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Abstract: Single-objective to multi-objective/many-objective optimization (SMO) is a new paradigm
in the evolutionary transfer optimization (ETO), since there are only “1 + 4” pioneering works on
SMOs so far, that is, “1” is continuous and is firstly performed by Professors L. Feng and H.D. Wang,
and “4” are firstly proposed by our group for discrete cases. As a new computational paradigm,
theoretical insights into SMOs are relatively rare now. Therefore, we present a proposal on the fine
brushworks of SMOs for theoretical advances here, which is based on a case study of a permutation
flow shop scheduling problem (PFSP) in manufacturing systems via lenses of building blocks,
transferring gaps, auxiliary task and asynchronous rhythms. The empirical studies on well-studied
benchmarks enrich the rough strokes of SMOs and guide future designs and practices in ETO based
manufacturing scheduling, and even ETO based evolutionary processes for engineering optimization
in other cases.
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1. Introduction

Single-objective to multi-objective/many-objective optimization (SMO) is conveyed
in a “Big K Tree” (Figure 1b) by our groups of DAO and IIAIAO, which derives from a
Chinese lantern (Figure 1a).
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1. Introduction 
Single-objective to multi-objective/many-objective optimization (SMO) is conveyed 

in a “Big K Tree” (Figure 1b) by our groups of DAO and IIAIAO, which derives from a 
Chinese lantern (Figure 1a). 
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Figure 1. This paper is “iMeets” in the lantern for ETO interpretability [1] or insights. The Chinese
lantern (a) is derived from a green tree (b) of SMO based scheduling. The tree is named as “knowledge
driven scheduling”, which is short for “Big K Tree”. The “Big K Tree” is rooted in “tai ji” [2] of DAO (c).
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As Chinese lanterns symbolize red ornaments for a festive atmosphere, the Chinese
lantern regarding SMOs in Figure 1 is dedicated to the establishment of our lab, Frontier
Science Center for Industrial Intelligence and System Optimization (FSCIIASO), Ministry of
Education from 2021, which is a national level center. In FSCIIASO, we emphasize the key
word of “system optimization” (SO, SO is also in the name of FSCIIASO) when designing
an SMO framework [1–4].

In the lantern, “eMeets” presents big pictures of three “where to go” strategies for
SMOs, which serve as rough strokes of SMOs (the old version is [5], our new version of [5] is
submitted with the new title of “Evolutionary Transfer Optimization Meets Manufacturing:
Single-objective to Multi-objective/Many-objective Optimization for ‘Taiji’ ”). The follow-up
studies of “eMeets” are “rMeets” and “iMeets”. “iMeets” are fine brushworks of SMOs.

Start our scientific journey of “iMeets” with deep learning (to a great extent, the tide
of interpretability is set off by deep learning), a popular kind of black box based artificial
intelligence (AI) [1–41]. In the deep learning community, many researchers endeavor to
open the black box via universality, generalizability [19], over-parametrization and so on.

For example, in the [1] paper “A proposal on machine learning via dynamical sys-
tems”, an applied and computational mathematician uses a powerful mathematical tool of
dynamical system towards a better characterization of deep neural network models.

Then, time for interpretability [30,40] of the computational models in ETOs, which
also belongs to black box based AI [29]. According to the problem types, the paradigm [3]
of ETOs includes five kinds, two of which are the following: (1) An ETO for multi-task
optimization (MTO) and (2) ETO for complex optimization. As a subset of (2), single-
objective to multi-objective/many-objective optimization (SMO) is new. To date there are
only “1 + 4” works on SMOs, “1” is performed by [10], where they firstly invented an SMO,
and “4” was proposed by DAO and IIAIAO (names of our groups).

Theoretical insights into an ETO, which belongs to complex systems [42–64] and
system optimization [2,31,36,37] problems are relatively rare, whether for an MTO or for
an SMO.

Finally, let us take a closer look at both an MTO and an SMO for an ETO interpretability
as follows:

For MTOs and interpretability: In [55], they propose a general formalization of an
ETO and introduce a classification of three categories, sequential transfer, multitasking and
multiform optimization. In [56], they investigate the theoretical studies guaranteeing a
faster convergence when compared to the case of a conventional single task. To analyze the
effects of information transferred from related tasks, they first propose a novel multi-task
gradient descent (MTGD) algorithm, which enhances the updates of a standard gradient
descent with a term of multi-task interaction. They derive the convergence of the MTGD
and present the first proof of a faster convergence of the resultant MTGD relative to its
counterpart of a single task. Via the MTGD, they formulate an evolutionary multitasking
algorithm that is gradient-free, which is called a multi-task evolution strategy (MTES).
Additionally, the single task evolution strategy (ES) they use is shown to approximate the
gradient descent asymptotically and extends the faster convergence results derived for the
case of the MTGD to the MTES as well. Numerical experiments comparing the MTES with
the case of a single task ES on synthetic benchmarks and real work examples substantiate
their theoretical claim.

