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Abstract: This work presents an overview of (passive) solar chimney research, from the natural
convection fundamentals to the recent progress for achieving thermohydraulic best-performance.
Solar chimneys are attractive because they contribute to increasing the efficiency in air conditioning
processes for dwellings and buildings, and therefore also aid to reduction in greenhouse gas emis-
sions. A wide number of works dealing with solar chimneys (and Trombe walls or similar) shape
designs, as well as with the inclusion of obstacles for disturbing the airflow, is commented in detail.
Several numerical simulation procedures used in the literature are specially discussed, and different
recommendations are pointed out to be considered for the appropriate numerical simulation of the
operating modes of a solar chimney. Investigations aiming for the best performance conditions (for
both thermal, and dynamic or ventilation modes) deserve special attention.

Keywords: passive solar design; solar chimney; Trombe wall; best-performance behavior; natural
ventilation; heat transfer enhancement; numerical modeling

1. Introduction
1.1. Fundamentals of Natural Convection Flows

The main objective of this technical literature review is to provide researchers and
professionals with a global vision of the methods for studying passive thermal systems used
in the air conditioning of buildings. The review conducted may differ slightly from many
of those reported in which the classification of published works has often been prioritized
based on certain aspects related to the focus of research. In this paper, the discussion
starts from the physical basis of flows induced by natural convection, and its application
to the fundamental problem of flows established in parallel plate and wall systems; the
focus is mainly on solar chimneys and specifically in their shape designs, as well as in the
introduction of obstacles and turbulence or vortex generators. Therefore, it can be deduced
from the above that focus is posed on the analysis and simulation (especially the numerical
simulation) of the established airflows, and on their repercussions on the design of passive
solar systems: optimization of the wall-to-wall distances, parametric analysis of shapes
and designs, and more.

It is noteworthy that denomination solar chimney or thermal chimney usually refers
to both passive thermal devices (without power mechanisms) and plants with electricity
generation. The latter can be distinguished as solar tower or solar chimney (power) plant, or
similar. The scope of the present work is concerned to the former, i.e., attention is posed on
fully passive solar chimneys.

Heat transfer by convection is produced by the mixing of different parts of the fluid
due to mass motions. The dynamic characteristics of the flow (for example, the velocity
or the turbulence intensity fields) strongly influence, for example, the heat transferred
between the fluid and a given wall. The motion of the fluid can be originated by external
mechanical causes such as the existence of a fan or a pump, being the process known as
forced convection, or by density differences created by temperature gradients that exist in the
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mass of the fluid (buoyancy forces), being known as natural convection (Bejan [1], Incropera
and De Witt [2], Bejan [3]).

In natural (or free) convection, the motion of the fluid is induced by buoyancy forces.
These forces are concerned with the general trends of fluids to expand when they are heated
at constant pressure (Turner [4]). In engineering applications involving natural convection
the target may be to determine the heat transfer coefficient between the solid and the fluid
(in order to know the total heat flux transferred), or alternately to calculate the induced
mass-flow rate through a given section.

It is well known that heat transfer due to natural convection is low compared to that by
forced convection for equivalent situations. However, natural convection is a very attractive
heat transfer mode in cases in which ease of construction, economy, or low noise are design
requirements. For example, in the case of cooling electronic equipment, passive thermal
control continues to be preferred due to their low cost and maintenance and because these
systems do not cause electromagnetic interferences. Another relevant application is the
emergency cooling systems of nuclear reactors. Here, liquid metals acting as coolants can
be found in fast breeder reactors after a severe accident. Liquid sodium and liquid gallium
are the most employed liquid metals, because of their notoriously low Prandtl number
(Pr = ν/α, being ν the kinematic viscosity and α the thermal diffusivity). However, as will
be seen later in more detail, the fundamental applications that are the subject of this review
are the passive thermal systems dedicated to natural ventilation, or passive heating or
cooling, in systems and structures such as dwellings or buildings.

Since the applications are very diverse, different typical configurations have been
studied so far such as cavities or enclosures (partially open or closed), or vertical channel
systems. Regardless of the configuration under consideration, the presence of heated walls
encourages the natural generation of fluid flow. The most used fluid is air (Pr ≈ 0.7), and
to a lesser extent water (Pr ≈ 7). From now on, attention is posed on air.

The relevant parameters to be considered are based on the height of the heated wall H
(Figure 1) and on the characteristic temperature difference ∆T = Tw − T∞, being Tw and T∞
the wall and ambient temperatures, respectively. Hence, the Grashof (GrH) and Rayleigh
(RaH) numbers are, respectively, defined as:

GrH =
gβ(∆T)H3

ν2 , RaH = GrHPr (1)

with g the gravity acceleration and the volumetric expansion coefficient β = 1/T∞ (perfect
gas assumption for air). Therefore, the heat transfer coefficient can be evaluated through the
average Nusselt number (NuH) at the heated wall. If the wall can be considered isothermal,
Nusselt number is calculated as follows:

NuH = −
∫

H

(∂T/∂x)w
Tw − T∞

dy (2)

in which w denotes solid wall and y the direction along the wall (Figure 1). In general, flows
induced by natural convection phenomena have low velocities, so that on many occasions
the established flow can be considered laminar. However, under given circumstances, the
flow can be transitional or even fully turbulent. This occurs in a great number of passive
thermal systems in which the large scale of geometrical dimensions could produce high
turbulence levels. Usually, the criterion employed is based on the Grashof number with the
transition taking place for values of this parameter roughly above 109.

1.2. Turbulence and Numerical Simulations

As expected, natural convection airflows have been extensively studied analytically,
experimentally, and numerically. Following, some topics on the simulation methods are
treated, particularly for a turbulent regime. In general, the most widely used treatment
by commercial Computational Fluid Dynamics (CFD) codes is the numerical solution of the
Reynolds Averaged Navier–Stokes (RANS) equations.
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An appropriate form of the RANS equations for the problem (continuity, momentum
and energy), using the Boussinesq approximation (which will be explained later) for the
buoyancy term, is listed following (xj denotes Cartesian coordinates and t the time):

∂ρ

∂t
= −

∂
(
ρUj

)
∂xj

(3)

∂(ρUi)

∂t
+

∂
(
ρUiUj

)
∂xj

= − ∂P
∂xi

+
∂

∂xj

(
µ

∂Ui
∂xj
− ρuiuj

)
+ ρgiβ(T − T∞) (4)

∂(ρT)
∂t

+
∂
(
ρcpTUj

)
∂xj

=
∂

∂xj

(
κ

∂T
∂xj
− ρcpT′uj

)
(5)

where T, P and Uj are the average temperature, the difference between the average pressure
and the ambient pressure, and the average velocity, respectively. The alternating (turbulent)
velocity is denoted as uj. The Reynolds stress tensor −ρuiuj and the heat flux vector
−ρcpT′uj should be supplied for an appropriate turbulence model. The thermal conductivity
of fluid is κ; ρ and µ are the density and (dynamic) viscosity, respectively, and cp the specific
heat at constant pressure. The gravity is gi = g in a vertical direction.

In CFD simulations turbulent two-transport equations models along with wall func-
tions have been usually applied in problems including forced convection boundary layers
for calculating the velocity and temperature gradients adjacent to walls. However, typical
logarithmic wall functions do not seem to be appropriate in cases with natural convection
boundary layers. Yuan et al. [5], among others, proposed new wall functions for numeric
simulations of turbulent convective flows. Versteegh and Nieuwstadt [6] have studied
the scaling behavior of natural convection flows to propose wall functions for flows es-
tablished in vertical heated walls. On the basis on a matching of inner and outer layer
scaling relationships, an explicit expression for the mean profile in the matching region
was presented by these authors. On the other hand, Henkes and Hoogendorn [7] have
analyzed turbulent convection in enclosures, explaining the difficulties found by using
some turbulence models in order to predict correctly the heat transfer coefficients.

A literature survey seems to indicate that it can be appropriate to use standard models
such as the k–ε (k is the turbulent kinetic energy, and ε its dissipation rate), but taking
into account the range of Grashof numbers for applying low-Reynolds (low-Re) number
treatment at walls if necessary (Fedorov and Viskanta [8]). In a considerable number of
works the k–ω (ω is the specific dissipation rate of ε) turbulence model of Kolmogorov
(Wilcox [9]) and variants have been employed successfully. Hence, Peng and Davison [10]
used the k–ω model for describing the turbulent flow generated by natural convection
within a cavity. The low-Re treatment necessarily implies that some points of the grid must
be immersed in the laminar sub-layer adjacent to walls. The degree of refinement of the
mesh near the walls can be evaluated through the dimensionless sub-layer scaled distance,
y+ = ρy1uτ/µ, being y1 the distance between the solid boundary and the first grid point,
and uτ the total friction velocity corresponding to wall shear stress τw (uτ = [τw/ρ]1/2). It
is widely accepted that y+ should be less than unity for achieving successful results. This
limit is particularly relevant in the airflows established in solar passive systems in which
laminar, transitional and fully turbulent flows can be identified.

