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Abstract: Satellite top-of-atmosphere (TOA) reflectance has been validated as an effective index for
estimating PM2.5 concentrations due to its high spatial coverage and relatively high spatial resolution
(i.e., 1 km). For this paper, we developed an emsembled random forest (RF) model incorporating
satellite top-of-atmosphere (TOA) reflectance with four categories of supplemental parameters to
derive the PM2.5 concentrations in the region of the Yangtze River Delta-Fujian (i.e., YRD-FJ) located in
east China. The landscape pattern indices at two levels (i.e., type level and overall level) retrieved from
3-year land classification imageries (i.e., 2016, 2018, and 2020) were used to discuss the correlation
between county-based PM2.5 values and landscape pattern. We achieved a cross validation R2 of
0.91 (RMSE = 9.06 µg/m3), 0.89 (RMSE = 10.19 µg/m3), and 0.90 (RMSE = 8.02 µg/m3) between
the estimated and observed PM2.5 concentrations in 2016, 2018, and 2020, respectively. The PM2.5

distribution retrieved from the RF model showed a trend of a year-on-year decrease with the pattern
of “Jiangsu > Shanghai > Zhejiang > Fujian” in the YRD-FJ region. Our results also revealed that
the landscape pattern of farmland, water bodies, and construction land exhibited a highly positive
relationship with the county-based average PM2.5 values, as the r coefficients reached 0.74 while
the forest land was negatively correlated with the county-based PM2.5 (r = 0.84). There was also a
significant correlation between the county-based PM2.5 and shrubs (r = 0.53), grass land (r = 0.76),
and bare land (r = 0.60) in the YRD-FJ region, respectively. Three landscape pattern indices at an
overall level were positively correlated with county-based PM2.5 concentrations (r = 0.80), indicating
that the large landscape fragmentation, edge density, and landscape diversity would raise the PM2.5

pollution in the study region.

Keywords: random forest; PM2.5; landscape pattern; YRD-FJ

1. Introduction

Air pollution has become one of the most important environmental problems over the
urban regions in China. Studies have shown that fine particulate matter suspended in the
air (i.e., PM2.5) not only has a seriously negative impact on the ecological environment but
is also significantly associated with human health [1–3]. PM2.5 has been reported to be one
of the primary pollutants that affect the air quality in major cities of mainland China [4,5].
A large amount of remote sensing data has provided an effective means for retrieving PM2.5
distribution [6–8].

The remote sensing data sets that have been widely used for regional PM2.5 estimation
are the aerosol optical depth (AOD) products from various sensors with different spatial
resolutions (1–17.6 km), and the methods for PM2.5 estimation based on AOD data have
evolved from simple linear models [9,10] to advanced statistical models [11,12] and machine
learning [13–15]. Compared with simple linear models, these two more complex methods
have introduced a large number of auxiliary factors (e.g., meteorological parameters, road
density, population density, and land use parameters) that directly or indirectly affect the
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regional PM2.5 concentrations; therefore, the accuracy of the model’s estimation has been
much improved over linear models. For example, Ma et al. [16] used the linear mixed effects
model incorporating meteorological parameters and land use information, and their results
showed that the model’s predictability was significantly improved. He and Huang [17]
established a geographically and temporally weighted regression (GTWR) model by using
AOD and seven parameters for estimating PM2.5 in China, and they achieved an R2 of 0.80.

In addition to the AOD products, the satellite top-of-atmosphere (TOA) reflectance at
the blue, red, and mid-infrared bands that are used to retrieve the AOD distribution has
also been demonstrated to be an effective variable for retrieving the PM2.5 values [18,19].
For example, Shen proposed a deep belief network model for PM2.5 estimation in Wuhan
by using satellite TOA reflectance and obtained an R2 of 0.87 for the model’s performance.
Yang and Shi [18] successfully obtained the PM2.5 concentrations using TOA reflectance
in east China, and the cross-validated R2 reached 0.87. These studies demonstrated that
the satellite TOA reflectance combined with meteorological fields and other auxiliary
parameters can be used to estimate the regional PM2.5 concentrations.