For SMOs and interpretability: Here come our four surgical knives on search/convergence
landscapes, i.e., building blocks, transfer gaps, auxiliary tasks and asynchronous rhythms,
for a whole picture/proposal of interpretability for an SMO “meeting” the permutation
flow shop scheduling problem (PFSP) towards the manufacturing scheduling (MS) and
carbon neutrality. Because opening the black boxes is somehow similar to treating an
illness or having an operation we call our lenses on landscapes above as surgical knives.
In “iMeets”, we will focus on the abstract SMO implemented with a genetic algorithm
(GA) and a memetic algorithm (MA) to disentangle the knowledge for many industrial
applications (Notes: 1. It should be highlighted that the SMO is general and abstract,
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which can be realized by many special algorithms; 2. The PFSP is also an abstract model in
computer networking, beyond its original modelling of shop scheduling, showing inherent
wide applications. Therefore, we say “many industrial applications”). Although the ES
above differs from our MA, both of them do share some common insights within a common
language of exploration and exploitation (“R-IT”) balance.

Main contributions are as follow:

1. To the best of our knowledge, it is the first attempt to extend a proposal of inter-
pretability on an SMO “meeting” the PFSP towards disentangling the knowledge for
smart manufacturing scheduling and carbon neutrality.

2. We further extend the classical building block hypothesis within the ETO learn-
ing settings to confirm the existence of positional building blocks (BB) [7–9,24–27]
in whole chromosomes, whether head, middle or tail (the first surgical knife of a
building block).

3. We characterize the landscapes in different gaps towards a proper guarantee of a
correlation gap and an asynchronous rhythm (the second and fourth surgical knives
of transfer gaps and asynchronous rhythms).

4. We further discuss the gather [6] or transfer coefficient between the auxiliary tasks for
boosting the core task. (The third surgical knife of the auxiliary task).

The related works are as follows: Interpretability via transfer optimization (TO) (for the
ease of discussion below, TO is exchangeable with ETO here) towards the opening of a black
box. Moreover, the TO and other black box based AIs [51–60], includes machine learning
(ML). One of the most popular subsets of ML is deep learning (DL). In the following, we
will discuss four groups of related works within eight related papers, some of which are
quite important and inspiring.

Interpretable TO for a continuous case (similar to our ETO_PFSP) and vehicle routing:
Firstly, to their best knowledge, their paper is the first work of an evolutionary multi-
objective optimization [13] to enhance the optimization by knowledge transferred from
corresponding single-objective problems. [10] In the deep analysis part of the IV.B in their
work, they put that the transfer success rate has a positive correlation with the paradigm
efficacy, which can be applied to guide the adaptive conduction of a knowledge transfer
towards a positive transferring. Secondly, in paper [12] of a TO based vehicle routing, they
investigate key theoretical questions of knowledge memes, such as “How do the knowledge
memes of related problem domain affect the evolutionary search?” and “What forms of
knowledge memes from related problem domains benefit evolutionary optimization”.
However, those insights are for vehicle routing, not shop scheduling.

Interpretable DL on landscapes of empirical risk in both discriminative and generative
cases: First of all, here is a paper [57] for a discriminative case. The most successful
DL models for vision, such as VGG and ResNets are best used when a degree of “over-
parametrization” is equipped. In this work, they characterize the landscape of the empirical
error of over-parametrized DL models. Then, in another [58] attempt (conducted by one
of the authors of this paper, Wendi Xu) follows the landscape work above, extending the
discriminative case to generative case via a case study of image super resolution from both
biological and mathematical sides.

Interpretable DL for unsupervised and transfer learning: Begins with paper [59], we
find that the general-purpose priors for representation learning includes 10 examples: (1)
smoothness, (2) multiple explanatory factors, (3) a hierarchical organization of explanatory
factors, (4) semi-supervised learning, (5) shared factors across tasks, (6) manifolds, (7)
natural clustering, (8) temporal and spatial coherence, (9) sparsity and (10) simplicity of
factor dependencies. They try to “disentangle” several “of the underlying (and a priori
unknown) factors of variation that the data may reveal”. Moreover, the paper [53] answers
“why unsupervised pre-training of representation can be useful” and how it can be used
for transfer learning.