The use of more complex models not based in the eddy viscosity concept (like those
related to k–ε or k–ω models) is also extended in technical literature, looking for a more
physical detailed analysis of the buoyancy flows. For instance, Xu et al. [11] studied the
problem of turbulence generated by buoyancy in a channel through a turbulence model
which uses Direct Numerical Simulation (DNS) in the region close to the wall, and in turn
the k–ε model for the region away from the wall. From the results obtained through DNS
techniques, Versteegh and Nieuwstadt [6] concluded that although natural convection
(in vertical channels) could seem simple in terms of flow geometry, its physics as well as
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its scaling behavior are far from simple. The latest trends seem to indicate that the Large
Eddy Simulation (LES) models are being frequently employed (Ciofalo [12], Salinas-Vazquez
et al. [13], among others).

A different manner to address the problem is that based on the Lattice Boltzmann
Methods (LBM), a particular type of CFD procedure. Instead of solving a form of the
Navier–Stokes equations directly, a given fluid density on a lattice is simulated with several
processes such as streaming and collision between particles, achieving an approximation
to fluid behavior. The method is versatile, but mathematically complex. Although a
considerable number of works on thermal aspects can be found in the literature (Zhou
et al. [14], among others), in can be stated that the use of LBM is not entirely generalized
for the study of solar chimneys or Trombe walls, although LBM is frequently employed for
other complex physical problems concerned to the matter (see the review of Nokhosteen
and Sobhansarbandi [15]).

Obviously, although these advanced CFD techniques can achieve a more precise
description of the flow, they require higher computational efforts. Two-dimensional simu-
lations are frequently considered for computational effort saving. However, under given
circumstances the morphology can force the address of the three-dimensional simulations.
Even in cases with a clear 2D geometry, it is possible to find discrepancies in properties’
distributions at different planes. However, in many cases 2D results could be extrapolated
to 3D cases, subject to an appropriate morphological analysis.

1.3. Boussinesq Approach and Variable Properties

For the simulation of buoyancy forces the Boussinesq (or Boussinesq–Oberbeck ) approach
has been usually adopted. This approximation assumes the properties of fluid are constant,
being the buoyancy force linearly due to temperature increases only, ρgβ(T − T∞). In
cases in which the temperature differences are relatively low the thermophysical properties
of fluid can be assumed constant, and the Boussinesq approximation can be employed
for the buoyancy term in the vertical component of momentum equation. Applications
such as passive cooling in electronic equipment and intense heating conditions can be
found in some cases. This can severely alter the properties of air, and therefore change
previous predictions of the characteristic of airflow such as heat transfer and the mass-flow
rate. Gray and Giorgini [16] studied the conditions of validity of the Boussinesq approach.
Zhong et al. [17], and Emery and Lee [18] analyzed the effects of property variations on
convective flows in a square enclosure. Chenoweth and Paolucci [19] demonstrated that
the Boussinesq approach could produce significant errors for (T − T∞) > 0.2T∞.

When the effects of variation in the air thermophysical properties are retained, buoy-
ancy force should be calculated directly from density gradients, g(ρ∞ − ρ). A contrasted
result from researchers is that heat transfer coefficients and the induced mass-flow rate
are considerably lower than those obtained assuming constant properties and the Boussi-
nesq approach. This phenomenon can be attributed to the increase in the air viscosity
(viscous drag), as well as the decrease in the air density that produces an additional ther-
mally induced pressure drop (thermal drag) when the temperature difference increases (the
phenomenon has been described by) Guo and Wu [20] and Guo et al. [21]. Summarily,
both the thermal drag and the viscous drag increase faster than the buoyancy force as
temperature increases. In addition, the flow patterns could be influenced strongly by the
fluid variable properties for intense heating conditions. Note that this effect could be
important in selected applications of solar passive systems.

1.4. Research Methodology and Scope

Several principles have been considered to carry out the work:

- Reviewing in comprehensive databases, such as scholar.google.com, sciencedirect.
com, onlinelibrary.wiley.com, mdpi.com, springer.com, . . . , among others;

- Searching sufficient general keywords: natural convection, channels, solar chimneys,
Trombe walls, buildings, ventilation;

scholar.google.com
sciencedirect.com
sciencedirect.com
onlinelibrary.wiley.com
mdpi.com
springer.com
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- Selecting relevant published works. It has been preferred that the number of references
not be too high, with the aim of conducting appropriate critical comments for most
contributions;

- Focusing on solar chimneys in buildings, including Trombe walls;
- Focusing on certain aspects of the numerical simulations carried out, such as the use

of turbulence models or the simulation of atmospheric wind, among others.

Regarding the scope of this manuscript, the main difference between the present review
and other reported studies is the focus on the fundamentals of problem (Section 2) for ad-
dressing multiple aspects oriented to the best performance conditions. Section 3 is dedicated
to vertical channels including extensions and different geometries, whereas in Section 4
attention is posed on geometries approximating passive solar devices. Sections 5–8 are
focused on several solar chimney morphologies (and to a lesser extend in Trombe walls).
Section 9 is a note on the effects of climate conditions, and finally Section 10 is a summary
of the main proposed discussions and suggestions.

2. Basis: Vertical Channels
2.1. Fundamentals on Natural Convection in Vertical Channels

The solution of a natural convection problem has a purely physical interest attending
that the change in momentum is coupled to the conservation of energy through buoyancy
forces. As indicated, the motion of the fluid is not induced by the displacement of a
boundary condition but by the generation of buoyancy forces within the fluid. In this sense,
the orientation of the heated or cooled boundaries can be diverse, but it should be noted
that the most efficient flows for engineering applications take place probably when walls
are vertical.
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Figure 1. Basic configurations: (a) Simple vertical channel. Different symmetrical and asymmetrical
heating conditions have been studied; (b) Typical arrangement of a cavity oriented to passive solar
devices. Multiple combinations of heating conditions, and locations of apertures and ventilation
ports have been analyzed in the literature.

Natural convection in vertical walls or plate systems has been the subject of intense
study in recent years A pioneering experimental study was carried out by Elenbaas [22] in
vertical channels under uniform temperature at walls, considering laminar flow. Denoting b
as the wall-to-wall distance of the channel and H as the height of heated walls (see Figure 1a),
Elenbaas [22] proposed a correlation for the average Nusselt number (based on b) as a function
of the modified Rayleigh number, Rab* = (Rab)(b/H), also based on b, which introduces the
asymptotes for boundary layer, bl (Nubl = 0.6(Rab*)1/4, for Rab*→ ∞), and for fully developed, fd
(Nufd = Rab*/24, for Rab*→ 0) regimes. Aihara [23] was the first author who included the
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pressure defect due to acceleration of fluid at the channel inlet. The numerical results were
obtained through a line-by-line, forward marching, implicit finite-difference procedure, also
for laminar regime. In fact, in the literature the first numerical results were obtained through
the finite-difference discretization method and solving a parabolic form of the conservation
equations. However, the nature of the flow is clearly elliptic irrespective of the fact that
motion can be regarded as parabolic for asymptotic values of the relevant parameters, Grashof
number or Rayleigh number. Kettleborough [24] and Nakamura et al. [25] reported the first
numerical solutions of the elliptic form of the Navier–Stokes equations. More recently, a
relevant review of benchmark solutions for flows induced by natural convection in vertical
channels has been presented by Desrayaud et al. [26]. Wong and Chu [27] have reported a
revisit on natural convection airflows from vertical isothermal plates; they developed a survey
on the pioneer results presented for the thermally optimum plate spacing and have conducted
own numerical computations.

2.2. The Optimization Problem

The optimization problem for systems formed by vertical plates can be represented
by the electronic equipment cooling. Here, dissipating the heat generated in devices is
important for avoid overheating. Thermal optimization of the problem can be achieved
through the determination of the thermally optimum spacing, bopt, between the plates or
walls forming the vertical channels, which maximizes the heat transferred by unit area.
Bodoia and Osterle [28] have given the first criterion for obtaining bopt. Bar-Cohen and
Rohsenow [29] proposed a blended-type correlation for the average Nusselt number (based
on the fully developed and the boundary layer asymptotes) for obtaining the global heat
transfer between the walls and the fluid. In this way, the optimum wall-to-wall distance is
obtained for a given value of Rab*, corresponding to cross area between the two mentioned
asymptotes. Anand et al. [30] reported numerical results for the problem with different
heating conditions at walls, and compared their results to those proposed by Bar-Cohen
and Rohsenow [29].

Zamora and Hernández [31], similarly to Bar-Cohen and Rohsenow [29], used different
correlations for the average Nusselt number to achieve thermal optimization. Values of bopt
were reached for a modified Rayleigh number Rab* also placed near the crossing between
the fully developed and the boundary layer asymptotes; thus, values of the optimum
wall-to-wall distance depend on the fitting constants used in the correlations proposed for
the average Nusselt number.

In view of the survey carried out two reasonings can be made. The first is that the
cited numerical works simulate the flow as laminar. Obviously, depending mainly on the
geometric scale of the physical application, the flow should be considered turbulent for
relevant occasions. From now on, relevant works considering the turbulence of the flow
will appear in the review. The second consists of the fact that considering configurations
formed by (in general) isothermal vertical channel to obtain the optimal spacing between
walls has physical sense if this morphology is regarded as a sample of the channels formed
with equally spaced walls (usually at uniform temperature), located into a given horizontal
length L. Let us consider that the number of plates or walls increases; thus, the total area
available for heat transmission increases, but in turn the temperature gradient at walls tends
to decrease, as well as the average heat transfer coefficient. The described effects reveal
opposite when the number of plates decreases, then a thermally optimum wall-to-wall
distance can be encountered. Consequently, if the theoretical bopt is bopt > L, only one channel
can be formed into the available space. Although the global heat transfer is probably not
maximum in this case, its value will be higher than that reached by mounting more than
one channel.

