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Abstract: The complete characteristics of centrifugal pumps are crucial for the modeling of hydraulic
transient phenomena occurring in pipe systems. However, due to the effort required to obtain
these curves, pump manufacturers typically only provide basic information, particularly when the
pump operates under normal conditions. To acquire the full characteristic curves based on the
manufacturer’s normal performance curve, a machine learning (ML) model is proposed to predict
full, complete Suter curves using a pump’s specific speed with the known parts of the Suter curve. The
training data for the model are sourced from the available Suter curves from laboratory experiments.
Subsequently, the proposed ML model combines several types of regression models in an attempt
to find the most accurate prediction in terms of the root mean square error (RMSE). The result
proved highly efficient, as the experiments attained a maximum RMSE value of 0.032 across the
three categories of centrifugal pumps based on their specific speeds, hence demonstrating the
potential of machine learning in the study of pump characteristic curves.

Keywords: Suter curves; pump hydraulic transient; pump specific speed; dimensionless torque
curve; dimensionless head curve; performance curve

1. Introduction

A lot of research has been conducted in relation to the transient flow mechanisms
in pumps and valves. Among these, pump startups and failures are found to be a major
source of hydraulic transients [1]. The methods of simulating and analyzing these kinds
of hydraulic transients have so far included the analytical method, the graphical method,
and the use of the method of characteristics. However, the latter has precedence over all
methods and is widely adopted for the computation of transient flow for pump failures
and startups [2,3]. During the application of the method of characteristics analysis, the
convenience of using non-dimensional forms of pump performance characteristics to repre-
sent pump behaviors through graphical curves presents another hurdle, as performance
characteristic values approach infinity for certain flow conditions, which are of interest in
transient analyses. In 1965, a researcher named Suter found a solution to this problem by
introducing a new parameter [4–6].

It is fair to say that Suter is the pioneer of modern studies of the characteristics of
pumps, as his experimental findings in 1966 are still of significant relevance and are in
application in today’s transient studies of pumps. Nevertheless, prior to the publication
of Suter’s findings, Stepanoff’s [7] and Donsky’s [8] complete pump characteristic curves
of three specific speeds (Ns), Ns = 25 (one radial pump), Ns = 147 (one semi-axial pump),
and Ns = 261 (one axial pump), served as benchmarks for the transient calculations of
pumps [9]. Engineers back then chose the curves of specific speeds closest to their machines
and then, with or without interpolation, approximated fluid transient calculations [10].
These curves are essential in determining the full operational zones of a pump, that is, the
normal operation, the turbine operation, the energy dissipation, the reverse pumping, and
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the braking zones during steady and transient states [10]. All these zones together form a
complete characteristic curve and are delineated into four quadrants. Pump performance
curve studies comprise a flow ratio to head ratio coordinate system with four quadrants,
namely, Quadrants I, II, III, and IV. Quadrant I, known as the pump drive, operates as
a motor; in Quadrant II, the pump operates as a generator as the runner rotates in the
direction of the pump, and the water flows into the turbine, representing the braking of the
aggregate; Quadrant III is considered a turbine drive because the electric machine operates
as a generator; and in Quadrant IV, the runner rotates in the direction of the turbine, the
water flows into the pump, and the electrical machine operates as a motor [11]. In each
quadrant, the pump operational zones can be plotted as a set of speed ratio and torque
ratio [7,8,10] curves. However, since all of the pump operational parameters (rotation, flow
rate, head, and torque) can attain a value of zero, the use of ratios results in singularities
or asymptotes when the denominator of ratios is zero. Before the emergence of Suter’s
curves, pump characteristics were divided into separate parts and then switched between
one another during analyses [6–8]. However, this approach still had issues, as a single
pump operation could fall into all four quadrants without a specific order [10,12]. With
Suter finding a way to eliminate the possibility of singularities in performance curves, a
game changer emerged.

