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Abstract: The P-S-N curve is a vital tool for dealing with fatigue life analysis, and its fitting under the
condition of small samples is always concerned. In the view that the three parameters of the P-S-N
curve equation can better describe the relationship between stress and fatigue life in the middle-
and long-life range, this paper proposes an improved maximum likelihood method (IMLM). The
backward statistical inference method (BSIM) recently proposed has been proven to be a good solution
to the two-parameter P-S-N curve fitting problem under the condition of small samples. Because
of the addition of an unknown parameter, the problem exists in the search for the optimal solution
to the three-parameter P-S-N curve fitting. Considering that the maximum likelihood estimation
is a commonly used P-S-N curve fitting method, and the rationality of its search for the optimal
solution is better than that of BSIM, a new method combining BSIM and the maximum likelihood
estimation is proposed. In addition to the BSIM advantage of expanding the sample information, the
IMLM also has the advantage of more reasonable optimal solution search criteria, which improves
the disadvantage of BSIM in parameter search. Finally, through the simulation tests and the fatigue
test, the P-S-N curve fitting was carried out by using the traditional group method (GM), BSIM,
and IMLM, respectively. The results show that the IMLM has the highest fitting accuracy. A test
arrangement method is proposed accordingly.

Keywords: three-parameter P-S-N curve; improved maximum likelihood method; backward statistical
inference method; small samples

1. Introduction

In the design of key engineering equipment, anti-fatigue design is one of the most
important considerations [1,2] because the critical components of such equipment are often
subjected to long-term variable loads. In the field of fatigue life prediction, the P-S-N
(probability of survival-stress/strain number of cycles) curve of material or part is an
important tool to describe the relationship among the survival rate, stress, and fatigue
life [3,4].

In practical engineering, due to the limitation of time and cost, the large-scale fatigue
test is usually not feasible. In many cases, data from fatigue tests are limited, or there
are only a few samples. Under such circumstances, many studies have focused on how
to minimize the sample size and shorten the experimental time [5–8]. However, how to
make better statistical analysis of experimental data and obtain more accurate P-S-N curve
estimation with limited data has always been a concern of scholars [9–12].

The three-parameter P-S-N curve is a common form that can better describe the fatigue
behavior of materials and parts. Because, in metal materials, the P-S-N curve in the middle-
and long-life range is no longer linear in the logarithmic coordinate system [13]. There
have been numerous types of fitting techniques developed and widely used in advanced
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statistical analysis, including the maximum likelihood method (MLM) [14–18], the group
method (GM) [19–27], and the backward statistical inference method (BSIM) [28–31].

For MLM, the concept of likelihood was first put forward by Lambert [14] and then
was used by the ASTM standard [15] to fit the two-parameter P-S-N curve in detail. Then,
MLM was used for three-parameter P-S-N curve fitting. As mentioned in references [16,17],
the advantage of MLM is that it greatly reduces the time cost and the number of samples
needed to solve the fitting parameters accurately. In the case of a large number of samples
at a certain stress level, Jing [18] used the MLM to fit P-S-N curves, reducing the number of
unknown parameters.

The GM [19,20] was first applied to two-parameter P-S-N curve fitting [21], assuming
that the standard deviation of life is independent of stress [22,23]. At each test stress
level, the GM evaluates points under a given probability (and confidence limit) and then
considers these points for P-S-N regression. The GM can only obtain accurate P-S-N results
when the sample size is large enough [24–26]. Fu [27] obtained the fatigue limit parameters
through testing and then used the GM to fit the P-S-N curves.

The BSIM was proposed by Xie [1,28] based on the fatigue life percentile consistency.
Li [29] determined the interval and method of parameter search. However, the assumption
that a linear relation between logarithmic life standard deviation and stress is inconsistent
with the S-N equation adopted. Tan [30] revised the assumption and determined the
needed number of specimens in the test of P-S-N curves under a given relative error.
Bai [31] assumed that the coefficients of logarithmic fatigue life variation at different stress
levels are equal and integrated all lives by the BSIM to obtain the life distribution parameter.