Interpretable ML via a dynamical system and a weak mechanism from computation-al
and an applied mathematics community: In paper [1] of “a proposal on machine learning
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via dynamic systems”, the author provide an attractive alternative view of a continuous
dynamic system to DL, with a well modeling of a general high-dimensional nonlinear
function used in machine learning. Another source of mathematical insight is a lens of
weak mechanism, proposed by a professor in the forum [61] held by the Beijing Academy
of Artificial Intelligence (BAAI).

In the following, we organize the presentation in a straightforward way. Section 2
gives the specific problem for an evolutionary process for an engineering optimization in
manufacturing applications, that is a PFSP, and the targeted methods in the SMO abstract
framework. Then, after the preparation of a problem application and tool framework,
we show their interaction in Section 3, that is the empirical settings and computational
running/simulating. With vivid analogies and interesting descriptions in Section 3, we
show four insights and the whole picture or proposal is made up of them in Section 4. At
last, conclusions in Section 5 serves as the “take home messages” and also say more about
the lantern and the labs. Additionally, embracing deep learning is on the way for future
works there.

2. Materials and Methods
2.1. Test Problem: PFSP

In many manufacturing systems, all jobs must undergo a series of machine operations.
Often, these machine operations have to be performed on each job in the same processing
order, implying that each job has to follow the same processing route. The machines are
then assumed to be in a series and the scheduling environment is referred to as a setting of a
flow shop. Usually, each queue [33] is assumed to process under the rule of First In First Out
(FIFO) discipline, that is, all jobs cannot “pass” another job while waiting for processing in a
arranged queue. If the discipline of the FIFO is in effect, the flow shop production system is
referred to as a setting of a permutation flow shop. Therefore [33], the scheduling problem
in a permutation flow shop is named PFSP. Therefore, the PFSP [16,35,38] is formulated as
follows: each job or operation is to be arranged sequentially on corresponding machines,
given their own processing time of the machine operation [49]. Every machine can process
one operation or job at most, and every job can be processed at most on one machine during
optimization. The sequence of job permutation is the same on every machine.

The feasibility [32] of search spaces or solution spaces in a PFSP is due to the cor-
responding satisfaction of the optimization constraints (in scheduling problems, a high
level of feasibility usually means a low level of sparseness in solution spaces and vice
versa). Relatively less optimization constraints in the nature of the PFSP will simplify the
problems (more complicated cases, such as job shop) or discrete problems in real world
applications, whose solution spaces may be broken up by temporal type restrictions on
tasks and/or jobs or resources and/or machines, making the traversal of the solution
spaces quite confounded. Thus, the PFSP, which also has the building blocks that are
straightforward, could serve as a nice starting point/platform [64,65] for the investigation
into the scheduling applications or discrete problems, which may be extended for reentrant
scheduling problems.

The optimality [32] of the search space or solution space is due to the corresponding
satisfaction of the optimization objectives. As to the optimization objectives in cases
of the PFSP, we chose the objectives of makespan (Cmax) and total flow time (TFT) as
goals towards optimality for production management. Real-world industrial problems
for manufacturing systems lead to intractable model sizes when rigorous mathematical
formulations are carefully used, which motivates and encourages our evolutionary style of
SMOs that enjoy a happy medium between a good enough solution quality and a tolerable
time cost.
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2.2. The Framework across Tasks: ETO_PFSP or SMO
2.2.1. Four Frameworks: SOO, MOO, MFO and SMO

As in the paper [44], there are three types of optimization problems, that is, single-
objective optimization (SOO), multi-objective optimization (MOO) and multi-factorial
optimization (MFO). The SMO here is nearly the same as the MOO, aiming to boost the
core task, and shares some common transferring mechanisms with MFO. Our ETO_PFSP is
the first discrete case of an SMO.

2.2.2. 4 Bags, 4 × 2 Groups, 4 × 2 × 4 tasks: e.g., Bag 0: Group 1, t1_wc(t_wc 1.0, t_wc 1.1),
t2_wc and t2e_wc; Group 2, t1_nc(t_nc 1.0, t_nc 1.1), t2_nc and t2e_nc

The overview is in Figure 2. In ETO_PFSP, for each Bag, we setup two task groups.
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Figure 2. The overview [5] of the SMO pipeline is above. The abstract framework behind the overview
actually is the same as “Meets”, “eMeets” and “iMeets”. In the pipeline, we take generation i as
an illustration, the flow is from parent Pi to Pi

offspring. During the flow, it undergoes a clustering
operator W, a crossover operator X, a local search operator L and selection operators.