Both the abovementioned complex methods showed significantly high performance in
estimating PM2.5 concentrations with full coverage over the urban regions. Discussions of
the correlation of fully-covered PM2.5 concentrations and regional population distribution
were then carried out to study the risk of PM2.5 population exposure [20,21]. McCarty and
Kaza [22] revealed that the land use types and urban landscape patterns would also affect
the spatial distribution of regional PM2.5 concentrations; e.g., the area of the forest land
was significantly negatively correlated with fine particulate matters while the construction
land showed a highly positive relationship with PM2.5 concentrations. However, there is
no clear conclusion reported for the relationship of PM2.5 concentrations and other land
use types (e.g., water bodies and shrubs). Currently, most of the studies obtained the
urban landscape metrics by using a moving window method or establishing a buffer zone
with different radiuses centered on the monitoring stations to discuss the PM2.5–landscape
pattern relationship [23,24]; the research focusing on county-scale PM2.5 concentrations
and the urban landscape pattern is still limited. Therefore, for this paper, a random forest
(RF) method using TOA reflectance and four categories of supplemental parameters was
first developed for estimating the PM2.5 concentrations in the contiguous Yangtze River
Delta and Fujian Province (i.e., YRD-FJ) located in east China. Three land classification
imageries (i.e., 2016, 2018, and 2020) with a spatial resolution of 30 m were then employed
for retrieving the urban landscape metrics based on 285 counties of the YRD-FJ region.
Finally, the correlation of a county-based PM2.5 distribution and urban landscape pattern
at two levels (i.e., type level and overall level) was discussed so as to provide a scientific
support for improving the ecological environment in the YRD-FJ region.

2. Study Area and Methods
2.1. Study Area

We defined the contiguous Yangtze River Delta and Fujian Province (i.e., YRD-FJ) located
in east China as the study area where the YRD region contains three provinces/municipalities,
i.e., Jiangsu Province (95 counties), Zhejiang Province (90 counties), and Shanghai (16 counties),
and Fujian Province has a total of 84 counties (Figure 1). The YRD region, adjacent to the
Yellow Sea and the East China Sea, is one of the most economically developed regions
in China, with an urbanization rate of over 60% and a total economic volume of 25% of
China’s GDP by the end of 2020. With rapid economic development, the air quality has
deteriorated in the YRD region with PM2.5 concentrations higher than 50 µg/m3 over the
last decade. Fujian Province, bordered by Zhejiang Province in the north, is dominated by
mountains and hills with a forest coverage rate of 66.8%, which makes the air quality much
better than most of the regions in China.
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Figure 1. The study area (YRD-FJ).

2.2. Modeling Data Materials
2.2.1. In Situ PM2.5

The PM2.5 was obtained from a total of 195 environmental monitoring stations mon-
itored by the Environmental Protection Departments of Jiangsu, Zhejiang, Fujian, and
Shanghai from 1 January 2016 to 31 December 2020. Anomalous values with PM2.5 concen-
trations less than zero and recorded as NA were excluded for subsequent modeling.

2.2.2. Remote Sensing Image Data

The remote sensing imageries were mainly obtained from the National Aeronautics
and Space Administration (NASA) MODIS Level-1B product with a spatial resolution
of 1 km and a temporal resolution of 1 day. We downloaded the MODIS Level-1B data
from 2016 to 2020. The TOA reflectance values along with the solar zenith/azimuth and
satellite zenith/azimuth values that are used to retrieve the AOD values were extracted
for modeling.

2.2.3. Meteorological Data

We obtained the meteorological data from NASA’s Earth Observing System forward-
processed data (GEOS-FP). A total of 10 meteorological variables were extracted in this
study (Figure 2).
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Figure 2. The prescription of the supplemental parameters.

