.3 kWh-m 3, respectively. As a result, the energy efficiency turns out to
be the same, equal to 70.3% for all three such modes investigated.

e  When, after dispatcher intervention, the temperature fy; is reduced from 130 to
110 °C, the energies Qy and Q, reach maximum values at the moment T, = Tsteam
only at At, =3 h and A1y, =7 h. Then, they are equal to about Qw-max =~ 93.9 kWh-m—3
and Qamax ~ 129.5 kWh-m 3, respectively, resulting in 1 & 72.5%. In the case when
At = 11h, the maximum values of Qu-max = 94.6 kWh-m 3 and Qa-max = 131.2 kWh-m 3
are reached at the moment of application of the dispatcher intervention, and this causes
a reduction of 1 to nj = 72.0%. In this case Tgteam = 16.7 h.

e When, after dispatcher intervention, ty, is reduced from 130 to 100 °C, Q\ and Q, reach
maximum values at the moment Ty = Tsteam also only at At, =3 h and A1, =7 h. Then,
they are equal to approximately Qw-max ~ 89.6 kWh-m~3 and Qa-max ~ 120.1 kWh-m—3,
respectively, resulting in 1 =~ 74.6%. In the case when At = 11 h, the maximum values
of Qu-max = 90.6 kWh-m 3 and Qamax = 131.8 kWh-m ™2 are reached at the time of
application of the dispatcher intervention and this causes a reduction of 1 ton = 68.7%.

The presented methodology can be applied in the creation of system software for
model-based energy-efficient automatic control of technologies for the water vapor treat-
ment of frozen and non-frozen wood materials with a desired duration of modes, set by
a dispatcher.
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Abbreviations

Symbols

b width of the wooden prisms, m

c specific heat capacity, J-kg~1-.K~!

d thickness of the prisms, m

D diameter of the steaming autoclave, m

) length of the prisms, m

L length of the autoclave, m

q thermal power, kW

Q thermal energy, kWh-m—3

S aria, m?

T temperature, K

t temperature, °C: t =T — 273.15

u moisture content, kg-kg ™! = %/100

x coordinate along d

y coordinate along b

o convective heat transfer coefficient, W-m~2.K 1

Y loading of the autoclave, m®m~3 = %/100

n energy efficiency, %

A thermal conductivity, W-m~1.K~!

P density, kg-m 3

T time, s

AT step along T, s

Subscripts:

a autoclave

ad anatomical direction (for wood)

avg average

b basic (for density or for steaming mode)

bw bound water

cr cross sectional to the fibers

w condensed water (for autoclave)

e emission (for autoclave)

effl effective (for c of wood with frozen bound water)

eff2 effective (for ¢ of wood with frozen free water)

eff3 effective (for c of non-frozen wood)

fr frozen

fv free volume (for autoclave)

fw free water

ice ice

il insulating layer

h heat

i mesh point along x

j mesh point along y

m medium

mb metal body (for autoclave and trolleys in it for placing of
wood materials)

nfr non-frozen

S surface

w wood

0 initial

Superscripts:

n timelevel: n=0,1,2,3,..., Teng/ AT

272.15at272.15K,i.e, at —1 °C
293.15at293.15K, i.e., at 20 °C
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