Suter [5] represented the four-quadrant curves with three dimensionless variables,
namely, the dimensionless head ratio (Wh), representing the head; the dimensionless
torque ratio (Wb), representing the torque; and theta (θ), which was the new independent
variable that he introduced. With these variables, it was possible to completely represent
the full pump characteristics with just the dimensionless head and torque curves plotted
over the domain of θ, which is between 0 and 2π without any asymptotes. Suter’s curve
revolutionized the studies of pump–turbine performance characteristics in light of digital
computation. The data from the curves are very much suited to digital computation, as
the values of Wh and Wb corresponding to a particular θ can be easily computed by
interpolation. The torque values can be used to calculate the running speed of the pump
at a particular time period, and the head across the pump is then used in the boundary
condition calculation [10]. However, it is very unlikely that anything other than the normal
head versus flow rate and the pressure versus flow rate curves of the pump turbines in
the normal pumping mode or the normal turbine mode will be available, so it is necessary
to devise a reasonable approximation to the Suter curve for the other modes of pump-
turbine operation [2,13]. The assumptions needed in order to generate Suter’s curves of
unknown pump-specific speeds through interpolation raise an eyebrow. For instance, the
four-quadrant data are made dimensionless relative to the best efficiency point (BEP) or
pump-rated parameters [14]. This brings about a concern of correlation, as it is rare to find
pumps that operate at their BEP. In light of this, Brown and Rogers in 1980 questioned the
validity of using pump-specific speed as a correlating factor for four-quadrant pump data,
as their field work showed a much weaker correlation between four-quadrant characteristics
and the specific speed for radial pumps but a better correlation for mixed and axial flow
pumps [14]. In spite of these concerns, Suter’s curve is still used to date, as there has not
been any model that better suits the demands of modern numerical computations.

In addition, some researchers explored the use of computational fluid dynamics (CFD)
in finding complete characteristic curves. Despite the complexities of setting up a grid mesh,
flow and pressure field equations, and boundary conditions, some researchers chalked some
success. Gros et al. [15] using CFD obtained very satisfactory results for the four quadrants
of a centrifugal pump based on two transient equations of turbulence models. Similar
work was carried out by Muttalli [16], who used ANSYS-CFX and went further ahead to
discuss the impact of cavitation on numerical simulation. Höller et al. [17] investigated
the steady and transient state conditions surrounding a mixed flow pump also using CFD
and obtained fairly accurate results. Frosina et al. [18] studied three centrifugal pumps of
different specific speeds using CFD and used the obtained results to evaluate the inverse
characteristics and the BEP of those pumps. Wang et al. [19] pulled ahead by constructing a
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three-dimensional CFD model and proposing a new method for determining the complete
Wh and Wb curves for double-suction centrifugal pumps. These CFD methods required
extensive computational power and time to be able to obtain fairly accurate results and,
hence, were expensive.

In a bid to avoid costly experiments, many curve-fitting methods for complete charac-
teristic curves have come into play [2]. Shao [20] formulated the curves by applying surface
fitting and the least square method. In addition, Zhang et al. [21] experimented with the
use of B-spine interpolation to develop complete characteristic curves. Other methods, such
as neural network models, have also been used to compute pump characteristic curves.
Moreover, Han et al. were able to accurately predict a centrifugal pump performance
curve in the normal operation mode by using the specific speed, flow rate, impeller inlet
and outlet diameters, hub diameter, blade outlet width, and blade number as inputs [22].
Wuyi and Wenrui derived the inversion method to compute complete pump performance
characteristics from a normal performance curve [2]. Although this inversion method
was derived without any approximate assumptions, it could only compute a complete
third-quadrant curve. More recent researchers, such as Li et al., have also tackled this
problem. Li et al. proposed a new method by combining the mathematical modeling of
a centrifugal pump with the correlation relationships of some known complete charac-
teristic curves [23]. However, according to their demonstration in the paper, this method
could only accurately predict within the domain of 0 > θ < 5π/4. This paper proposes a
machine learning model that incorporates several regression learners, including a linear
regression learner, a support vector machine, a Gaussian process regression, and a three-
layered neural network, to find a more generalized complete characteristic curve prediction
model over the entire spectrum of the various specific speeds of a pump. The proposed
model attempts to accurately predict complete characteristics over the entire domain of
0 > θ < 2π. This model receives the specific speeds and the known parts of Suter’s curve
as inputs and then generates the complete curve characteristics with the combined lowest
minimum RMSE. This paper first starts with a brief introduction to the modeling of Suter’s
curve and pump operational zones, and then it continues with an in-depth description
of the machine learning model. It finally ends with an evaluation and discussion of the
obtained predicted complete characteristic curve results.