Looking for morphologies of application in passive thermal systems (for buildings),
Zamora [32] has determined numerically the thermally optimum spacing between inner
isothermal plates into a vented cavity. From numerical results, a practical correlation for
the optimum aspect ratio of inner channel is provided as a function of Rayleigh number,
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and valid for laminar/turbulent flow. The influence of variable thermophysical properties
has been taken into account through a heating parameter given by ∆T/T∞. Results have
been obtained by means of a finite volume procedure with the CFD general-purpose code
Phoenics (provided by pioneering CHAM).

3. Vertical Channels with Extensions
3.1. Aditional Spaces in Vertical Channels Systems

Effects of additional spaces on the behavior or systems of vertical channels are also
analyzed in the literature. One of the first works dealing with a systematic study on the
chimney effect (pioneeringly treated by Haaland and Sparrow [33]) in the enhancement of
heat transfer in isothermal channels was that of Straatman et al. [34], both experimentally
(by means of Mach-Zehnder interferometer) and numerically. The chimney effect is based
on the idea that for enhancing the heat transfer in simple vertical structures more account
of fluid must be forced through the system so that additional energy can be convected out.
This can be achieved with the inclusion of adiabatic extensions, for instance. Straatman
et al. [34] encountered heat transfer enhancements between 1.1 and 1.3. Morrone et al. [35]
addressed a similar study but considered an I-shaped computational domain including
two large rectangular reservoirs at the entrance and the exit of the channel, in which plates
were asymmetrically heated by uniform heat flux. Ledezma and Bejan [36] numerically
addressed the optimal geometric arrangement of staggered vertical plates in laminar
regime, through the method of intersection of asymptotes. Numerical results were obtained
by means of a commercial code based on the weighted residuals method of Galerkin.
A similar numerical method was employed by Viswatmula and Ruhul Amin [37] for
addressing the effects of multiple obstructions on the thermal behavior of an isothermal
vertical channel. They found that obstructions produce maximum reduction in heat transfer
approximately equal to 30% compared to unobstructed channel. The presence of elements
such as fins, usually used to improve the thermal behavior of forced convection systems,
often has an obstructive effect on systems in which the motion is induced by buoyancy
forces. Therefore, depending on the flow regime, laminar, transitional, or turbulent, and
the geometry considered, the effect could be favorable or unfavorable. Zhang and Liu [38]
found a significant increase in the transferred heat flux for vertical rectangular fin arrays,
compared to un-finned ones. They carried out numerical calculations for investigating the
influence of both the fin thickness and the spacing between fins. Note that in this case fins
do not have an obstructive effect; in turn, they are placed along the mainstream of the fluid.
We will return to this matter later.

Keep in mind that in general, turbulent flow is more efficient than laminar flow for
engineering applications (for a vertical isolated wall, NuH ≈ RaH

1/4 for laminar flow,
whereas NuH ≈ RaH

1/3 for turbulent flow). For this reason, the introduction of turbulence
generators is another element that has been studied for achieving improvement in the
thermal behavior of these systems (Ben Maad and Belghith [39]). Fedorov and Viskanta [8]
probed that the increase in turbulence intensity at the entrance of channels drives to obtain
higher heat transfer coefficients at walls, both experimentally and numerically.

3.2. Note on Optimization Procedures

Different procedures for determining best performance conditions have been utilized,
from the usual parametric analysis to the scale analysis (or order-of-magnitude) method,
as well as the intersection of the asymptotes corresponding to different regimes of the flow.
The last is similar to that addressed by Bar-Cohen and Rohsenow [29] and Zamora and
Hernández [33]. Another feasible method is based on the Constructal Law of Bejan (Be-
jan [40], Bejan and Lorente [41]). These authors pointed out that the basis of the constructal
theory is formed by the global objectives and the global constraints, providing universality.
The more relevant point is that the geometry of the flow is unknown, i.e., the geometry is
not previously assumed, and in turn it should be deduced. This fact makes the procedure
especially attractive although it obviously has some complexity and could be laborious.
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For instance, da Silva et al. [42] used the constructal method to determine the optimal
distribution and sizes of discrete heat sources in a vertical channel. They considered two
types of geometry: firstly, heat sources with fixed size and fixed heat flux; and secondly,
single heat source with variable size and fixed total heat flux.

4. Geometries Approximating Passive Solar Devices
4.1. Some Topics on Studied Morphologies

Enclosures or cavities (see Figure 1b) have been considered as typical arrangements
to approximate studies to practical situations [7,10,13,32]. Configurations considered, for
instance, by da Silva and Gosselin [43] are undoubtedly already applicable to passive ther-
mal systems. They carried out numerical simulations for obtaining the optimal geometry
of L- and C-shaped channels for maximum heat transfer in laminar natural convection.
Global constraint was the total height H of the channel. The values of the obtained optimal
spacing decrease as RaH increases for RaH in the range 105–107. They also employed the
intersection of asymptotes method. Zamora and Kaiser [44] carried out massive computa-
tions through the CFD Phoenics code for obtaining the optimum wall-to-wall spacing in an
L-shaped channel with solar chimney geometry. The considered wide range of Rayleigh
numbers covered the laminar, transitional and turbulent regimes. Values obtained for
the optimum (opt) aspect ratio (b/H)opt maximizing the heat transfer were less than those
maximizing the induced mass-flow rate m (kg/s). They provided correlations of (b/H)opt
for isothermal heating conditions as a function of Rayleigh number. Turbulent simulations
were obtained through the k–ω turbulence model of Wilcox [9]. These authors extended
their study to a C-shaped channel simulating a truncated Trombe wall geometry (Zamora
and Kaiser [45]) and presented correlations for the aspect ratio (b/H)opt that respectively
maximized the heat transfer between the fluid and the walls, and the induced mass-flow
rate, for symmetrically isothermal heating conditions. Similar to the trend obtained by
da Silva and Gosselin [43], the higher the value of RaH, the lower the value of (b/H)opt.
In addition, they pointed out that it was not feasible to optimize simultaneously both the
dynamic and the thermal performance, although a certain energy function can be defined
in order to find the global better performance of each system. In some cases (obviously in
passive ventilation systems) the dynamic optimization is clearly interesting. Here, obtaining
the maximum induced mass-flow rate m can become the target for ventilation purposes.

Like other authors, Zamora and Kaiser [44,45] also considered walls heated with a
constant heat flux q (W/m2), in which case Grashof number can be defined as:

GrH =
gβqH4

ν2κ
(6)

Therefore, the average Nusselt number at the heated wall can be calculated as follows:

NuH =
qH

Tw − T∞
(7)

where wall temperature Tw is not uniform along its surface; maximum value is reached in
some intermediate point of the wall near the top. In this case, characteristic temperature
could be the maximum value reached, or the average value at the wall, for instance.
Behavior of the flow is clearly different when heating condition at the wall changes, and
the existence of optimal values of the spacing between walls is at least debatable for
heating conditions with heat flux at the walls. Most authors cited in this section have
obtained values of the optimum gap only for isothermal conditions at walls. Irrespective
of this fact, the physical reasoning for the existence of the optimum is still based on the
opposite behavior achieved by the flow for the asymptotic limits that can be observed for
different values of the parameters governing the system. The change in the relative size
of the additional zones (inlet, outlet extensions) can influence the existence or not of the
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maximum, as well as its values (if they exist), although to a lesser extent. Depending on the
geometry the influence of eventual chimney effects could be relevant.

Other aspects of the matter can be treated and more realistic morphologies, alternative
to channel systems, can be considered for obtaining more applied results. As expected,
several works dealing with the geometric optimization of cavity configurations in order to
obtaining the maximum heat transfer can be found in the literature (Aounallah et al. [46]
for cavities with walls defined by Bezier curves; Biserni et al. [47] for H-shaped cavities;
Lorenzini et al. [48] for T-shaped cavities, and Lorenzini and Rocha [49] for T-Y-shaped
cavities, for instance).

4.2. Reference Studies on Passive Solar Systems
4.2.1. General Approach of Reference Studies

Solar collectors, thermosiphons, solar chimneys or Trombe walls are the best known devices
used in the bioclimatic architecture. These thermal passive devices can help to reduce
the electrical consumption in dwellings or buildings and are therefore included in the
actual energy-sustainable strategies. Through a passive solar heating these structures are
employed for achieving heating, cooling and ventilation in rooms and buildings. Focusing
on solar chimneys (Figure 2) and Trombe walls (Figure 3), the device is often formed by a
glazing receiving the irradiation, facing a massive wall (of concrete or masonry, usually),
probably oriented to the south.
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Figure 2. Typical arrangement of a solar chimney for natural ventilation and/or heating, attached to
a room. Irradiation is captured through a special-purpose wall system (massive wall with absorber
surface, glazing, . . . ), forming a channel, or cavity, or chimney . . .