Bag 0 is full of group 1 and group 2. “Group 1 has four optimization tasks, namely,
task t1_wc, including two sub tasks (task t_wc 1.0 and task t_wc 1.1), task t2_wc and task
t2e_wc, where “wc” is with clustering and “e” means external transferring from task t1_wc,
sharing the same optimization toolkit of W-X-L (only cross probabilities vary in X, more
can be seen in 3.1). All of the above are the same as in group 2 of task t1_nc (task t_nc 1.0
and task t_nc 1.1), task t2_nc and task t2e_nc, except that no clustering (named “nc”) is in
operator W [49]. For Bag 0, each case calculates the measure of the hamming distance in
the job permutation from the whole chromosome (that is, head, middle and tail).

Bag 5 owns groups 3 and 4, which are nearly the same as group 1 and group 2 in Bag 0.
Only two settings differ. First, M modification is set in groups 3 and 4 to obtain the former
two, that is, just remove M(M) in X. Secondly, in bag 5, each case calculates the measure of
the hamming distance in the job permutation from head, middle to tail, separately (just test
the special distribution of positional BB).
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Then, Bag 6 stores group 5 and 6, which are also nearly the same as group 1 and
2. Only two setups differ. M modification is set. Moreover, there is just a change to the
transferring gaps.

Moving forward with Bag 7, which is occupied by groups 7 and 8, which are nearly
the same as groups 1 and 2. Only add two new settings. M modification is used and testing
the different combinations of the transfer coefficients in the auxiliary tasks.

Lastly, we achieve Bag 8 (groups 9 and 10), which are nearly the same as groups 1 and
2, with an addition of two new settings. M modification is applied. and the testing of the
different asynchronous rhythms.

W-X-L deploys a special operator to choose parents (W), a crossover (X) operator
and a local search (L) operator. It is worth mentioning that the family of tasks above
shares the same initial (I) population(random) for a fair comparison. The phase of selection
(S) differs. For S, we use NSGAII, some sorting methods by the Cmax objective or TFT
objective and so on. Therefore, there are so many shared parts above from both the problem
and algorithm sides, which are elaborately constituted towards a harmony test bed for a
well-defined SMO.

The details of W (seen in Figure 3). For W, with C and S? (Figure 4), we choose parents
Pi. The key component, density peak based clustering (DPBC) [54] is developed in C.
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Figure 3. We can see the details of the clustering operator W [5] for investigation of positional
building blocks. Here, we choose parents Pi as an example. Moreover, the clustering algorithm DPBC
is in operator C. DPBC is quite complex, which will be analyzed further in Figure 4.

Here is the detail of C. In [54], “science clustering” (because it was published at journal
of “science”, so we call it “science clustering”) is based on the deep observation that the cen-
ters of clusters in a sample space are characterized by both “a relatively higher density than
points in their neighborhoods” [6,49] and “a relatively long distance from points that have
higher densities” [6,49]. For the PFSP here, we implement science clustering via a hamming
distance metric, which is widely accepted and used in evolutionary computation research.
To our surprise, the hamming distance also focuses on the work of mining the positional
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BBs. Quite obviously and intuitively, the measure of the “hamming distance (dissimilarity)
and positional BB (similarity) work from opposite sides to the same characterization” [6,49].
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Figure 4. The details of complex operator C [5] can be seen above, which involves a clustering
method. The stars means solutions. You can see a typical ρ-δ(rho-delta) graph in the simulation. ρ
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The details of XL (in Figure 5), especially X. More of X is in Figure 5. L is an ordinary
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Figure 5. The details of the crossover operator X [5] for an evolutionary search is presented above
(the asterisk in the figure is a multiplication sign “×”). The mutation operator M may help us to
overcome the problem of premature convergence. M depends on the number of jobs. We use both
one point crossover and two points crossover.

The details of SS in S (seen in Figure 6). Both task t1_wc/nc and task t2_wc/nc have
no settings of Pi0, only task t2e_wc/nc needs the setting of Pi0 every G generation [49].
Both task t_wc/nc 1.0 and 1.1 establish the selection pressure via the settings of a single
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optimization objectives, and both tasks t2_wc/nc and t2e_wc/nc use both the optimization
objectives via the NSGAII.
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Figure 6. The details of operator SS [5] are shown above. In SS, we have many sub-operators for
selection purposes. Actually, our robustness of SMO frameworks mainly relies on the performing of
SS. Therefore, we tend to believe that SS is the “transfer core”.