A concurrent probability method has recently been proposed to estimate the P-S-N
curves, which are based on mid-long life test data and fatigue limits [32]. For fatigue
reliability analysis, the survival analysis described the fatigue failure process to produce a
set of flexible and accurate P-S-N curves [33]. The fitting methods of the P-S-N equation
were given using Bayesian methods [34,35]. Because of the need to deal with the selection
of prior distribution, these methods are suitable for the case of known information prior. If
the available training fatigue database is large enough, a neural network method [36] for
composite materials can be used to describe the scatters of S-N curves. The disadvantage
is the need to select the appropriate input parameters and network structure. A recursive
neural network was applied to composite materials [37] to overcome the shortcoming
of network structure selection. However, when the sample size is small, it is difficult to
get reasonable three-parameter P-S-N curves due to unreasonable assumptions and low
accuracy.

How to determine the minimum sample size for fatigue tests is a problem of concern.
To determine the sample size, Gope P C [38,39] studied sample size estimation methods for
the lognormal distribution and Weibull distribution. Efron B [40] proposed an enhanced
sample statistics method with a certain confidence level. Fu H [41] proposed a unilateral
tolerance factor through statistical inference and gave the relative error at the unilateral
confidence lower limit.

In this paper, the principle of sample information aggregation is introduced into the
three-parameter P-S-N curve fitting first, and then the BSIM method is proposed. The three-
parameter P-S-N curve fitting process of GM is introduced secondly. Then, an improved
maximum likelihood method (IMLM) is proposed, which combines the principle of sample
information aggregation with the MLM. In order to verify the effectiveness of the three
methods, the P-S-N curve fitting is carried out based on simulation data and experimental
data. Finally, the determination of the minimum number of specimens in P-S-N testing was
proposed considering the given relative error and confidence.
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2. Improved Methods
2.1. BSIM

Based on the rule of consistency of failure trace [42], the BSIM converts the lives under
different stresses to expand the application of sample information. Now, this method is
extended to the fitting of the three-parameter P-S-N curve.

Supposing the fatigue life N follows a lognormal distribution, survival rate p can be
expressed as follows

p = 1− P(N < np) = 1−Φ(
log(np

)
− µ

s
), (1)

where np is the fatigue life n associated with 1−p%, s and µ are the standard deviation and
mean value of log(N), respectively, and Φ(•) is the standard normal distribution function.
If under stress σj and the survival rate of sample i is p, then under the stress level σk, its
survival rate is still p. This means that a sample that is weak (strong) at one stress level will
be weak (strong) at another stress level. The failure track followed by the specimen is the
current P-S-N curve, as shown in Figure 1.
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So, it can be given as

log(nji
)
− µj

sj
=

log(nki)− µk
sk

(2)

where nji is the fatigue life of sample i at σj, transforming it into

log(nji) =
log(nki)− µk

sk
sj + µj. (3)



Processes 2023, 11, 634 4 of 14

According to Equation (1), fatigue lives from other stresses and can be converted to
one stress, as shown in Figure 2. Thus, the sample information can be extended. To achieve
the goal, we need to determine the relation between µ, s, and σ, respectively.
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The equation of the three-parameters P-S-N curve is [43](
σ− σ0p

)mp N = Cp, (4)

where mp, Cp, and σ0p are material parameters corresponding to p. We take the logarithm
on two sides:

log(N) = log(Cp)−mp log
(
σ− σ0p

)
. (5)

So, the median S-N curve is

µ = log(C50)−m50 log(σ− σ0,50). (6)

The relationship between µ and σ is obtained. Next, we need to determine the rela-
tionship between s and σ. Deforming Equation (1) gives:

log(np
)
− µ

s
= Φ−1(1− p). (7)

Combining Equations (5)–(7) gives

s(σ) =
m50 log(σ− σ0,50)−mp log(σ− σ0p) + log(Cp/C50)

Φ−1(1− p)
. (8)

When p = 0.99, s is demonstrated as

s(σ) =
m99log(σ− σ0,99)−m50log(σ− σ0,50)

2.3263
+

log(C50/C99)