In Trombe walls (Figure 3) the massive wall acts as an energy storage from which the
absorbed heat is emitted to the solar cavity or to the inside building. Vents are arranged
in such a way that by opening or closing them different behavior modes can be achieved.
In the winter, with heating mode, fresh air (or room air) enters through a vent located at
the bottom of device, towards the space between the glazing and the wall (solar cavity,
solar channel, solar chimney, etc.); here, air is heated and can enter the living room through
an upper vent. This warm air produces natural heating for the building. In turn, in the
summer, air enters at the bottom of the device from the inside room and is expelled to the
outside due to the buoyancy forces, which produces a cooling of the interior of the room
because of the induced natural ventilation.
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Figure 3. Typical arrangement of a Trombe wall attached to a room. The vents and apertures are
placed to produce heating of indoor air (winter heating mode in the scheme). The thermally active
walls (mainly the glazing) can be inclined (α or γ angles).

In solar chimneys (Figure 2) the main purpose is usually natural ventilation. Therefore,
the solar chimney can consist of a solar collector formed by two walls attached to a room.
The air enters through the bottom from the inside room and goes out through the open top,
thus achieving a natural extraction of the air inside the building. However, glazing is also
employed for obtaining higher irradiation capture. Therefore, it can be considered that a solar
chimney is a particular case of Trombe wall. Depending on the morphological details and the
opening or closing of given openings, different modes of operation can be achieved.

The fluid mechanics of natural ventilation were described in detail by Linden [50]. In
general, the airflow can be generated both for temperature differences and for the wind. In
fact, wind can become the dominant driving mechanism (wind-driving ventilation) but the
stack-driven (or buoyancy-driven) ventilation is also important under given circumstances,
and both mechanisms deserve especial attention. This author pointed out that several
complex effects can appear, such as time-dependent flows, multiply connected spaces,
non-adiabatic walls, or plume interactions, for instance.

4.2.2. Pioneering Works on Solar Passive Systems

Following on, several pioneering works on solar chimneys and Trombe walls are
revised. Borgers and Akbari [51] reported a numerical study on the flow within a Trombe
wall channel, using a mixing length model with empirical parameters considered in the
literature for simulating the turbulence. Smolec and Thomas [52] explained that discrepan-
cies encountered in heat transfer studies in Trombe walls could be due to oversimplified
assumptions (such as uniform temperature at walls, and others). They carried out a review
of typical engineering correlations to analytically describe the behavior of the passive solar
system. The conventional model was extended to two-dimensional treatment (Smolec and
Thomas [53]); the results were validated with experimental data.

Jubran et al. [54] presented numerical solutions for the laminar airflow in a Trombe
wall, by means of a finite difference method. They considered a sloping glass wall. A given
uniform vertical velocity was assumed as the entrance boundary condition in the compu-
tations. They concluded that increasing the tilt angle of glazing gave better performance
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compared to the conventional vertical parallel channel, if tilt angles were kept small. Gan
and Riffat [55] carried out a numerical study of solar chimneys including heat recovery;
they concluded that installing heat pipes for heat recovery decreases the buoyancy force,
and consequently reduces the ventilation capacity; additionally, the pressure loss increases.
Note that this finding agrees with those obtained by other authors regarding the presence
of obstacles into the fluid flow; in fact, Gan and Riffat [55] postulated that the most effective
measure to increase the induced flow is to take advantage of the suction effect of the
wind, if possible. Gan [56] presented a parametric study by numerical investigation using
the Renormalization Group (RNG) k–ε turbulence model in enclosures with Trombe wall
geometry. They concluded that in summer cooling mode the ventilation rate produced
by natural convection increased with the wall temperature, as well as the height and the
thickness of the heated wall.

Note that most investigations deal with airflows induced only by natural convection
forces. Later, attention will be posed specifically in works in which the focus is the wind-
driving airflow. A first approximation was carried out by Awbi [57]. This author exposed
several design considerations for natural convection systems in buildings. He considered
the wind for dividing the ventilation modes in three types: single-sided, cross-flow and
mixed flow, and proposed a quadratic summation of the volumetric flow rate Q (m3/s) due
to buoyancy (stack) and wind forces:

Q =
(

Q1/n
stack + Q1/n

wind

)n
(8)

being n a factor to be adjusted. In addition, Awbi [57] proposed a relationship for each
flow rate with a characteristic pressure difference in each situation (dominant buoyancy or
dominant wind).

Summarily, several modes for addressing the problem can be found in the technical
literature. For instance, a mathematical procedure has been followed by Ong [58] and Ong
and Chow [59], whereas valuable experimental results were obtained by Bouchair [60],
Warrington and Ameel [61], Afonso and Oliveira [62], and Onbasioglu and Egrican [63],
among others. In some of these works the geometric optimization problem has also been
addressed. For example, Bouchair [60] has suggested an aspect ratio of channels about
0.1 for obtaining the maximum ventilating rate, for height H = 1.95 m. For the chimney
proposed by Buochair [60], Gan [56] established the following equation for estimating
the volumetric flow-rate: m/ρ = 0.0197 (Tsurface − Tair,inlet)0.4015. It is patent that numerical
simulation has been gaining more importance in recent years, as will be seen later.

5. Overview of Relevant Literature

Several valuable articles containing detailed reviews on different aspects of the re-
garded problem can be found in literature, and a discussion of some of them follows.
Stevanović [64] has carried out an exhaustive review of studies on simulation-based op-
timization of passive solar strategies of design, focusing on the optimization methods
and software employed in literature. This author has presented summaries of research
on the optimization of building form, of opaque envelope components, of glazing and
shading elements, as well as on the passive solar design of whole buildings. Note that
although passive solar devices such as solar chimneys or Trombe walls are part of the
general research, here the focus is mainly on the design of the building itself. Therefore,
the materials used in the building construction, the thickness of the insulating walls, the
evaluation of the irradiation received and thus the solar orientation, or the heating or
cooling needs of the dwellings, among others, are factors to be considered in this type of
study. The problem is multidisciplinary, and in addition the numerical and parametric
methods different optimization algorithms have been used, such as those of genetic type, or
neural networks, for instance.

In the review by Zhan et al. [65], the concept of Air Layer Involved Envelopes (ALIEs)
is extended to multiple applications in buildings envelopes: multi-layer door/windows,
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double-skin façades, solar collectors, Trombe walls, solar chimneys, etc. These authors
divided the air layers applications into:

Air layer employed in external walls: single Trombe wall and composite Trombe wall,
ventilated (double-skin glazing) façades, wall-based solar chimneys, glazed and unglazed
transpired solar walls, ventilated PhotoVoltaic (PV), façades, vertical greenery walls, double
layer walls, . . .

Air layer utilized in windows: multiple panel windows, ventilated windows, . . .
Air layer employed in roofs: ventilated roofs, roof solar chimneys, solar air heaters

integrated in roofs, . . .
Omrany et al. [66] presented a review on the application of passive wall systems for

improving building efficiency. They explored the potential of different passive wall systems
for improving thermal performance through the reduction in consumptions in buildings.
They pointed out that the Trombe wall is recognized as a system for achieving the above
purpose, and therefore careful analysis of design parameters can contribute to improving
the thermal performance of systems. As the mean objective of the review by Zhan et al. [65]
is to show the existing applications and technologies of air layers at walls (of buildings), the
searching of better thermal or dynamic behavior of passive solar devices is not deserved a
particular attention. Something similar occurs with the survey by Omrany et al. [66].

A review was carried out by Zhai et al. [67] focused on solar chimneys in buildings.
Although geometry or shape optimization are not specially treated, some relevant data
taken from literature over dimensions and ventilation capacity are exposed throughout the
work. Zhai et al. [67] suggested in their conclusions that it is interesting to combine the solar
chimney systems with natural cooling systems, such as underground cooling, evaporative
cooling, and others. In addition, the performance of solar chimneys for ventilation can also
be enhanced with solar cells and solar collectors.

Shi et al. [68] have presented an overview on the influencing performance factors in
solar chimneys in buildings. From results reported in literature, these authors pointed out
that a solar chimney under solar radiation can achieve better performance with cavity gap
of 0.2–0.3 m, aspect ratio of around 10, equal inlet and outlet areas, and in the case of roof
solar chimney inclination angle in the range 45–60◦, considering latitude. In addition, the
corresponding room should have appropriate openings, double or triple glazing, thick
insulation at the wall of 5 cm, and solar absorber with high values of absorptivity and
emissivity. They organized the work in:

Influences of configuration (height, cavity gap, inlet and outlet areas, . . . )
Influences of installation conditions (inclination angle, room opening, solar collector)
Influences of material usages (type of glazing, materials for solar absorber, thermal

insulation . . . )
Influences of environment (solar radiation, external wind . . . )
Recently, Zhang et al. [69] have conducted a review on solar chimney applications in

buildings, focusing on the influencing factors of performance and the works developed at
RMIT University of Australia. They have suggested several potential trends and challenges
in solar chimneys for achieving enhancements.