2. Pump Operational Zones, and Suter Curve Modeling

Pump operational studies basically revolve around four variables, namely, the pump
rotational speed (N), flow rate (Q), head (H), and torque (T). The relationship between the
changes in these four variables is what is responsible for the various operational zones of
a pump. In all, there are eight operational zones conventionally labeled from A to H, and
one would need to fully comprehend the dynamics of all these zones to be able to accurately
predict a pump’s hydraulic transients. Donsky et al., Knapp et al., and Giljen et al. dissect
the makings of these zones brilliantly, and, hence, a summary of the definitions of these is
presented in Table 1. Therefore, for convenience in modeling, these variables are standardized
into their dimensionless forms using their respective rated pump values.

The ratios of the dimensionless forms of rotation speed (α), flow rate (v), head (h), and
torque (β) can be plotted to represent the pump head and torque characteristic curve. For
instance, in obtaining the pump head curve, the ratio of the dimensionless flow rate (v) to
the dimensionless rotation speed (α) is plotted against the ratio of the dimensionless head
(h) to the dimensionless rotation speed (α). Based on Table 1, it is evident that transitioning
between some operational zones is bound to introduce singularities into the plotting dataset
as some variables approach zero. This accentuates Suter’s transform curves, as it finds a
way to produce both dimensionless pump head and torque characteristic curves without
discontinuities. The set of Equations (1)–(3) constitutes Suter’s transform [5]:

Wh(θ) =
h

α2 + v2 (1)
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Wb(θ) =
β

α2 + v2 (2)

θ = arctan
α

v
(3)

Table 1. Summary of Definitions of Pump Operation Zones [10].

Zone Mode Rotation Flow Head Torque

A Normal Pumping N > 0 Q > 0 H > 0 T > 0
B Energy Dissipation N > 0 Q > 0 H < 0 T > 0
C Reverse Turbining N > 0 Q > 0 H < 0 T < 0
D Energy Dissipation N < 0 Q > 0 H > 0 T < 0
E Reverse Pumping N < 0 Q > 0 H > 0 T < 0
F Braking N < 0 Q < 0 H > 0 T < 0
G Normal Turbining N < 0 Q < 0 H > 0 T > 0
H Energy Dissipation N > 0 Q < 0 H > 0 T > 0

Through this transformation, the complete pump head and torque characteristic curve
can be plotted over the domain of θ spanning from 0 to 2 π. This domain can further be
divided into four: (0 > θ < π/2) the first quadrant, (π/2 > θ < π) the second quadrant,
(π > θ < 3π/2) the third quadrant, and lastly (3π/2 > θ < 2π) the fourth quadrant. The
four-quadrant characteristic model is a tool used to classify and evaluate the operational
characteristics of different devices and systems. In the context of centrifugal pumps, Quadrant
I is referred to as the Turbine Zone, Quadrant II is the Dissipation Zone, Quadrant III is the
Normal Zone, and Quadrant IV is the Reversed Speed Dissipation Zone [2]. The dimensionless
head and torque, as determined using Equations (1) and (2), are plotted against theta in
Equation (3), forming the Suter curve. Figure 1 shows a sample of complete characteristic or
Suter curves plotted in the four quadrants with the operating zones (A-H) indicated.
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3. Machine Learning (ML) Model

An overview of the entire ML model is shown in Figure 2. The datasets retrieved
from existing complete experimental curves are prepared and fed into an ML regression
model. This model comprises five regression learner models: a linear regression model,
a support vector machine (SVM), a Gaussian process regression (GPR), a regression tree,
and an artificial neural network (ANN). The prepared data are separately trained by these
algorithms for prediction, and the algorithm with the lowest RMSE is selected for the final
prediction in a forward stepwise prediction model.
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3.1. Data Sourcing and Preparation