2.2.4. Land Use Data

The vegetation index used for modeling was obtained from the MODIS product
(i.e., MOD13A3). Major traffic roads (e.g., highways and national roads) were downloaded
from Baidu Maps, and we retrieved the road density by calculating the road vector lengths
in each 1 × 1 km grid for modeling.

2.2.5. Emission Data

The emission parameters including NH3, NOX, SO2, and fine particles (PM) from the
Multi-resolution Emission Inventory for China (MEIC) were selected in this study. The
spatial resolution of emission parameters was 0.25◦ × 0.25◦.

2.2.6. Landscape Pattern Index

Three-year land classification imageries (i.e., 2016, 2018, and 2020) with a spatial
resolution of 30 m were provided by the Chinese Academy of Sciences (https://www.
resdc.cn/ (accessed on 7 September 2021)). The correlations of county-based average
PM2.5 with the land use categories and landscape patterns were investigated. The land
classification data defined seven categories over the entire study area. We calculated six
landscape pattern indices at a type level, including the proportion of landscape occupied
(PLAND), patch density (PD), edge density (ED), the largest class of patches to landscape
area proportion (LPI), average patch area (AREA_MN), and shape index (LSI), and seven
indices at an overall level, including PD, ED, cohesion (COHES), Landscape Division Index
(DIVIS), et al., for each year by using Fragstats 4.2.

All the supplemental parameters used in this study (see Figure 2) were interpolated
into 1 × 1 km plots for data integration; the expressions of all landscape pattern indices are
illustrated in Table 1.

2.3. Data Modeling and Validation

Random forest is a machine learning method. It firstly forms a sub-training set by
extracting samples from the training set and then generates multiple decision tree models
by training the decision trees based on the random feature selection method. Finally, the
values of all decision tree predictions are averaged as the output of the random forest.
The random forest can handle a large number of input variables, and the training time
can be tuned based on a desired accuracy. More importantly, the method can provide the
measurement of the prediction strength of each variable, which can yield more interpretable
results. For this paper, the MODIS satellite TOA reflectance, 10 meteorological parameters,
vegetation index, road density, and four MEIC emissions were used as the input parameters
of the random forest model to predict the PM2.5 in the YRD-FJ region. We obtained the
optimal model by training two parameters, i.e., the number of predictor variables (mtry)

https://www.resdc.cn/
https://www.resdc.cn/


Processes 2023, 11, 704 5 of 12

and the decision trees in each random forest (ntree). The random forest regression model
can be simply expressed by the following equation.

PM2.5 = RF (TOA3-bands, Zenithsun-satellite, Azimuthsun-satellite, Meteoro10-parameters, Landuse2-parameters, Emission4-parameters) (1)

where PM2.5 is the observed PM2.5 concentrations at 195 environmental stations; TOA3-bands
represents the TOA at the blue, red, and mid-infrared bands; Zenithsun-satellite defines the
sun zenith and satellite zenith; Azimuthsun-satellite includes the sun azimuth and satellite
azimuth; Meteoro10-parameters represents 10 meteorological parameters; Landuse2-parameters
includes two land use parameters; Emission4-parameters defines four emission parameters;
and RF is the random forest model.

Table 1. The expression of landscape pattern index.

Landscape Metrics Expression Landscape Metrics Expression

Percentage of
Landscape (PLAND) PLAND =

n
∑

j=1
aij

A × 100
Edge Density (ED)

ED =

n
∑

j=1
eij

A × 10000
Patch Density (PD) PD = N/A× 10000× 100 Landscape Shape Index (LSI) LSI = 0.25E√

A
Largest Patch
Index (LPI) LPI =

max(aij)

A × 100 Mean Patch Area (AREA_MN)
AREA_MN =

n
∑

j=1
aij

N

Cohesion (COHES)
COHES = [1−

n
∑

j=1
pij

n
∑

j=1
pij×
√

aij

][1− 1√
Z
]
−1× 100

Shannon’s Diversity Index (SHDI) SHDI = −
m
∑

i=1
[Pi ln(Pi)]