2.3263
. (9)
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The relationship between s and σ is obtained. The relationship between standard
deviations at different stress levels is needed for the conversion. The relation between sk
and sj is derived as

sk = sj +
m99log(σk − σ0,99)

2.3263log(σj − σ0,99
) + m50log(σj − σ0,50

)
2.3263log(σk − σ0,50)

. (10)

From Equation (10), sk is determined by four unknown parameters, σ0,50, σ0,99, m99,
and sj. Using logarithmic fatigue lives at all levels of stress, m50 can be easily calculated.
Obviously, after the life standard deviation is determined for certain stress (for example,
the highest stress, s1), the relationship of life standard deviation–stress can be determined
by σ0,50, σ0,99, and m99.

Such transformation is equivalent to changing the life formation process (changing
the stress) of the same sample and obtaining fatigue life data under different stresses. This
achieves the purpose of enlarging the sample size.

The judgment of search termination is that the relative error of logarithmic life standard
deviation of the target stress level before and after life data conversion reaches a minimum.
So, one can use Equations (3)and (10) to fit P-S-N curves. The parameters to be searched
and determined include σ0,50, σ0,99, and m99. Obviously, the search range for σ0,50 and σ0,99
is [0, σmin]. If the number of samples corresponding to the target stress level is less than 6,
the s of the target stress level should also be searched [29]. The overall steps are as follows.

(1) Take the mean of the logarithmic lives at σj,

µj
′ =

∑
qj
i=1 log(nj,i)

qj
, (11)

where qj is the sample size at σj.
(2) Search for σ0,50 in the set [0, σmin], and the step size is 0.1 MPa. For each σ0,50 to

fit the relationship between the sample mean and stress by the least squares method, thus
acquiring the 50%-S-N equation as

µ̂ = log(C50)−m50log(σ− σ0,50). (12)

(3) Then, determine the value range of s1 (parent standard deviation at the highest
stress σ1). When there is only one sample at σ1, the value range of s1 can refer to materials
with similar properties. When samples are larger than one and smaller than six at σ1, the
sample standard deviation is calculated by

s1
′ =

√√√√ 1
q1 − 1

q1

∑
i=1

(log(n1,i)− µ′1)
2. (13)

Thus, the search region of s1 can be [0.1s1
′, 10s1

′]. Otherwise, s1
′ is directly determined

by Equation (11).
(4) As for each s1, search for σ0,99 in the set [0, σmin] and m99 in the set [0, 10m50].

Given each parameter set, s1, σ0,99, and m99, based on Equations (3) and (10), it is possible
to convert fatigue lives at other stress levels into fatigue lives at level σ1.

(5) As a result of the conversion, s1
′ at σ1 can be recalculated by using the whole

samples.
(6) Determine the optimal parameter set, s1, σ0,99 and m99, which makes the relative

error, |s1 − s1
′|/s1, the smallest. Then, the ŝ at each stress level can be finally obtained by

Equation (10).
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(7) The logarithmic life at p can be calculated by log(np) = µ̂ + hŝ, where h is the
one-side tolerance factor associated with three parameters: p, confidence γ, and freedom
degree T-1 (T represents the total number of samples).

h = αpβ− tγ

√
1/n + α2

p(β2 − 1) (14)

and

β =

√
T − 1

2
Γ(

T − 1
2

)/Γ(
T
2
), (15)

where tγ is the t-distribution’s γ percentile, and β is the correction coefficient of standard
deviation.

Finally, the P-S-N equation can be obtained by fitting the relation between log(np) and
stress with the least squares method.

2.2. GM

This is a traditional P-S-N curve fitting method, which directly searches for the three
unknown parameters of the P-S-N curve equation by calculating the standard deviation
and the mean value of logarithmic life at each stress level. The overall steps are as follows:

(1) Calculate the sample mean and standard deviation of the logarithmic lives at all
stresses, respectively;

(2) Search σ0,50 in the region [0, σmin] and set the step size as 0.1 MPa. For each σ0,50,
the median S-N equation, µ̂ = log(C50) − m50log(σ − σ0,50), is derived by fitting all
sample means by the least squares method;

(3) Search σ0,99 in the region [0, σmin] and set the step size as 0.1 MPa. For each σ0,99, the
logarithmic life at p can be calculated by log(np) = µ̂ + hŝ. Finally, the P-S-N equation
can be obtained by fitting the relation between log(np) and stress with the least squares
method.