The datasets are sourced from complete experimental characteristic curves compiled
and published by Trey et al. [24]. These experiments are designed and performed in a
laboratory setting using a test rig and various other apparatuses, such as torque, flow,
pressure, and power meters, to measure the rate of change in the pump head and torque
of real model pumps. The results of the experiments are plotted on graphs as the pump
dimensionless head and torque against theta [9,25–29]. The total number of complete curves
selected for the ML experiment is 28, with the specific speeds ranging from 15.7 to 261.6.
The data points of a stepwise increment of 5 units of θ are chosen from each respective
curve. Given each curve, a total of 28 observations with 74 variables are recorded, as shown
in Figure 3. The dataset is then first normalized using the column-wise normalization of
the specific speeds by dividing them with the respective absolute maximum to attain a
range of 0 to 1 for all data in the specific speed column. The same is carried out for the
curve data points (Theta0–Theta360), but they are normalized row-wise. This routine of
data preparation is carried out for both the Wh and Wb curves.
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3.2. Regression Learners

These learners find the relationship existing between dependent and independent
variables under a certain error function. The obtained relationship is used to make pre-
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dictions on a new set of data. The ML model in this paper trains the dataset using the
16 different ML algorithms categorized below.

3.2.1. Linear Regression

During training, the linear and interaction linear regression models were found to be
more accurate than the other types of linear regression models. Interaction linear regression
models differ from linear regression by establishing interaction terms between the predictors,
in addition to the constant and linear terms derived in a linear regression model.

3.2.2. Support Vector Machine (SVM)

The SVM algorithm was first developed by Cortes and Vapnik [30], and through
calculus, Lagrange multipliers and vector geometry have evolved into some of today’s
most popular ML tools. SVM regression relies on kernel functions and is hence regarded as
a nonparametric approach. The kernel functions considered for this ML experiment were
linear, Gaussian, and quadratic, as shown in Equations (4)–(6), respectively [31], where xj
and xk are predictors.

G
(
xj, xk

)
= x’

j xk (4)

G
(
xj, xk

)
= exp

(
− ‖ xj − xk ‖2

)
(5)

G
(
xj, xk

)
= (1 + x’

j xk)
2

(6)

3.2.3. Gaussian Process Regression (GPR)

This is a stochastic probabilistic model based on Gaussian distribution. It is also a
nonparametric mainly relying on covariance functions to define the behavior of the model.
The covariance functions selected are the squared exponential, Matern, exponential, and
rational quadratic, as seen in Equations (7)–(10), respectively [32]:

KSE(r) = exp
(
− r2

2`2

)
(7)

KMatern(r) =
21−v

Γ(v)

(√
2vr
`

)v

Kv

(√
2vr
`

)
(8)

K(r) = exp
(
− r
`

)
(9)

KRQ(r) = exp
(

1 +
r2

2α`2

)−α
(10)

where r = xk − x’
j , ` measures the characteristic length scale between the data points, Kv

is the modified Bessel function of order v evaluated in gamma function Γ(v), and α ≥ 0.

3.2.4. Artificial Neural Network (ANN)

Four ANNs, namely, feedforward three-layered, bilayer, narrow, and wide ANN
models, were added to the regression learners. ANNs are great algorithms for data mining
due to their architecture of layers with interconnecting nodes used for prediction.