Landscape Division
Index (DIVIS) DIVIS = [1−

n
∑

j=1

( aij
A

)
]× 100 Shannon’s Evenness Index (SHEI)

SHEI =
−

m
∑

i=1
[Pi ln(Pi)]

ln m

Aggregation Index (AI) AI = [ gii
max→gii

]× 100

Note: aij represents the area of patchij; A is the total area of landscape; N means the number of the patch; eij
defines the edge length of patchij; E means the total length of all the patch edges; pij represents the circumference
of patchij; Z is the total number of landscape patches; Pi defines the percentage of patchi to the total patch; gii
represents the number of the similar adjacent patches.

The RF model was validated by using cross validation (CV) with two coefficients,
i.e., R2 and RMSE. The flowchart of this study is presented in Figure 3.

Processes 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 3. Flowchart of the study. 

3. Results and Analysis 

3.1. Model Validation and Prediction 

The PM2.5 concentrations at 195 monitoring stations of the YRD-FJ region showed a 

decreasing trend with higher PM2.5 concentrations in 2016 and much lower values in 2020. 

From the perspective of regions, Jiangsu and Shanghai, located in the YRD, presented the 

highest PM2.5 values. Zhejiang province exhibited much lower values than Jiangsu, and 

the lowest PM2.5 values were located in Fujian. Figure 4 presents the cross-validation result 

of the RF model for 3 years in the YRD-FJ region. We achieved a CV R2 of 0.91 (RMSE = 

9.06 μg/m3), 0.89 (RMSE = 10.19 μg/m3), and 0.90 (RMSE = 8.02 μg/m3) in the YRD-FJ region 

in 2016, 2018, and 2020, respectively. 

  

 

  

Random forest

Modeling dataset

Model validation

Estimating PM2.5 for 2016, 2018 and 2020

Land classification data
(farm land, Forest land, Grass 
land, Shrubs, Water bodies, 

construction land and bare land)

Landscape pattern at type level
( PLAND, PD, LPI, ED, LSI, 

AREA_MN)

Landscape pattern at overall level
( PD, ED, COHESION, 

DIVISION, SHDI, SHEI, AI)

Pearson correlation validation

Relationship analysis of PM2.5 concentrations and landscape pattern

Remote sensing imagery

Model input
(MODIS TOA, Meteorological 
fields, vegetation index, road 
density, emission parameters)

Model output
(in-situ PM2.5)

10-fold cross validation CV R2 and CV RMSE

Landscape pattern

y = 1.09x−4.01

R² = 0.91

RMSE=9.06 ug/m3

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

o
b

se
r
v

ed
 P

M
2

.5
(u

g
/m

3
)

Estimated PM2.5 (ug/m3)

2016

y = 1.07x−3.15

R² = 0.89

RMSE=10.19 ug/m3

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

o
b

se
rv

ed
 P

M
2

.5
(u

g
/m

3
)

Estimated PM2.5 (ug/m3)

Figure 3. Flowchart of the study.