3. Results
3.1. Experimental Setup

To test the validation of the SMO or the framework of the ETO_PFSP, we carry out an
extensive computational simulation on some well-known PFSP instances in well-studied
international benchmarks, that is, instance tai01(20 × 5), instance tai42 (50 × 10) and
instance VFR100_20_1(100 × 20), e.g., the simple symbol of 20 × 5, denotes 20 jobs and five
processing machines in the PFSP.

And in our computational simulation, ETO_PFSP or SMO is run on computer servers.
The following simulation parameters of the SMO are set: “N is set as 100, and the

number of generations is set as 100. In task t1_wc/nc 1.0 and 1.1, [px1, px2/m] are set as
[0.3, 0.7] and [0.1, 0.9], respectively. For task t2_wc/nc and task t2e_wc/nc, i is the value
of [0.2, 0.8]. For options of reference points, instance tai01 takes the range of (2500, 1000)
to normalize the optimization objective of Cmax, and (25,000, 10,000) to normalize the
optimization objective of TFT; instance tai42 uses the values of (4200, 2500) and (120,000,
80,000); and instance three picks the settings of (10,000, 5000) and (550,000, 350,000). The G
gap chooses 2. The base-line size of Pi2 is given as 50, which is modified by a factor of K1.
For the size of Pi1, the base-line size takes 20 + H. Additionally, 20 above is also adapted by
a value of K2, H can be 0, 1, 2 or 3, depending on the computational solutions with equally
measured distances at a corresponding cutting distance [49].

Varying the setup of [K1, K2] in each Bag in 4.2 (The setting is a vector of [1, 0.6] in Bags
5, 6 and 7. While, for Bag 8, the vector is [1,1]), we obtain nine cases (in Figures 7–10, each
figure owns nine cases) for Bags 5 or 6 or 7 or 8, and each case owns a total of 20 independent
runs. In each run, we perform computational simulations of eight optimization tasks, that
is, two optimization task groups.
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and transferring tools. We study the auxiliary tasks and their transfer coefficients here.
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Figure 10. Cases 1, 2, . . . , 9 for Bag 8 are presented above. Bag 8 is connected with Bag 6, but still
differs from it. Notes: (1) “stat” means statistics of hypervolume, which is focused on optimization
objectives of both Cmax and TFT towards the nature of Pareto characterization for evaluation and
selection; and (2) t2_nc is NSGAII, without both clustering and transferring.

3.2. Simulations and Comparisons

In every case, both task t2_wc and task t2e_wc work with clustering, and both task
t2_nc and task t2e_nc are performed without clustering.
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In every case, we evolve overall 4 (bags) × 100 (generations per task) × 4 (4 tasks in
each group) × 2 (wc/nc, that is wc or nc) × 20 (independent runs) = 80,000 generations.

Then, in Bags 5, 6, 7 and 8 (Figures 7–10), we will give a more systematic study of each
facet/lens, then combine the four facets to obtain the whole picture/proposal.

For Bag 5, we test the lens/surgical knife of building block distribution.
A vivid intention or original design of Bag 5 is to find the specific contribution of each

section.
For example, we may expect that the tail section in the chromosome contributes mostly

and acts as the main driving power, which will shadow and hide the middle section and
the tail section.

If we find that cases 1 and 2 give results of very low effective transferring, that is to say,
the distance among the two lines that we are interested in in Figure 7 are too close to each
other, while searching for dynamic results in case 3, tell us that there is a very encouraging
and obvious positive transferring effectiveness is discovered or that an improvement in the
distance from the source line to the target line that we care about in Figure 7 is large, then
we will be more confident to give prominence to the main role of the tail section.

However, from Figure 7, we do not find that anyone in the three sections conquers the
other two.

For to Bag 5, between t2_wc and t2e_wc pair, there is almost always (except case eight)
an obvious positive transferring effectiveness in Figure 6 (a figure containing nine results),
which tends to validate that there exists a great effectiveness in the part in of the SMO.
Whereas, as to t2_nc and t2e_nc, both great effectiveness and normal effectiveness exist.
Those are in Table 1 below.

Table 1. Comparisons in Bag 5 for ETO_PFSP framework.