3.2.5. Regression Tree

A fine regression tree with a minimum leaf size of 4 without a surrogate decision split
is used in an iterative operation to split the dataset into tree branches as the operand moves
up the tree via binary recursive partitioning. This binary recursive split is decided based
on the RMSE, and then the algorithm selects the branch that minimizes the RMSE.
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3.3. Curve Prediction and Development

The ML code is developed using MATLAB on a laptop with a Windows 10 operating
system, an Intel i5 processor, 8 GBs read-access memory, and Nvidia GeForce GTX 1650
Max-Q. The experiment is conducted using a 5-fold cross-validation and performance test,
validated in terms of accuracy using RMSE. During the training and testing of the datasets,
the parameters suitable for predicting the lowest RMSE for each model are established.
After which, the best model with regard to the RMSE for each column is selected and stored
in a struct. The stored models are then called in a forward stepwise prediction model for
the complete curve. The prediction model takes a sequence of curve data points in a block
as input to predict the subsequent data point after the block. This block consists of the
datasets from the known part of the characteristic curves. This continues until the last data
point is reached. Figure 4 demonstrates this prediction model. It is worth noting that the
number of predictors selected from the block for each theta model is not fixed and depends
on the sequence of datasets within the block with the lowest RMSE.
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4. Results and Discussion

As already mentioned in the Introduction, the pump data provided by most manufac-
turers are only good enough to determine the third quadrant, which comprises zones A
to C, as tabulated in Table 1. Moreover, since the ML prediction model was developed to
move in the forward direction, there was a need to rearrange the dataset in the order of
pump operational zones A–H, as illustrated in Figure 1. This meant that the third quadrant
was first, followed by the fourth, the first, and the second. Figure 5 shows the training
test validation results across the entire observations respective to theta (0, 45, 90, 135, 175,
275, 315, 360) for both the dimensionless head and torque. The results of the training
test validation averaged an RMSE of 0.0484 with a standard deviation of 0.0047 for the
dimensionless head and an RMSE of 0.0472 with a standard deviation of 0.0042 for the
dimensionless torque. The size of the standard deviation for both the dimensionless head
and torque demonstrates the robustness of the ML model across all three quadrants. The
performance of the implemented ML model was evaluated across a spectrum of centrifugal
pumps categorized by specific speeds, namely, a radial pump (<40), a mixed-flow pump
(between 40 and 175), and an axial pump (>175). The third quadrant dataset of a complete
curve selected from each of the mentioned pump categories was fed into the exported
model for test validation. Tables 2 and 3 show the selected specific speeds with their
respective third-quadrant input datasets.
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Pump-specific speeds are a key factor in describing a pump’s performance, but they
are not the only factor since different types of pumps can have the same specific speed.
Therefore, an instance is added to the input dataset to test the ML model’s response in
these scenarios.

Now, these input data points become the block or pool of datasets that the ML model
fetches input data from to generate the datasets of Quadrants I, II, and IV. The normal-
ization of the predicted datasets is reversed, and the dataset is rearranged from theta 0 to
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360 and then plotted against the actual curve, as seen in Figure 6. The graph results show
that the ML model is able to predict the change in the dimensionless head and torque
over theta with great accuracy, recording a maximum RMSE of 0.032. It is also able to
significantly differentiate between pumps of the same specific speed. The input data have
a fixed maximum variable count of 20, made up of the specific speed and Quadrant III
datasets, as seen in Tables 2 and 3. However, during the training and column response
model generation, the number of predictors or variables required for each model may vary
but would not exceed 20. The ML model for each column selects a sequence of predictors
starting from the specific speed variable to theta270, the 20th variable that computes the
lowest RMSE. For instance, the prediction model for the dimensionless torque column
theta355 model requires 16 predictors (that is, a sequence of data points from the spe-
cific speed to column theta250), whilst the theta360 prediction model requires an input of
10 predictors (that is, a sequence of data points from the specific speed to column theta220)
to attain the lowest RMSE. From this, it is clear that each column theta model according
to the training results of the datasets might have different requirements for the number
of predictors and the type of regression model to be adopted. In the 54-column models
generated from the training of the dimensionless torque datasets, the average number
of predictors per column is 17, with the SVM regression model selected for 96.3% of the
54 columns. The SVM regression model is similarly favored in the dimensionless head
ML model.

Table 2. Normalized dimensionless head third-quadrant input datasets for test validation.