Processes 2023, 11, 704 6 of 12

3. Results and Analysis
3.1. Model Validation and Prediction

The PM2.5 concentrations at 195 monitoring stations of the YRD-FJ region showed
a decreasing trend with higher PM2.5 concentrations in 2016 and much lower values in
2020. From the perspective of regions, Jiangsu and Shanghai, located in the YRD, presented
the highest PM2.5 values. Zhejiang province exhibited much lower values than Jiangsu,
and the lowest PM2.5 values were located in Fujian. Figure 4 presents the cross-validation
result of the RF model for 3 years in the YRD-FJ region. We achieved a CV R2 of 0.91
(RMSE = 9.06 µg/m3), 0.89 (RMSE = 10.19 µg/m3), and 0.90 (RMSE = 8.02 µg/m3) in the
YRD-FJ region in 2016, 2018, and 2020, respectively.
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Figure 5 gives the spatial distribution of the PM2.5 concentrations retrieved from the
RF model in the YRD-FJ region in 2016, 2018, and 2020, respectively. The annual mean
PM2.5 retrieved from the RF model showed a trend of a year-on-year decrease, with much
higher values in 2016 and lower values in 2020. From the perspective of four individual
regions, there was an obvious PM2.5 distribution pattern of “Jiangsu > Shanghai > Zhejiang
> Fujian” for 3 years in the YRD-FJ region, which was consistent with that from the
monitoring stations. The annual mean PM2.5 concentrations reached the highest values of
57.32, 49.22, 38.19, and 28.30 µg/m3 in Jiangsu, Shanghai, Zhejiang, and Fujian, respectively,
in 2016. This may be closely related to the distribution of land cover and local industries
accompanied by increasing human activities; the use of resources and energy brought
by urban industrialization has largely affected the air quality. The annual mean PM2.5
concentrations showed the lowest values of 37.67, 28.54, 23.48, and 19.87 µg/m3 in Jiangsu,
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Shanghai, Zhejiang, and Fujian in 2018, respectively, with a decrease of 19.65, 20.68, 14.71,
and 8.42 µg/m3 compared with those in 2016. This was largely due to the reduction in
human activities caused by the COVID-19 pandemic.
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At city scale, most of the cities witnessed the highest PM2.5 concentrations in Jiangsu
province (31–70 µg/m3), where Xuzhou was the most air polluted city with 3-year average
PM2.5 concentrations higher than 51 µg/m3. The PM2.5 concentrations of all cities were
relatively low (19–31 µg/m3) in Fujian province. The highest value was located in Xia-
men, with 3-year average PM2.5 values of 26 µg/m3, which was also much lower than
those of cities in other provinces. At county scale, the 10 counties with the highest PM2.5
concentrations were Pei, Feng, Jiawang, Pizhou, Quanshan, Tongshan, Yunlong, Suining,
Xinyi, and Suyu, which are all located in Jiangsu Province. The lowest PM2.5 concentrations
were located in seven counties of Fujian Province (i.e., Gutian, Zherong, Zhenghe, Dehua,
Shouning, Pingnan, and Zhouning) and two counties of Zhejiang Province (i.e., Qingyuan
and Taishun).
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3.2. Relationship between PM2.5 and Landscape Pattern at Type Level

We calculated the correlation of county-based PM2.5 values and the landscape pattern
indices at type level by using the Pearson coefficient in the YRD and Fujian region in 2016,
2018, and 2020, respectively. Figure 6 gives the result of the relationship between PM2.5
concentrations and landscape pattern at type level. Overall, the county-based annual mean
PM2.5 presented a highly significant correlation with four landscape types, i.e., forest land,
farmland, water bodies, and construction land, while three types (i.e., shrub, grass, and
bare land) were not strongly associated with the PM2.5 values. Except for forest land, most
of the type level indices of farmland, water bodies, and construction land were positively
related with PM2.5 concentrations.