Bag 5

Operators and Transfer Effectiveness

Operators
Notes: g means group
e means effectiveness

ee means great effectiveness.
ie means ineffectiveness

t2_wc
V.S. t2e_wc t2_nc V.S. t2e_nc

case 1 head (0~6) total 0~19 ee ee

case 2 middle (7~12) total 0~19 ee ee

case 3 tail (13~19) total 0~19 ee ee

case 4 head (0~16) total 0~49 ee e

case 5 middle (17~32) total 0~49 ee e

case 6 tail (33~49) total 0~49 ee e

case 7 head (0~33) total 0~99 ee e

case 8 middle (34~65) total 0~99 e e

case 9 tail (66~99) total 0~99 ee e

Summary: Bag 5, head (case 147): ee, e
middle (case 258): ee, e
tail (case 369): ee, e

Then, in Bag 6 below, we will focus on the facet on transfer gaps/rhythms. Here are
another nine cases as follows:

An interesting idea and a vivid analogy of Bag 6 is that someone may tend to walk
quickly and some may become accustomed to a slow style of walking.

We should find the most suitable way and the best working statue for an SMO’s
transfer gap setting, therefore we compare four persons in each case in Figure 8 below.

There are 4 × 9 = 36 persons attempt to find their most comfortable working styles.
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As to Bag 6, between the pair of t2_wc and t2e_wc, there is definitely an obvious
positive transferring effectiveness in Figure 9 above, which tends to validate a great effec-
tiveness (ee) part in our framework.

Whereas, for t2_nc and t2e_nc, both normal effectiveness (e) and ineffectiveness (ie)
can be seen.

Those two observations are summed up below in Table 2.

Table 2. Comparisons in Bag 6 for ETO_PFSP framework.

Bag 6

Operators and Transfer Effectiveness

Operators
Notes: g means group
e means effectiveness

ee means great effectiveness.
ie means ineffectiveness

t2_wc
V.S. t2e_wc t2_nc V.S. t2e_nc

case 1 transfer gap 2:2:2 ee ee

case 2 transfer gap 4:4:4 ee e

case 3 transfer gap 1:1:1 ee ee

case 4 transfer gap 2:2:2 ee e

case 5 transfer gap 4:4:4 ee e

case 6 transfer gap 1:1:1 ee e

case 7 transfer gap 2:2:2 ee e

case 8 transfer gap 4:4:4 ee e

case 9 transfer gap 1:1:1 ee e

Summary: Bag 6, baseline gap(case147): ee, e
faster gap(case258): ee, e
slower gap(case369): ee, e

Then, moving forward to Bag 7 below, we will just study the lens of the transfer
coefficient.

A helpful imagination of Bag 7 is that one leader may have two assistants (task t_wc
1.0 and task t_wc 1.1) and he is not clear about which assistant is more suitable or stronger
for him.

For instance, the left assistant of the TFT objective, that is task t_wc 1.0, may give more
supporting strength than the right one or task t_wc 1.1.

And in Bag 7, between the tasks of t2_wc and t2e_wc, or between the pair of t2_nc and
t2e_nc, and an obvious positive transferring effectiveness exists in Figure 10, which tends
to strongly validate the great effectiveness (ee) in the SMO.

Those observations are again summed up via Table 3.
Then, in Bag 8 below, we will take a closer look at the surgical knife of the asynchronous

gaps/rhythms. Another nine cases are as follows.
A strong motivation behind Bag 8 is our intuitive sense of music. Why should the gap

be equal for both sides (task t_wc 1.0 and task t_wc 1.0)? If the balance is lost, what will
happen? Equal rhythm is necessary? In a managerial background, people are not satisfied
with intuitive observation; therefore, our investigation of Bag 8 in Figure 10 is striking for
those questions.

In Bag 8, for the tasks of t2_wc and t2e_wc, there is both normal effectiveness (e) and
great effectiveness (ee) in Figure 10 above, which tends to validate the effectiveness part in
the SMO.

Whereas, between t2_nc and t2e_nc, normal effectiveness (e), great effectiveness (ee)
and ineffectiveness (ie) can be seen.

Those are summed up below in Table 4.
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Table 3. Comparisons in Bag 7 for ETO_PFSP framework.

Bag 7

Operators and Transfer Effectiveness

Operators
Notes: g means group
e means effectiveness

ee means great effectiveness.
ie means ineffectiveness

t2_wc
V.S. t2e_wc t2_nc V.S. t2e_nc

case 1 left tft, right cmax ee ee

case 2 left tft, right tft ee ee

case 3 left cmax right cmax ee ee

case 4 left tft, right cmax ee e

case 5 left tft, right tft ee e

case 6 left cmax right cmax e e

case 7 left tft, right cmax ee e

case 8 left tft, right tft ee e

case 9 left cmax right cmax e e

Summary: Bag 7, tm (case147): ee, e
tt (case258): ee, e

mm (case369): e, e

Table 4. Comparisons in Bag 8 for ETO_PFSP framework.