2.3. IMLM

In the BSIM, the judgment of search termination is that the relative error of logarithmic
life standard deviation of target stress level before and after life data conversion reaches a
minimum. This criterion is not rigorous, so multiple sets of solutions may occur. The MLM
can solve this problem. By applying the principle of sample aggregation to the maximum
likelihood estimation, the estimation accuracy can be improved by increasing the sample
information.

The stress level σr with no less than six samples is selected as the reference stress
level, and the sample’s mean, µr, and standard deviation, sr, are obtained. If there is no
stress with large samples, the highest stress level is selected as σr, and its corresponding
life standard deviation is treated as an unknown parameter. The logarithmic life standard
deviation is expressed as

s(σ) = sr +
m99

2.3263
log(

σ− σ0,99

σr − σ0,99
)+

m50

2.3263
log(

σr − σ0,50

σ− σ0,50
), (16)

where σ0,50 and m50 are determined by the same method of BSIM in Step (1) and Step (2).
According to the assumption that the fatigue life follows the lognormal distribution, the
probability density function of life N at stress i is

f (log Ni) =
1√

2πs(σi)
e
− [log Ni−µ(σi)]

2

2s2(σi) . (17)
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Then, according to Equation (3), all life samples were converted to other stress levels
to obtain the extended life samples. Considering life samples at all stress levels a, the
maximum likelihood function L is established as

ln L = −
a

∑
i=1

{
ln
√

2π + ln s(σi) +
[log Ni − µ(σi)]

2

2s2(σi)

}
. (18)

We define F as

F(sr, σ0,99, m99) =
a

∑
i=1

{
ln s(σi) +

[log Ni − µ(σi)]
2

2s2(σi)

}
. (19)

When F achieves a minimum, the maximum likelihood function L achieves a maximum.
Therefore, the search procedure of this method is the same as that of BSIM except that the
search end criterion in the 6th step, which is that F achieves the minimum value. The flow
chart is shown in Figure 3.
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This method enlarges the life sample size by a times so that the search precision of the
optimal solution is improved. The overall steps are as follows.

(1) Take the mean of the logarithmic lives by Equation (11).
(2) Search for σ0,50 in the set [0, σmin], and the step size is 0.1 MPa. For each σ0,50

to fit the relation between the sample mean and stress by the least squares method, thus
acquiring the 50%-S-N equation by Equation (12).

(3) The stress level σr with no less than six samples is selected as the reference stress
level. If there is no stress with large samples, then the highest stress level is selected as σr.
Then, determine the value range of sr (parent standard deviation at the reference stress
σr). When there is only one sample at σr, the value range of sr can refer to materials with
similar properties. When samples are larger than one and smaller than six at σr, the sample
standard deviation is calculated by

sr
′ =

√√√√ 1
qr − 1

qr

∑
i=1

(log(nr,i)− µ′r)
2, (20)
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where qr is the sample size at σr, µr
′ is the mean of the logarithmic lives at σr, nr,i is the

ith life at σr. Thus, the search region of sr can be [0.1sr
′, 10sr

′]. Otherwise, sr
′ is directly

determined by Equation (20).
(4) As to each sr, search for σ0,99 in the set [0, σmin] and m99 in the set [0, 10m50]. Given

each parameter set, sr, σ0,99, and m99, based on Equation (3) and Equation (16), it is possible
to convert fatigue lives at other stress levels into fatigue lives at level σr.

(5) As a result of the conversion, the logarithmic life standard deviation can be recalcu-
lated by Equation (16).

(6) Determine the optimal parameter set, sr, σ0,99, and m99, which makes the F the
smallest by Equation (19). Then the ŝ at each stress level can be finally obtained by
Equation (16).

(7) The logarithmic life at p can be calculated by log(np) =µ̂ + hŝ. Finally, the P-S-N
equation can be obtained by fitting the relation between log(np) and stress with the least
squares method.