6. Solar Chimneys: Topics
6.1. Prevailing Buoyancy

Focusing more specifically on solar chimneys, note that depending on the proposed
design or the intended function, solar chimney can be classified under different denomina-
tions (thermosiphons, Trombe wall, and others), ingredients such as natural ventilation,
solar radiation, and buoyancy-driving or wind-driving forces are presented to a greater or
lesser extent (see Figure 4). A considerable body of work dealing with airflows induced
only by buoyancy (or stacks) effects can be found in the literature. Ding et al. [70], Mathur
et al. [71,72], Burek and Habeb [73] and Arce et al. [74] experimentally analyzed the per-
formance of solar chimneys for ventilation purposes. In their experiments in a standard
L-shaped (vertical) solar chimney, Mathur et al. [71] found a potential for inducing ven-
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tilation in the range 50–150 m3/h volumetric airflow-rate for 300–700 W/m2 irradiation
on the vertical surface, whereas in [72], for an inclined solar chimney placed at rooftop
of room, authors reported that optimum inclination was in the range 40–60◦, depending
upon latitude. Burek and Habeb [73], from their experimental results, suggested that
mass-flow rate m within the channel in solar chimneys and Trombe walls devices could be
approximated by m~(heat input)0.572, and m~b0.712.
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As noted above, numerical simulation has been widely used in the study of systems
of interest. Bacharoudis et al. [75] reported numerical solutions for the airflow established
in a wall solar chimney by asymmetrical heating. For simulating the turbulence they
used the standard k–ε model, the realizable k–ε model, the RNG k–ε model, the Reynolds
Stress Model (RSM), and two different low-Re models. It was concluded that use of low-Re
turbulence models assures the prediction of realistic velocity and temperature profiles.
Best approximation to the experimental results was reached by using the realizable k–ε
turbulence model. Harris and Helwing [76] reported numerical results obtained through
Phoenics finite-volume code for a simple solar chimney, finding that the optimum slope
was equal to 67.5◦ for obtaining maximum airflow rate.

Bassiouny and Koura [77] carried out an analytical and numerical study of a solar
chimney attached to a room. They encountered that the absorber average temperature
could be correlated as a function of the solar intensity I (W/m2) as Tw = 3.51 I0.461, whereas
the average exit velocity could be approximated by Vexit = 0.013 I0.4.

More recently, Zhang et al. [78] have presented a numerical study of a wall solar
chimney for ventilating multi-zone buildings, focusing on multiple connected rooms. They
have determined that the optimal design requires a solar chimney with cavity gap of 0.2 m,
and an inlet size also equal to 0.2 m. These authors pointed out that the design of inlet
position and chimney height can significantly affect the overall performance of the device.
Numerical simulation has been addressed through the Fire Dynamics Simulator (FDS)
code, based on a LES procedure. This CFD code was also used by Shi and Zang [79] in
their investigations; from numerical results, these authors proposed different relationships
for the established air-flow rate, of the type m/ρ = Aopen/(0.65 + 5.2Aopen), being Aopen the
opening area of device.

Jiménez-Xamán et al. [80] have reported numerical results to describe the behavior
of a rooftop solar chimney attached to a single room. They have employed a CFD numer-
ical model considering the surface thermal radiation exchange between (internal) room
walls, and a pseudo-interaction of exterior boundary conditions with conducting walls.
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The resulting local velocities varied in the range 0.16 to 0.22 m/s in summer and winter
conditions. Vázquez-Ruíz et al. [81] have numerically analyzed the influence of the solar
roof chimney position on the heat transfer in rooms. Numerical results obtained by means
of ANSYS Fluent were successfully compared to experimental data. They have encountered
relevant differences in the thermal behavior of devices for different locations of the rooftop
solar chimney. The work of Lee and Strand [82] can stand as representative of alternative
numerical procedure. Based on an analytical approach of the problem, a parametric study
has been developed through the EnergyPlus code. They encountered mass-flow rate in-
creases above 70% when the chimney height increases from 3.5 to 9.5 m. However, they
have not found relevant differences in mass-flow rate as a function of the air gap width, at
least in the range b = 0.15–0.75 m.

Additional aspects of the problem can be found in literature. For instance, the solar
air heaters are simple devices that capture the solar radiation to heat the air at ambient
conditions, and thus using this warm air for conditioning buildings (see works of Singh
et al. [83,84]). Obviously, the advances in different solar passive devices such as Trombe
walls are applicable to solar chimneys. Zhang et al. [85] reported a numerical study on
investigating the heating behavior of an improved Trombe wall, previously investigated
experimentally. Through a three-dimensional model implemented in a commercial CFD
software, the heating characteristics between the proposed Trombe wall and a traditional
one have been compared. In the analysis, effects of irradiation, ambient temperature,
absorptivity and emissivity of the wall’s materials, and the gap of the air channel, have
been addressed. They encountered that the best heating performance takes part with a
height of 2.7 m and the gap of air channel ranged from 70 to 80 mm.

Recently, Liu et al. [86] have reported a contrastive analysis of a combined solar
chimney that can be utilized for both winter heating and summer ventilation. They have
focused on the feasibility and applicability of several operational modes of three different
structural solar chimneys. Numerical results have been obtained through CFD techniques,
using the realizable k–ε model for turbulence. The ANSYS Fluent finite-volume code has
been employed by Nguyen et al. [87] for conducting an analysis of different strategies
for a room with a heated wall, with typical solar chimney geometry. As a novelty, a
double vertical channel is considered; in some cases, the authors encountered very relevant
increases in ventilation rates by changing the morphology and the heating conditions of
the device.

6.2. Taking into Account Radiative Effects

As indicated throughout the manuscript, depending on the procedure for addressing
the problem, boundary conditions at walls have been treated as adiabatic, or imposing
fixed values of temperature and/or heat flux, or alternately by modeling of the real heat
fluxes at walls: irradiation, conduction, convection, radiation between heated walls, etc.
If this treatment is adopted, thermal and radiative properties of participating materials
(thermal conductivity, emissivity, absorptivity, etc.) should be included in the analysis.
However, the resulting study could not be generalist enough, but depending on the realistic
materials involved in the analysis. Obviously, it is possible to find multiple treatments
in technical literature. A compromise solution could consist of simplifying the boundary
conditions at walls sufficiently, along with retaining radiative effects between walls when
they are considered as relevant (i.e., surface thermal radiation).

The radiative heat transfer has not been included in most cases found in literature
because it can be considered negligible compared to the convective (or even conductive)
effects. However, thermal radiation should not be neglected in some cases, and therefore
different studies have been conducted by several authors (in our field, Nouanégué and
Bilgen [88], Montiel et al. [89], for instance). Both the radiative and the variable thermophys-
ical properties of fluid have been analyzed in detail by Zamora and Kaiser [90], for cavities
with thermal passive configuration. For a morphology corresponding to a solar chimney
attached to a room, these authors quantified the relevance of the commented effects, and
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determined the range of parameters (for instance, the heating intensity, Λ = ∆T/T∞) for
which discrepancies in the obtained numerical results were important. They used the
IMMERSOL model of Spalding that is provided in Phoenics code. Usually, the radiation
effects can be restricted in numerical simulations to surface-to-surface radiation as afore-
mentioned), which has offered successful results validated with experimental data (i.e., air
assumed as transparent to radiation). Different models have been employed such as the
Rosseland diffusion approach, the radiosity-irradiance or the composite-radiosity models, or the
six-flux radiation formulation, for instance.

6.3. Wind-Driving Effects

In the following, the attention is focused on the impact of the wind on a solar chimney.
In real situations both wind forces and buoyancy (or stack) forces induce the airflow, as
explained before. In some cases, the ventilation rate originated by the combination of
these two effects can be higher than that obtained only by buoyancy forces. However,
under given conditions effects may oppose each other and not necessarily enhance the total
ventilation rate. It can be concluded that each configuration should be analyzed separately
for realistically knowing the relevance of different effects. Contributions by Awbi [57] and
Bansal [91] can be considered as pioneering. As aforementioned, Awbi [57] proposed that
the mass-flow rate could be obtained through correlations for each separate driving force,
for engineering applications. Nouanégué et al. [92] considered that the upper opening of
the solar tower was oriented against the cardinal direction of wind to obtain a depression
area most of the time. They presented numerical results of mixed convection airflow for
simulating the effects of wind, and presented the results of Nusselt number and ventilation
rate as a function of Ra/Re2, i.e., the Richardson number.

Zamora and Kaiser [93] conducted a numerical study on mixed buoyancy-wind
driving airflow induced in a solar chimney, aiming for building ventilation. They detected
a gap in the study of ventilation by means of solar chimneys subject to wind. For low
enough Rayleigh numbers, buoyancy effects were almost insignificant compared to wind
forces, except for low enough values of wind velocity. For high values of the Rayleigh
number wind effects became dominant from velocities 1–2 m/s, whereas for 2–3 m/s, wind
effects were always prevalent. From numerical results obtained through the Phoenics code
they proposed a global correlation for ventilation rate m, involving the velocity speed and
the characteristic buoyancy velocity as a function of Rayleigh number.

The influence of wind speed and direction on the performance of a particular solar
chimney have been addressed by Neves and da Silva [94], who confirmed the importance
of analyzing the combined effects of natural convection and wind-driven ventilation. As
pointed out by Zamora and Kaiser [93], aeromotive forces do not always produce a positive
effect. Under certain circumstances the depression that usually appears at the outlet of
the solar towers tends to decrease, and then the ventilation rate could also decrease. In
fact, Neves and da Silva [94] investigated the effects of wind speed and direction on the
performance of a solar chimney placed at the roof of an experimental cell, involving a cover
at the outlet opening; they encountered a reduction of up to 47% in the volumetric flow-rate
through the chimney due to the opposite incidence of wind to the inlet opening, even for
relatively low values of wind such as 0.6 m/s. In addition, these authors presented results
for wind pressure and discharge coefficients.