Bag 8

Operators and Transfer Effectiveness

Operators
Notes: g means group
e means effectiveness

ee means great effectiveness.
ie means ineffectiveness

t2_wc
V.S. t2e_wc t2_nc V.S. t2e_nc

case 1 transfer gap 2:2:2 ee ee

case 2 transfer gap 4:2:4 e e

case 3 transfer gap 4:2:2 ee e

case 4 transfer gap 2:2:2 ee e

case 5 transfer gap 4:2:4 ee ie

case 6 transfer gap 4:2:2 ee ie

case 7 transfer gap 2:2:2 ee e

case 8 transfer gap 4:2:4 ee ie

case 9 transfer gap 4:2:2 e ie

Summary: Bag 8, rhythm/gap(case147): ee, e
rhythm/gap(case258): ee, ie
rhythm/gap(case369): ee, ie

4. Discussion
4.1. Insight into Bag 5: Building Block Distribution in Head, Middle and Tail

The BB theory/hypothesis is mainly based on Goldberg’s decomposition theory,
which contains seven steps as follow: (1) “Know what GAs process”—BBs; (2) solve the
optimization problems, which have bounded the BB difficulty; (3) ensure that the supply of
raw BBs is adequate; (4) ensure that the “market share” of superior BBs increases; (5) know
“BB takeover” and the models of the convergence times; (6) ensure that GAs make the BB
decisions well; and (7) ensure that the mixing of BBs is good.
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According to those seven steps, the BB processing pipelines with five steps are as
follows: (1) creation, which creates the raw supply of BBs; (2) identification, that attempts
to identify the good BBs; (3) separation, which separates the superior BBs; (4) preservation,
which maintains the good BBs; and (5) mixing, that reassembles good BBs [21].

Considering these “7 + 5” steps above and transferred knowledge, we propose a
hypothesis that a positional BB dominates other BBs. Let us study Cmax. For Makespan
or Cmax, the minimum result of the maximum completion time plays the role of the
most powerful and core optimization objective/driving force among the management
objectives in many-objective, multi-objective and single-objective machine scheduling
problems. Cmax dominates the total flow time (TFT), maximum lateness, total tardiness
and so on. In other words, it should be put forward first that better a Cmax, usually,
is also strongly correlated with other better optimization objectives. For combinational
problems, especially for machine scheduling or a PFSP, those building blocks remains
unclear and some important clues may help us. Positional, precedent and adjacent types
of information units in combinational problems are believed to exist. In travel salesman
problems, positional structures are dominated by adjacency structures, while positional
structures matter more than adjacency structures for the optimization objective of Cmax in
the case of the PFSP [27]. Based on those observations above, we tend to believe that there
may exist three kinds of BBs, that is, positional, precedent and adjacent BBs. In experiments
here, we will focus on the first one, the positional BB. Therefore, we can summarize that BBs
of a positional type help improve the Cmax, and also improve other objectives inherently,
the significance of positional ones is highlighted here.

According to the discussions above, Bag 5 tends to tell us that positional building
blocks are located everywhere, no matter in the head, middle or tail. Problems with
specified structures and/or known building block distributions may help solve the question
better. So in the future, we need PFSP datasets, such as ImageNet to build transparent
models and paradigms, constituting a well-defined search space topology [38].

4.2. Insight into Bag 6: Fitness Landscape Analysis via Gaps 2, 4 and 1

Fitness landscape analysis [39,41] gives insight into the reactions between algorithms
and problems, and provide the measurement of correlations between tasks. The tool or
model of the local optima network (LON) may help explain the meta-heuristic search
dynamics. Because our instance is large (20, 50 and 100), not in the current tractable scope
of LON (in job shop scheduling, the pattern of instance difficulty is “easy-hard-easy”, we
also tend to believe that the scope here is beyond the relatively easy instances in LON
research now), we still analyze the landscape via a straightforward hv-generation picture
in Bag 6. We changed the key factor of the transferring gaps from 2 and 4, to 1.

Comparing gap 2 with 4, without a clustering setting (a dark green line and a red line),
the boosting between tasks is nearly lost. Partly due to the loss of correlation in the fitness
landscapes. However, for gaps 2 and 4, with the clustering setting (a light green line and a
blue line), the correlation still exists, although weakened by the new setting. Therefore, a
larger gap should be cautious.