As for farmland, PLAND, LPI, and ED presented a significant correlation with the
county-based PM2.5 concentrations (r~0.74). The larger PLAND, LPI, and ED led to higher
average PM2.5 concentrations, and the smoke caused by straw burning after a harvest
was also responsible for the higher annual mean PM2.5 concentrations. The PLAND, PD,
LPI, and ED of the construction land also showed a positive correlation with the county-
based PM2.5 concentrations (r~0.71), where the PLAND–PM2.5 relationship was the highest
of all. With rapid urbanization, the higher proportion of the largest patches of built-up
landscapes to the landscape area and the higher edge density increased the annual mean
PM2.5 concentrations. Therefore, it is necessary to reasonably control edge areas and reduce
the degree of fragmentation in urban expansion. The correlation of PM2.5 and AREA_MN
of water bodies was relatively low; the larger PLAND, LPI, ED, and AREA-MN made
the PM2.5 concentrations much higher. This is possibly because most of the buildings are
distributed around water bodies (i.e., an important supply for human lives), and the PM2.5
concentrations might seriously be affected by the high buildings and human activities.
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For the forest land, most of the indices were significantly correlated with county-
based annual mean PM2.5 concentrations (r~0.84), where PLAND, LPI, and AREA-MN
showed a much higher correlation than LSI and ED, indicating that the proportion of
landscapes, the dominance, and fragmentation had a more significant effect on reducing
PM2.5 concentrations than the landscape shape and structural features. On the other hand,
forest land adsorbs an aerosol through the dry and wet depositions of leaves to reduce
the surrounding PM2.5 concentrations, which has a significant effect on the reduction in
atmospheric particulate matter and the improvement of air quality.

3.3. Relationship between Overall Landscape Pattern and PM2.5

Seven landscape pattern indices including PD, ED, COHES, DIVIS, SHDI, SHEI,
and AI were calculated; only COHES and AI were significantly negatively related with
PM2.5 concentrations (r~0.80) (Figure 7). COHES and AI represented the connectivity and
aggregation of the landscape, respectively, indicating that enhancing the patchiness and
aggregation of forest land could effectively alleviate the fragmentation of the landscape
and, thus, could improve the dust retention effect on the annual mean PM2.5 concentrations.
Three indices, i.e., PD, ED, and SHEI, which reflect the degree of fragmentation of all types
of landscapes in the region, were positively related with PM2.5 concentrations. It can be
concluded that the forest land with high fragmentation would lead to high PM2.5 pollution
due to the dust retention effect of the fragmented landscape. DIVIS and SHDI showed
relatively low correlation with PM2.5 concentrations.
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4. Discussion

The YRD-FJ region is an important part of the coastal economic belt as well as the
ecological barrier area in China. Previous studies mainly focused on urban agglomerations
with poor air quality, such as Sichuan Basin, the YRD, etc., while no study has been reported
using the contiguous region of the YRD (the region with poor air quality) and FJ (the region
with good air quality) as the study area. The advantages of using the YRD-FJ region as the
study area are mainly: (1) the modeling data set with a wider dynamic range provided
by the contiguous area would make the model more stable and explainable than that of a
single region and (2) although both of these two regions are located in the coastal region of
China, their topographies are totally different, i.e., the YRD region is dominated by plains,
while an area of mountains and hills reaches up to 80% in Fujian Province. Therefore,
our results could provide a more scientific basis and support due to the large topographic
differences of these two regions.

In this paper, we used a total of 10 meteorological variables, two land use parameters,
and four emission indices to establish the RF model. At the beginning of the model’s
construction, we tried to apply 18 meteorological variables for PM2.5 prediction; however,
the model’s predictability could not be proven by adding some variables that showed a
low correlation with PM2.5 (e.g., sea level pressure, vertical pressure velocity, etc.). The veg-
etation index and road density were employed to represent the forest coverage and vehicle
emission, respectively, which are closely related with PM2.5 pollution. We also calculated
the relationship of other emission parameters, such as CO and PM2.5 concentrations, and
the results showed that their correlation was extremely low (r = 0.01). Overall, the PM2.5
concentrations presented a generally descending trend from 2016 to 2020, indicating that
the construction of an ecological civilization during the last decade has effectively improved
the air quality in the YRD region. The results derived from the RF model using remote
sensing imageries and other auxiliary variables were consistent with previous studies,
which all showed a pattern of Jiangsu > Shanghai > Zhejiang > Fujian.