The interference of wind on solar chimneys attached to a building have been also
analyzed by Shi [95], both theoretically and numerically through the FDS code, who
suggested that a higher wind velocity does not induce a better solar chimney performance,
which is dependent on the wind incidence angle with respect the outward normal of the
wall with the window (keep in mind that this author has reproduced a typical building).
Again, Shi [95] confirmed that the interaction of atmospheric wind cannot be neglected in
the behavior of solar chimneys when practical applications are addressed.

Predictions for solar chimneys’ performance under buoyancy effects exclusively can be
strongly modified when wind forces are relevant, as pointed out by Wang et al. [96]. The
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non-inclusion of wind effects can produce a clear underestimation of ventilation rates in most
cases. Numerical results were obtained through the CFD FDS code, including the radiative
heat transfer. Keeping in mind the wind effects for solar chimneys dedicated to ventilation
purposes, elements such windcatchers deserve to be analyzed. Nouanégué et al. [94] studied the
integration of windcatchers with solar chimneys through a numerical investigation. Moosavi
et al. [97] analyzed both numerically and experimentally the performance of a windcatcher
combined with a solar chimney, in conjunction with a water spray system, for a two-story
office building in an arid and warm climate. A comprehensive review on natural ventilation
aided by windcatchers has been carried out by Jomehzadeh et al. [98].

Evola and Popov [99] presented a CFD analysis of wind-driven natural ventilation
in a building with single-side ventilation and an opening in the windward wall. They
employed the RNG k–ε turbulence model, finding a good agreement with numerical LES and
experimental results taken from literature. As expected, these authors encountered difficulties
with the standard k–ε model in describing the airflow close the surfaces, in which the damping
of kinetic energy is relevant. Pakari and Ghani [100] reported and assessment in the airflows
in a ventilated greenhouse equipped with wind towers, both numerically and experimentally
(wind tunnel facility). They pointed out that for wind velocities above 2 m/s, the volumetric
flow-rate was enough for regulating the air temperature within the greenhouse.

6.4. Fundamentals of Wind Numerical Simulation

Special attention deserves the appropriate numerical simulation of the wind in re-
alistic conditions. Assuming a given uniform velocity for the incident wind is often not
adequate for simulating the performance of solar chimneys and Trombe walls under given
circumstances. An analysis on the impact of several parameters on CFD simulations of
cross-ventilation has been conducted by Ramponi and Blocken [101], for a generic isolated
building. The focus was posed on the boundary conditions imposed for CFD simulations of
the turbulent flow, for achieving accurate enough predictions of the atmospheric airflows
involved in ventilation of buildings. Similarly, Park et al. [102] have presented numeri-
cal studies to analyze the combined effects of both stack and wind forces on windward
single-side ventilation. In view of the relevant influence of the acting wind forces on any
passive thermal system, in the last cited works (as well as others found in the literature) it
is evident that the encouragement was for the authors to perform a physically adequate
numerical simulation of the Atmospheric Boundary Layer (ABL).

The atmospheric wind can be introduced through a logarithmic profile, giving the
distribution of horizontal wind speed UW as a function of vertical coordinate y, as:

UW(y) =
uτ

kv
ln
(

y
y0

)
(9)

being uτ the total friction velocity, kv the von Kármán turbulent constant (≈0.41) and y0 the
effective roughness height of the ground terrain. Grimmond and Oke [103] and Blocken
et al. [104], for instance, have provided different values for y0, depending on the ground type.

In this way, for simulating the ABL correctly by means of standard two-equations
models of turbulence in CFD procedures, the following distributions of turbulent variables
should be imposed:

k =
u2

τ

(CµCd)
2 ; ε(y) =

u3
τ

kvy
; ω(y) =

ε

(CµCd)y
(10)

which are based on the formulation proposed by Richards and Hoxey [105], with Cµ = 0.5478
and Cd = 0.1643, as the usual constants in turbulence models. According to these profiles fixed
values of k, ε and ω should be applied at the top free of the computational domain.

The idea is to include a sufficiently large computational domain in the numerical
analysis, so that the blowing wind over the building is simulated from the limits through the
boundary conditions. For large computational domains, this can reveal the problem of the
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appropriateness of boundary conditions and the non-homogeneity of properties profiles in
a horizontal direction in the ABL. This has been repeatedly analyzed in literature (Blocken
et al. [106], or Richards and Norris [107], among others). Really, the problem emerges
when the height roughness related to the rough wall-function is based on the sand-grain
roughness of Nikuradse; this is the case of ANSYS Fluent code, and the aforementioned
authors have provided rules for avoiding the problem. In turn, the ABL is well simulated
in Phoenics code, with the only prevention being that physically the value of effective
roughness height should not be greater than the distance between the first computational
node of mesh and the ground.

Van Hoof et al. [108] have developed a validation of cross-ventilation flow through
a generic isolated building for five RANS turbulence models and for a LES model based
on the dynamic Smagorinsky subgrid-scale model. In the specification of wind boundary
conditions, these authors have considered the rules given above. An indication that the
problem may become numerically complex is that the five different steady RANS models
provided significantly different results. Depending on the type of problem, RANS results
could approximate to LES results (intrinsically transient), but for obtaining sufficient
accuracy, use of LES models involves an increase in computational time with a factor of
80–100 in turn. In general, the use of LES has produced a higher agreement with the
experimental results.

Lastly, it may be interesting to have practical correlations to evaluate the convection
coefficients when the wind is blowing over passive thermal structures, avoiding more
detailed calculations, especially for designers. Palyvos [109] has presented a valuable
survey. Other similar contributions can be found in literature.

7. Solar Chimneys: Shapes and Designs
7.1. Shapes and Designs. Background

Improving the performance of systems based on solar chimneys has been the subject of
intense study in recent years. From a systemic point of view, it seems clear that the combined
use of several technologies can lead to the achievement of optimal operating conditions for
each case. Zhang et al. [110] pointed out in their critical review that the combination of solar
chimneys, Trombe walls, double-skin façades, solar roof collectors, photovoltaic (PV) panels,
evaporative or adsorption cooling components, even including phase change materials,
and more, constitutes a powerful strategy for achieving the fundamental objectives of
energy saving and global warming reduction. Therefore, the number of aspects and articles
published on the different facets of the problem is enormous. The wind impact deserves
appropriate attention; in fact, new design proposals appear, such as that explained by
Shaeri and Mahdavinejad [111]. These authors have placed an aerodynamic form above
the wind chimney, taken from the shape of an aircraft wing. The form is used upside down
according to the required performance; low air pressure is generated below it when the
wind is blowing. Numerical results are obtained by means of COMSOL Multiphysics: a
parametric optimization procedure drive to obtain the best location of the aerodynamic
form to produce the best wind chimney performance.

Following, three main fields are specifically reviewed: tilt-related, width-related, and
inlet/outlet-related studies.

7.2. Tilt-Related Studies

Constructively, optimizing the slope angle of the walls forming a solar chimney has
more sense for rooftop-type chimneys (Figure 5). The optimum tilt or slope of solar
chimneys for obtaining the maximum airflow was studied by Harris and Helwing [76].
They proposed an optimum slope equal to 67.5◦, as aforementioned, for Edinburgh in
Scotland at latitude 52◦. Sakonidou et al. [112] have conducted an analytical modeling for
obtaining the optimum tilt, validating their results with some numerical and experimental
results. They reported that the maximum airflow appeared for tilt angles in the range
65–76◦, whereas for maximum irradiation was 12–44◦. In the pioneer work of Prasad and
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Chandra [113] in India, also analytical, a different trend can be found: 53–76◦ for maximum
airflow, and 0–55◦ for maximum irradiation. Mathur et al. [72], as commented above,
theoretically reported that the optimum slope was in the range 40–60◦ depending upon
latitude; the maximum ventilation rate was encountered of 45◦ at Jaipur (India) at latitude
27◦ N. Bassiouny and Korah [114] have found, analytically and numerically, a given range
of inclination angles (45–75◦) for a latitude of 28.4◦, for optimizing the induced mass-flow
rate. These authors used the FEM code ANSYS and adopted the Galerkin principle for the
weighted residuals function.
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Figure 5. General scheme of a rooftop solar chimney for ventilation purposes. On the right, an
alternative configuration for inclined roof is outlined.

The main prevention to be considered when tilting solar chimneys, whether attached
to wall rooms or located at the rooftop, will be explained in the following. The inclination
of walls with respect to vertical direction, in which buoyancy forces are acting, can lead
to the occurrence of reverse flow. Consequently, this fact could result in a reduction in
the induced total mass-flow rate through the solar chimney, not desirable for ventilation
applications. This topic has been treated by Khanal and Lei, both numerically [115] and
experimentally [116], for an inclined wall solar chimney with a uniform heat flux at the
thermally active wall; experiments showed that reversal flow should be minimized for
obtaining better performance conditions. The optimal inclination angle was considerably
low (of the order of 5◦ with respect to vertical direction). Ren et al. [117] have studied
the problem numerically, confirming the negative effects of the reversal flow presence
on inclined solar chimneys. They have proposed an inclined solar chimney (of rooftop
type) including discrete heat sources integrated at the exterior skin of the structures for
suppressing the reserve flow. They have encountered that the optimal inclination angle
maximizing the ventilation rate strongly depends on the Rayleigh number.