Comparing gaps 2 and 1, without clustering, the boosting effectiveness between the
tasks remains because of the existence of the correlation conveyed in the fitness landscape.
Additionally, for gaps 2 and 4, with clustering, the correlation still comes. Therefore, a
closer gap is allowed.

4.3. Insight into Bag 7: Auxiliary Tasks, Transfer Coefficient and Driving Forces

From Bag 7, we find that the boosting effectiveness between the light green line and
the blue line is the lowest in each triple (case 1, 2 and 3, triple 1; cases 4, 5 and 6, triple 2;
and cases 7, 8 and 9, triple 3).

That is, 2*task 1.1(mm, cases 3, 6 and 9) is the worst combination of the transfer
coefficients [56], and 1×task 1.0 + 1×task 1.1(tm, case 1, 4, 7) and 2×task 1.0(tt, case 2, 5 and
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8) are nearly the same. (In MTES [56], the authors also care about the transfer coefficients,
which inspires our work here via the common framework of “R-IT” balance.)

Both auxiliary tasks (mm, case 3, 6 and 9) via makespan, will decrease the diversity in
the solution space; therefore, this harms the performance because the auxiliary tasks will
be greatly covered by the domination of the makespan driving force (4.1 already discusses
makespan) in the core tasks.

4.4. Insight into Bag 8 and the Whole Picture/Proposal Combining Bag 5,6,7,8: Asynchronous
Rhythm, 3W Framework

In each triple (cases 1, 2 and 3, triple 1; cases 4, 5 and 6, triple 2; and cases 7, 8and 9,
triple 3) of Bag 8, the order of the boosting or the transferring performance between t2_wc
and t2e_wc regarding the asynchronous rhythms is: “222” > “424” > “422”.

The first “>” agrees with the insight into Bag 6, an improper slower rhythm or larger
gap harms the SMO (that is, four is slower and the larger, or two is better than four).

Additionally, the second “>”, tells us that one asymmetric aesthetics (“422”. For
“22” or “44”, we say symmetric aesthetics, while “24” or “42” is asymmetric aesthetics.)
does not play more sounder music than the two asymmetric aesthetics (“424”), although
one gap (gap 2), which is smaller or faster (“422” owns an additional right 2 than “424”).
The two asymmetric aesthetics still hold the balance of the total symmetric aesthetics.
Engineering, science and art (or music) agree on the same rule defined/conquered by
Nature/Truth/Gold.

After we gather insights into Bags 5, 6, 7 and 8, let us try to obtain the whole pic-
ture/proposal. As Prof. Yao Xin from Southern University of Science and Technology puts
(in a forum about the interpretability topic held by the Tencent Research Institute on the
11 January 2022), interpretability faces a key and common framework of 3W, that is, Who,
What and Why.

Here, to our researchers (Who), the proposal (What) of “keep eyes on the whole chro-
mosome, be cautious of larger gaps, encourage diverse auxiliary tasks and asynchronous
asymmetric rhythms whilst still preferring to hold on to the total symmetric/balance of
music” are the potential important tips to explain why SMOs work well. For people who
are less familiar with our evolutionary and learning tools, the proposal should be different
and more specified.

5. Conclusions

Heading towards the international pledge of China’s carbon neutrality [16] and imple-
menting “system optimization” scientific pursuits in both DAO/FSCIIASO and IIAIAO
labs (DAO is Key Laboratory of Data Analytics and Optimization for Smart Industry,
Ministry of Education, and IIAIAO is Institute of Industrial Artificial Intelligence And
Optimization. Both D.H. and W.X. are also from IIAIAO.), we need powerful SMOs. To
develop and apply powerful SMOs, we need SMO interpretability or SMO insights.

Our SMO insights are in a proposal: “keep eyes on the whole chromosome, be cautious
of larger gaps, encourage diverse auxiliary tasks and asynchronous asymmetric rhythms
whilst still preferring to hold onto the total symmetric/balance of music”. The proposal
attempts to answer the questions of disentangling the knowledge for both theoretical and
practical demands. There is both science and art (the fourth insight, with some connections
with music or rhythms) in SMOs.

From both theoretical and practical sides, we tend to believe that transfer coefficients,
transfer gaps and transfer core (so far, in the SMO, the operator SS is the core) are key
concepts for SMOs and ETOs.

In the future, many directions [38,53], are inspiring and attractive. To build surrogates
armed with deep learning [14,15,17,18,23,28,50] in SMO seems important. Combining
interpretability in both deep learning and SMOs may open the black boxes in complex
systems and boost the scientific advances for “system optimization” in “tai ji” [2].
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