Thus far, studies on the correlation of landscape patterns and PM2.5 mainly used the in
situ data from environmental monitoring stations in small- and medium-scale areas. They
established the buffer zones with various radiuses centered on the monitoring stations to
explore their relationships. This buffer zone-based method could reflect the real situation
of a landscape pattern more accurately, but it is hard to choose the optimal radius for
the buffer zone. Previous studies also retrieved the landscape pattern index by using the
whole administrative area as a single unit or by using the element-by-element (moving
window) method. Both of these two methods have certain limitations, e.g., taking the
whole administrative area as a single unit would make it difficult to explore the changes of
landscape pattern at fine scales while the element-by-element (moving window) approach
cannot easily obtain the optimal moving window scale for the study area. For example, we
revealed that the landscape pattern indices calculated by using moving the window method
were not significantly correlated with PM2.5 concentrations (r = 0.01~0.1) in southwest
China. In this study, there were 285 districts/counties in the YRD-FJ region, most of
which exhibited much higher PM2.5 concentrations in Jiangsu province than those in
Fujian Province. Therefore, our research focusing on the landscape patterns and PM2.5
concentrations based on 285 districts/counties with different air pollution levels avoided
the limitations of those two abovementioned methods.

In this study, we not only investigated the impact of land types that have significant
effects on PM2.5 concentrations, such as forest land, construction land, and water bodies,
on air quality, but also discussed the effect of other landscape patterns such as shrubs,
grass land, and bare land on the annual mean PM2.5 concentrations in the study area.
It can be concluded that the proportions of maximum patches to landscape area (LPI),
edge density (ED), shape index (LSI), and mean patch area (AREA-MN) of shrubs, grass
land, and bare land were related to the PM2.5 in the YRD. The indices of shrubs did not
show satisfactory correlations with PM2.5 concentrations in Fujian. At an overall level, all
types of indices exhibited varying degrees of correlation with county-based annual mean
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PM2.5 concentrations. We also tried to understand the relationship between PM2.5 values
and landscape pattern by using buffer zones with different radiuses centered on ground
monitoring stations as well as the moving window method; the results showed rather weak
correlations between landscape pattern indices and annual mean PM2.5 concentrations.
Our results can provide a scientific support of how to integrate the landscape ecology
into air pollution management for an ecological department. However, there were also
some limitations in this study. For example, whether the landscape pattern could affect
the seasonal PM2.5 was not explored. Second, although the landscape pattern was highly
correlated with PM2.5 concentrations, there was a time lag for the landscape pattern and
the real-time PM2.5 change. In addition to the local climate, topography, and landscape
pattern, the inter-regional transmission of the atmospheric pollutants also affects the PM2.5
concentrations in FJ province as the PM2.5 of the YRD region was much higher than that of
FJ province. Therefore, future studies will focus on the effects of seasonal differences and
inter-regional transmission on regional PM2.5 concentrations.

5. Conclusions

In this paper, we validated the predictability of the RF model using MODIS TOA
reflectance and four categories of supplemental variables in estimating the PM2.5 concen-
trations in the region of the YRD-FJ. Satisfactory results with R2 of 0.91, 0.89, and 0.90 in
2016, 2018, and 2020, respectively, were obtained, which outperformed most of the previous
studies. The PM2.5 concentrations and their correlations with landscape indices at two
levels were also discussed. In addition to the land types that had significant effects on
PM2.5 concentrations (i.e., forest land, construction land, and water bodies), the landscape
pattern indices of shrubs, grass land, and bare land (e.g., LPI, ED, and AREA-MN) were
also related to the PM2.5 values. The county-based annual mean PM2.5 presented a highly
significant correlation with four landscape types, i.e., forest land, farmland, water bodies,
and construction land, while three types (i.e., shrub, grass, and bare land) were not strongly
associated with the PM2.5 values. Moreover, three indices, i.e., PD, ED, and SHEI, which
reflect the degree of fragmentation of all types of landscapes in the region, were positively
related with PM2.5 concentrations. The results suggest that reasonable control of land use
and the effective landscape layout of different land use types would improve the air quality
of the YRD-FJ region.
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