Kong et al. [118] have developed a CFD based approach for identifying the optimum
inclination angle of rooftop solar chimneys for different real climate zones in Australia.
They revealed that the best performance conditions for ventilation occurred for slopes in
the range 45◦ to 60◦, depending on the operation latitude and season. Wind direction and
wind speed are not included in the study, although the authors recognize that they should
be analyzed in future works.
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7.3. Width-Related Studies

Another morphological factor for optimizing the thermohydraulic performance of
solar chimneys is the wall-to-wall distance of the space occupied by fluid. The physical
reasoning of the existence of a maximum has been already treated, and several works have
been discussed, mainly for simplified geometries [29,31], but also including geometries
oriented to solar passive systems [45] and even for the solar chimneys themselves [78,82].

Zavala-Guillén et al. [119] have presented an analysis of the conjugate heat transfer
on a double air-channel solar chimney, aiming to obtain the configuration maximizing the
induced mass-flow rate for ventilation purposes. These authors have focused on a typical
dilemma in the field of interest, consisting of considering given boundary conditions such
as isothermal walls, or isoflux or adiabatic walls, or alternately considering effects such as
heat conduction and radiation, at least in the glazing wall that transfer the irradiation. In
fact, the authors have opted for the latter option and have presented numerical results to
carry out a parametric study on the influence of the height and width of the space between
the walls occupied by the fluid. They observed that the highest value of the ventilation rate
does not correspond to the highest temperature difference. The optimal configuration was
for a channel with 2 m in height and 0.125 m wide; thermal efficiency was equal to 38.5%
and the mass-flow rate equal to 0.1072 kg/s for an irradiation of 700 W/m2.

Regarding the solar chimneys under wind effects, Wang et al. [98], for a solar chimney
attached to a room, concluded that the typical values of 0.2–0.3 m of cavity gap for achieving
optimal ventilation rate are no longer applicable under the atmospheric wind, and the
values rises to 0.4–0.5 m. In general, it should be accepted that these results can be
hardly extrapolated to other different geometries, and therefore each morphology deserves
particular attention. Relevant differences can be found in the system performance located
leeward or windward. Zamora [120] has assessed the performance of three different
arrangements of a rooftop solar chimney, through a numerical simulation; particular
attention has been paid to the appropriate simulation of the ABL. The author detected that
wind produces a decrease in the value of the aspect ratio b/HC (Figure 5) for better thermal
performance. For wind-dominant conditions, the thermal optimal b/HC was slightly above
0.05; however, the maximum values of the induced mass-flow rate appear asymptotically
when b/HC tends to unity, at least for two of the three regarded configurations. Since
no local values of the better dynamic-performance maximizing the ventilation rate was
encountered, choosing a wall-to-wall spacing b should be subject to the available space
as well as to other constructive considerations. An intermediate value of the aspect ratio
could be proposed for achieving the maximum ventilation rate varying the morphology
and wind conditions.

7.4. Inlet/Outlet-Related Studies

Regarding the influence of size and shape of the inlet/outlet areas, Al-Kayiem et al. [121]
have presented a mathematical analysis of the effects of chimney height and collector area
on the performance of a rooftop solar chimney. The considered geometry was double sided
inclined absorbers, including a circular cross section chimney pipe. They encountered that
even with a large collector area up to 600 W/m2 the arrangement was not able to perform
feasibly for an irradiation less than 400 W/m2 (Malaysian weather conditions). For high
enough values or solar radiation, high values of the wind caused a reduction in the system
performance, due to increases of losses from the top cover. The influence of the inlet configu-
ration on the performance of the same type of rooftop solar chimney has been analyzed by
Al-Kayiem et al. [122]. Numerical results have been obtained through ANSYS Fluent code,
including the Discrete Ordinate model for simulating radiative effects. However, the impact
of wind has not been included. These authors concluded that best performance was obtained
for inlet configuration with vertical cross section.

The author of [123] has considered a C-shaped solar chimney attached to a room,
including extended connecting ducts in a horizontal direction. Only buoyancy forces are
considered. This author has developed a general model to predict the induced airflows
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rates, known as plume model (He et al. [124]), validated with experimental results. This
analytical model assumes that each thermal boundary layer can be modeled as a one-
dimensional plume of constant thickness attached to the walls forming the channel. The
channel is therefore divided into the plume flow region and the area outside the plume.
The outside region does not contribute to the buoyancy force. In addition, in [125] the flow
into the ducts outside the chimney channel is considered as forced flow (thus the model
cannot simulate reversal flow). Results have shown that the presence of connecting ducts
affects the flow, but no search procedure for the best operating condition is established.

Nguyen and Wells [125] and Nguyen and Nguyen [126] have numerically studied
the effects of several configurational factors at the inlet/outlet areas of a vertical solar
chimney. They found a strong influence of given configuration changes on the performance
of devices.

Fang et al. [127] presented an investigation of a wall-mounted solar chimney system
in a single-story building, only under buoyancy driving forces. The effect of the ratio air
outlet/air inlet cross-sectional area (S) on the operational effectiveness has been analyzed.
ANSYS Fluent code has been employed for conducting the numerical results. They en-
countered that the maximum local heat flow density reached 188 W/m2 at S = 80% and
analyzed the relationship between S and the appearance of vortices and secondary flows as
well as the influence on the thermal efficiency of the system. Therefore, these authors have
concluded that the design of wall-mounted solar chimneys has a non-negligible impact;
the proper selection of the S-value range is relevant for the ventilation requirements of
engineering design.

Gao et al. [128] have encountered a clear enhancement of a roof solar chimney through
the inclusion of a wind-induced channel, which is located at the building’s outer wall. In
this way, the fluid enters the solar chimney a certain velocity at the upper part and induces
the air within to flow upward and pass through the roof. Wind driving forces are retained
in the analysis, and numerical results have been presented by using a finite-volume CFD
procedure. The new structure improves the ventilation rate due to the wind-induced
channel. Authors illustratively explained that when the inclination angle increases from
30◦ to 90◦, the mass-flow rate increases 212% for wind velocity UW equal to 1 m/s, 166%
for UW = 2 m/s, and 127% for UW = 3 m/s, for an irradiation of 600 W/m2.

8. Solar Chimneys: Plates, Fins, and Flow Disturbers

It is expected that the introduction of certain obstacles such as fins, intermediate plates,
or turbulence (or vortex) generators (Figure 6), among others, will produce a significant
change in the thermohydraulic characteristics of the convective flow. The idea is to analyze
the necessary changes in the morphology of the fluid flow zones, seeking the best operating
conditions for passive solar systems.

Changes in the heating conditions can be introduced directly, avoiding obstacles. The effect
of discrete heat sources on the natural convection airflow inside an isolated solar chimney has
been discussed experimentally and numerically by Ren et al. [117,129]. They encountered that
a given distribution of heat sources integrated into the walls enhances the ventilation rate for
high enough values of RaH. The improvement appears because of discrete sources tending
to suppress the reverse flow occurring at the exit of a conventional chimney. For a different
geometry with an open-ended channel similar to that formed by the double skin façades with
PV panels, Tkachenko et al. [130] have carried out experimental and numerical investigations
on the effects of the non-uniformity of the heat flux distribution at walls and have found
increases in the induced mass-flow rate for a given arrangement. Numerical results were
obtained by using an in-house finite volume solver, validated through comparisons with
experimental results. These authors encountered that the introduction of fluctuations at the
inlet of the computational domain reveals as necessary for matching the experimental data
reasonably. Intermittently fluctuating separations at the entrance drive to the growth of given
flow structures produce a clear mixing into the channel.
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8.1. Intermediate Plates

Zavala-Guillén et al. [131,132] have considered a channel solar chimney including
an intermediate absorber plate. The partitioned arrangement of the channel produced
an induced mass-flow rate of up to 50% higher than that obtained in a conventional
configuration. Authors have advised that boundary conditions applied to walls forming
the partitioned channels, as well as the consideration of radiative and realistic effects, are
keys factors for verifying the improvements reached when intermediate plates are included
in the analysis.

He and Lv [133] have addressed the idea of improving the efficiency of solar chimneys
through the inclusion of transparent glazing insertions into the channel. They have pre-
sented experimental and numerical results. Phoenics code has been used, along with the
IMMERSOL model for radiative heat transfer, which is unique to Phoenics. Numerically,
one insertion of a transparent panel with various solar absorption coefficients can produce
a 5 to 9% increase in the mass-flow rate. Experimentally, two insertions increase the mass-
flow rate by 30%. As expected, these authors pointed out that the number of insertions
should not be excessively high, because of the rising of friction losses that can produce a
worsening performance.