3. Validations
3.1. Simulation Comparisons

In this part, random life samples are generated using the known P-S-N equations. The
above three methods are used to derive the P-S-N equations, and the relative errors of
results are compared with the known P-S-N equations to find out the best method.

(1) The first simulation test.

The known 50%- and 99%-S-N equations used by the first set of simulations are
(σ− 276.2)1.6752N = 1.0757× 108 and (σ− 264.9)1.8075N = 1.9418× 108. Fifteen stress
levels are set, and one random life sample is generated for each stress, as shown in Table 1.
Since the GM could not obtain the life standard deviation under this condition, only BSIM
and IMLM were used for comparative verification. The results are shown in Figure 4.

Table 1. Simulated samples generated from the known P-S-N equations.

σ (MPa)

310 325 340 355 370

385 400 415 430 445

460 475 490 505 520

log10(Ni)

5.3717 5.3353 5.0782 4.7968 4.6973

4.5450 4.2898 4.3398 4.2268 4.2127

4.2826 4.3331 4.0443 4.0524 4.1151

Obviously, the P-S-N curves obtained by IMLM are closer to the original curves in
Figure 4. Compared with the known P-S-N equations, the average relative errors of 50%-
S-N obtained by BSIM and IMLM are 19.29% and 13.88%, respectively. Compared with
the known P-S-N equations, the average relative errors of 99%S-N obtained by BSIM and
IMLM are 43.39% and 23.54%, respectively.
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(2) The second simulation test.

The given P-S-N equations remain unchanged. Five stress levels are set, and three life
samples are randomly generated for each stress level, as shown in Table 2.

Table 2. Simulated samples generated from the known P-S-N equations.

σ (MPa) log10(Ni)

520 3.9113 4.1861 4.1465
467.5 4.2175 4.1384 4.2570
415 4.4192 4.3334 4.4213

362.5 4.6947 4.9385 4.8176
310 5.4189 5.4020 5.2264

Three methods are used for comparison and verification, and the results are shown in
Figure 5. It is clear that the P-S-N curves obtained by GM deviate too much from the known
P-S-N curves. Compared with the known P-S-N equations, the average relative errors of
50%S-N obtained by GM, BSIM, and IMLM are 23.71%, 12.32%, and 9.6%, respectively.
Compared with the known P-S-N equations, the average relative errors of 99%-S-N obtained
by GM, BSIM, and IMLM are 46.25%, 29.2%, and 12.19%, respectively. The IMLM is
comparatively more effective.
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3.2. Experimental Comparisons

Finally, the comparison and verification of the three methods are carried out by the
fatigue test data, and five stress levels are adopted. The fatigue test specimen [43] and data
are shown in Figure 6 and Table 3. The stress ratio is −1. The loading frequency is 10 Hz.
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Table 3. Experimental results by tensile and compression testing.

σ (MPa) log10(Ni)

520 4.0932 3.9722 4.1182 3.9422 4.1272 4.1384
467.5 4.3053 4.1819
415 4.4065 4.4978

362.5 4.9001 4.6645
310 5.4628 5.3531 5.8742

From Figure 7, it is clear that the GM deviates too much. The life standard deviation
obtained by BSIM and GM does not increase with the decrease in stress, so it is not consistent
with the actual situation. A large number of tests show that the standard deviation of
life increases with a decrease in stress [28]. Therefore, the BSIM and GM fitting result is
unreasonable. The life standard deviation of IMLM increases with the decrease in stress,



Processes 2023, 11, 634 11 of 14

which is consistent with the actual situation. The BSIM is superior to the GM because it
expands the sample information. The IMLM is superior to BSIM because it optimizes the
search criteria. The IMLM not only enlarges the sample information but also has better
boundary conditions.
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4. Arrangement of Specimens in a P-S-N Test

In the fatigue test, the minimum sample should be used to obtain the P-S-N curve with
the given relative error. Usually, the fatigue test is carried out first, and then the fitting is
carried out rather than adjusting the sample arrangement with the experimental data. This
results in waste or insufficiency of specimens under certain stresses. This chapter presents a
method to adjust the arrangement of the next specimen with the result of each sample. The
results of this method are compared with those of traditional test methods by simulation.