Specific
Speed

Theta
180

Theta
185

Theta
190

Theta
195

Theta
200

Theta
205

Theta
210

Theta
215

Theta
220

32.9 0.4683 0.4735 0.4883 0.5482 0.5557 0.4420 0.4734 0.4847 0.5077
105 0.5390 0.4978 0.4546 0.4051 0.3608 0.3170 0.2762 0.2385 0.2039

261.6 0.2998 0.2527 0.2202 0.1944 0.1854 0.1820 0.1579 0.1226 0.0704
261.6 0.6785 0.5911 0.5170 0.4397 0.3641 0.2923 0.2237 0.1684 0.1187

Theta
225

Theta
230

Theta
235

Theta
240

Theta
245

Theta
250

Theta
255

Theta
260

Theta
265

Theta
270

0.4952 0.4345 0.4339 0.4411 0.4606 0.4625 0.4647 0.4655 0.4396 0.3777
0.1665 0.1410 0.1237 0.1140 0.1096 0.0959 0.0764 0.0504 −0.0015 −0.1428
0.0171 −0.0441 −0.0929 −0.1574 −0.2090 −0.2657 −0.3291 −0.4194 −0.5367 −0.6331
0.0540 −0.0102 −0.0545 −0.1072 −0.1616 −0.2177 −0.2757 −0.3354 −0.3970 −0.4404

Table 3. Normalized dimensionless torque third-quadrant input datasets for test validation.

Specific
Speed

Theta
180

Theta
185

Theta
190

Theta
195

Theta
200

Theta
205

Theta
210

Theta
215

Theta
220

32.9 0.5116 0.4860 0.4719 0.4904 0.4624 0.3447 0.2843 0.2104 0.1494
105 0.5174 0.4560 0.4025 0.3583 0.3107 0.2610 0.2087 0.1559 0.1028

261.6 0.2037 0.1602 0.1528 0.1642 0.1854 0.1865 0.1568 0.1007 0.0235
261.6 0.6191 0.5289 0.4718 0.4241 0.3730 0.3012 0.2232 0.1567 0.0929

Theta
225

Theta
230

Theta
235

Theta
240

Theta
245

Theta
250

Theta
255

Theta
260

Theta
265

Theta
270

0.0973 0.0603 −0.0144 −0.0888 −0.1589 −0.2354 −0.3008 −0.3638 −0.4259 −0.4840
0.0531 −0.0099 −0.0641 −0.1109 −0.1473 −0.1888 −0.2315 −0.2760 −0.3449 −0.5123
−0.0303 −0.1001 −0.1659 −0.2259 −0.2917 −0.3524 −0.4233 −0.5194 −0.6276 −0.7282
0.0393 −0.0258 −0.0751 −0.1283 −0.1826 −0.2381 −0.2948 −0.3527 −0.4120 −0.4675
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Figure 6. (a) Predicted dimensionless head complete pump characteristic curve plotted against actual
experimental curve with respect to Table 2. (b) Predicted dimensionless torque complete pump
characteristic curve plotted against actual experimental curve with respect to Table 3.
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5. Conclusions

In this paper, a supervised ML model is proposed to measure and predict the relation-
ship between Quadrant III data points and those of Quadrants I, II, and IV of a centrifugal
performance characteristic curve. The centrifugal pump details provided by manufacturers
are only enough to compute the pump characteristic curve in Quadrant III. A four-quadrant
characteristic curve is vital to the investigation of the hydraulic transient phenomenon in
pumps and any other installation surrounding it, and, hence Quadrants I, II, and IV can
never be overlooked if accurate transient results are to be obtained. Moreover, current
methods, such as CFD and other prediction methods, are either laborious, expensive, or
incomplete. The ML model proposed in this study computes complete characteristic curves
and the dimensionless head and torque curves from the dataset of Quadrant III with great
accuracy, as demonstrated in Figure 6. Hence, the observations from this work open up
a new way of looking at four-quadrant data, as the high accuracy of the prediction em-
phasizes the capability of ML tools to measure the relationship between the data points of
four-quadrant curves. Further research should focus on the impact of operating pumps
below the best efficiency point on the accuracy of pump characteristic prediction.
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