Lei et al. [134] have considered introducing a perforated absorber plate into a roof
solar chimney to improve the ventilation performance. This plate, which divided the roof
solar chimney into two channels, increased the ventilation due to heating the air in the gap,
and the consequently increasing the temperature gradient with respect to the ambient. The
numerical results have been obtained through CFD modeling with the RNG k–ε turbulence
model. Lei et al. [134] verified the results by using the experimental results of a traditional
solar chimney studied by Chen et al. [135]. Several slopes (30◦, 45◦ and 60◦), as well as
widths (0.3, 0.4 and 0.5 m) were considered. An increase up to 35% in the induced mass-flow
rate has been obtained with the proposed arrangement, compared to the traditional solar
roof chimney. A more relevant effect was obtained for large depth width of the chimney.

Note that the heating conditions assumed for the intermediate plates is a key point for
obtaining an eventual enhancement of the ventilation capacity of the solar chimney.
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8.2. Fins

Fins are frequently used in forced convection applications, but to a lesser extent in
natural convection flows. However, the inclusion of this type of structure attached to the
walls forming the channel (Figure 6) can produce in some cases an enhancement mainly
of the thermal behavior, and more rarely of the ventilation rate. Wu et al. [136] have
carried out a numerical analysis on the impact of fins on a solar Trombe wall. Therefore,
attention was posed on the heating capacity of the passive solar system, and not on the
ventilation rate. The chosen configuration has been a C-shaped channel. These authors
have encountered an increase of 23.7% in the maximum thermal efficiency of the finned
Trombe wall compared to the unobstructed one. The enhancement can be obtained with
several distributions of fins. Numerical results have been obtained by using ANSYS ICEM
code with the RNG k–ε turbulence model, including radiative effects through the S2S model.
These authors have clearly exposed the two opposite effects which can appear. On the one
hand, the thermal efficiency increases because of the temperature rising at the outlet section
(33.7%), but on the other, the minimum ventilation rate was reduced by 29.9%.

Hoseini et al. [137,138] have tested several shapes of fins mounted on systems related
to solar heaters and chimneys. Numerical results have been obtained through CFD simula-
tions employing the Realizable k–ε turbulence model, and considering the radiative effects
by using the S2S model. In the boundary conditions, they have included the convective
heat transfer through the corresponding heat transfer coefficient hw (W/m2K):

hw = 5.7 + 3.8 UW (11)

as a function of wind velocity and used extensively in the literature. The considered fin
shapes were rectangular, elliptical, and triangular. The better thermal performance was
obtained with the inclusion of rectangular fins. Due to having a larger heat transfer surface,
the thermal efficiency obtained is clearly higher when the fins are included compared to
non-finned channels. In addition, an increase between 7 and 14% in the induced mass-flow
rate has been obtained. These authors pointed out that discontinuities such as fins can
improve the overall performance of solar chimneys.

8.3. Obstacles and Vortex Generators

A sizeable number of works dealing with the inclusion of obstacles in solar air heaters
can be found in literature, but studies are scarce when the focus is posed specifically on
solar chimneys dedicated to ventilation purposes.

For solar air heaters, Promvonge et al. [139] and Ji et al. [140], for instance, have
addressed numerical studies for ducts punched delta-winglet vortex generators (the first),
and for the device roughened by multiple V-shaped ribs (the second). The main objective
was the thermohydraulic efficiency enhancement, and this was achieved in both cases. In
these works, and others found in literature, the analysis of the flow structures and the
influence of the generated vortices on the behavior of systems revealed the importance of
achieving the complete knowledge of the problem. However, the numerical simulations
haven been conducted by imposing forced convection conditions through a given air
velocity at the inlet of the narrow channels. In a similar line, Arunkumar et al. [141] have
checked the influence of the inclusion of helicoidal spring-shaped fins also into solar air
heaters. Unfortunately, results obtained for this type of geometry can hardly be extrapolated
to systems based on natural convection in solar chimneys attached to buildings or place on
the roofs.

For both forced and natural convection, the effects of thermal diffusion in developed
boundary layers produce a certain stabilization of the heat transfer process, and thus can
be considered as an obstacle for improving the efficiency of the system. A strategically
placed obstacle can cause a disturbance in the boundary layers attached to the thermally
active walls, increase the level of turbulence, or even produce vortex shedding which can
ultimately increase the heat transfer between the fluid and the walls. The generation of
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alternating vortices can be achieved by the implementation of vibratory or flexible elements,
for instance, so it is necessary to develop an appropriate modeling of the fluid-structure
interaction for the numerical simulation of airflow (Shi et al. [142], among others). However,
it is commonly accepted in the concerned literature that the use of vortex generators pro-
duces higher pressure loss, and therefore a greater pumping power is mandatory to obtain
the same mass-flow rate in forced convection problems. For natural convection problems
it is physically understood that the induced mass-flow rate will decrease, mainly due to
the reduction in the section available for the fluid flow. In other words, it can be expected
that in most cases the increase in buoyancy forces because of the disturbance caused in the
boundary layers and the mixing effects could not compensate for the obstructive impact
of immersed bodies. Therefore, the ventilation capacity of solar chimneys installed in
dwellings and buildings can even decrease drastically, which could produce higher heat
transfer coefficients.

A relatively low number of studies on this subject have been found in the literature,
when specifically discriminating on solar thermal chimneys. Nguyen et al. [143] have
numerically examined the effect of a rectangular obstacle placed at the heated surface of an
intermediate plate in a solar chimney. They have found that the thermal efficiency increase
was up to 13%. These authors have employed the ANSYS Fluent code with the RNG
k–ε turbulence model. Works reported by Gandjalikhan et al. [144] and Sheikhnejad and
Nassab [145] are noteworthy. These authors have achieved a clear thermal enhancement
of a solar air heater (with natural convection airflow) and of a solar chimney, respectively.
They have embedded an elastic porous winglet, also known as porous vortex generator. The
problem approach is passive, but they considered that the problem must be addressed in
transient two-manner coupled Fluid-Structure Interaction (FSI) condition. The CFD code
used is COMSOL Multiphysics (based on finite element method). Finally, Sheikhnejad and
Nassab [145] have recognized that using turbulence generators is recommended for the
thermal behavior mode of the solar chimney, but not for its use for ventilation mode since
the induced mass-flow rate has been lower.

9. Short Note on the Influence of Climatic Conditions

Throughout the manuscript it has been shown that climatic conditions and latitude are
decisive factors in the operation of solar chimneys and therefore the efficiency. Illustratively,
the optimum inclination angle for maximizing the ventilation rate depends on location
latitude, and it is well known that solar chimneys are generally considered as unsuitable
for regions with low irradiation or very hot/arid climates (Monghasemi and Vadiee [146]).

Maghrabie et al. [147] have pointed out that passive cooling strategies can produce
a great challenge, mainly in regions where high temperatures are predominant along the
year. The most relevant applications for natural convection solar chimneys take place in
residential (and non-residential) buildings, particularly appropriate for hot (moderate) and
humid climates. Miyazaki et al. [148] considered a solar chimney integrated into a south
façade of a building, under Japanese climate (Tokyo); they showed that the requirement
in fan shaft power was reduced by about 50% due to natural ventilation. Chungloo and
Limmeechokchai [149] experimentally analyzed the thermal performance of a solar chimney
under hot and humid climate conditions (Thailand).

Abdallah et al. [150] have presented a parametric investigation of a solar chimney
under Egyptian climate conditions. Authors have claimed that houses in Egypt are design
without taking the climate into account enough. Priority of the design presented is to
apply during the hot days in summer. Suprasert et al. [151] have conducted numerical
simulations through ANSYS Fluent code for investigating the influence of vapor mass
fraction in the air-vapor mixture on the air gap of a solar chimney. They encountered that
the yield of ventilated airflow was 15.4–26.2% less than that obtained with dry air. Yussof
et al. [152] pointed out that stack ventilation is inefficient in the hot and humid climate due
to the low temperature gap between the inside and the outside of building. These authors
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have proposed a combination of roof collector and vertical solar chimney for enhancing the
stack ventilation.

10. Summary

Since the first works reported on the application of the principles of natural convection
in solar passive systems for contributing to the air conditioning in buildings, it has created
a great interest in the development of new techniques and applications to achieve energy
savings in buildings, in just a few decades. The contribution to reducing global warming
and greenhouse gases generation constitutes a clear reason for the development of new
air conditioning systems for the bioclimatic architecture. Currently, innovative strategies
are being developed to achieve the proposed objectives, combining different technologies
and operating principles (Monghasemi and Vadiee [148], Zhu et al. [153], Zhang et al. [110],
among others).

Regardless of these trends, basic passive air conditioning and ventilation systems
such as solar chimneys (and Trombe walls) must continue to be investigated to achieve a
general improvement in their thermohydraulic efficiency. It is necessary to conduct more
experiments and simulations to solve the basic problems, and to develop their commercial
applications. Particularly for solar chimneys, design factors that produce clear thermal
improvement are not capable of achieving an improvement in the ventilation capacity, so
further research is needed in this regard. In the present work we have focused on the critical
review of the improvement proposals that have been reported in the concerned literature,
considering different impacts such as wall-to-wall distances or the airflow disturbances
caused by obstacles or vortex generators.

Considering that the combination of different passive (and eventually active) air condi-
tioning techniques could increase the economic cost of these systems, which in turn pursue
energy savings, it is interesting to try developing basic and relatively simple designs that can
achieve the best performance conditions for both the thermal and ventilation requirements.
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