First, determine the minimum sample size, nmin, required for each stress [41] by
Equation (21):

nmin ≥
1(

δµ′/s′+αp βδ

(2+δ)tγ

)2
− α2

p(β2 − 1)
, (21)

where δ denotes the unilateral relative error between the confidence lower limit µ′ + hs′ and
the parent truth value µ + αps, µ′ is the sample mean, and s′ is the sample standard deviation.
nmin at all stress levels should be calculated at all times when the test is performed under
the given conditions of δ, αp, and γ.

To determine µ′ and s′, a test should be carried out at each stress level. Then calculate
the two parameters according to the steps in Section 2.3. Then, nmin is calculated, and the
fatigue test is conducted again on the stress where the number of specimens is the largest
difference from nmin. The above step is repeated until the number of test pieces is not less
than the corresponding nmin for each stress.

By the conventional method, at least two specimens should be tested at each stress to
obtain sample standard deviation(see Section 2.2). Then, nmin is calculated for each stress,
and another test specimen is added to the stress where the number of test specimens differs
the most from nmin. The above step is repeated until the number of test pieces is not less
than the corresponding nmin for each stress.
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To compare the two test schemes, use the given P-S-N curves to generate life samples
to simulate fatigue tests randomly. The adopted 50%-S-N equation is (σ− 276.2)1.6752N =

1.0757× 108, and the 99%-S-N equation is (σ− 264.9)1.8075N = 1.9418× 108.
Five stress levels were evenly selected between 310 MPa and 520 MPa to cover the

high cycle fatigue life range. With γ = 90% and δ = 0.01, the objective of the experiment is
to obtain a 99%-S-N curve using the minimum specimen. As shown in Table 4, all samples
are the results of the conventional method; only the bold samples are the results of the
method in this paper.

Table 4. Simulated test results of two methods.

σ/MPa log10(Ni)

520 4.0629 4.1664 4.0710 4.1211 3.8806
467 4.1395 4.2850 4.1073 4.0806 4.2742 4.1390
415 4.5359 4.3766 4.3600 4.3306 4.4868 4.6893 4.5071
362 4.7545 4.7930 4.7122 4.6393 4.8050 4.7825 4.9039 4.8656
310 5.4868 5.5560 5.6568 5.6376 5.3726 5.6099 5.5003 5.3834 5.2650 5.5819

In Figure 8, The fitting results of 99%-S-N curve and the corresponding true 99%-S-N
curve are shown. By comparing this method with the true 99%-S-N curve, the 99%-S-N
curve with an average relative error of 1.3% is obtained by using only 12 samples (2-2-3-3).
Thirty-six samples are used by the conventional method (5-6-7-8-10), and the mean relative
error is 1.4%. Under the same conditions, the minimum sample required by the traditional
method is three times that of the proposed method.
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5. Conclusions

This paper compares the advantages and disadvantages of GM, BSIM, and IMLM,
aiming at the three-parameter P-S-N curve fitting in the case of small samples, and draws
the following conclusions:

(1) Through the simulation test, the comparison with the original P-S-N curve proves
that IMLM has the best fitting effect among the three methods, followed by BSIM. The
GM method has an application limitation; it cannot be used in a situation where the
stress level has only one life sample;
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(2) The fatigue test shows that, among the three methods, IMLM can reflect the character-
istic of life dispersion increasing with the decrease of stress, and the fitting result is
reasonable;

(3) The IMLM combining the advantages of BSIM and the maximum likelihood estimation
has high-fitting accuracy. The advantage of IMLM is that it expands the sample
information, so it improves the disadvantage caused by the small sample size. At the
same time, it has a reasonable optimal solution search criterion, which makes up for
the deficiency of the BSIM method;

(4) According to the test scheme proposed according to the IMLM, a large number of
samples are saved compared with the traditional method under the same precision
requirement.

In this paper, there are still deficiencies in the search for the best parameters, and
the search speed will be improved next. On the basis of this study, we will try to study a
small-sample P-S-N curve fitting under the Weibull distribution in the future.
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