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Abstract: Raman spectroscopy is a useful tool for polymorphic form-monitoring during the crystal-
lization process. However, its application to solute concentration estimation in two-phase systems
like crystallization is rare, as the Raman signal is influenced by various changing factors in the
crystallization process. The development of a robust calibration model that covers all variations is
complex and represents a major challenge for the implementation of Raman spectroscopy for in-line
monitoring and control of the solution crystallization process. This paper describes the development
of a Raman-based calibration model for estimating the solute concentration of the active pharma-
ceutical ingredient ceritinib. Several different calibration approaches were tested, which included
both temperature and spectra of clear solutions and slurries/suspensions. It was found that the con-
centration of the ceritinib solution could not be accurately predicted when suspended crystals were
present. To overcome this challenge, the approach was enhanced by including additional variables
related to crystal size and solid concentration obtained via in-line process microscopy (chord-length
distribution percentiles D10, D50 and D90) and turbidity. Partial least squares regression (PLSR)
and artificial neural network (ANN) models were developed and compared based on root mean
square error (RMSE). ANN models estimated the solute concentration with high accuracy, with the
prediction error not exceeding 1% of the nominal solute concentration.

Keywords: process analytical technology; Raman spectroscopy; turbidity measurements; in-line
process microscopy; crystallization; ceritinib; calibration models; pharmaceuticals

1. Introduction

Crystallization is a fundamental process in the pharmaceutical industry for the purifi-
cation and isolation of substances. As the vast majority of active pharmaceutical ingredients
(APIs) are produced in crystalline form, crystallization plays a crucial role in achieving the
desired chemical purity and physical properties of the product [1]. When done properly,
it facilitates precise control of crystal properties like the polymorphic form, particle size
distribution (PSD), aggregation and/or agglomeration. These properties in turn directly
impact downstream processes like filtration, drying and particle reduction unit opera-
tions, as well as final product characteristics like solubility, stability, dissolution rate and
bioavailability [2,3].

Given the strict manufacturing process quality control and the requirements for high-
quality pharmaceutical products, in 2004, the U.S. Food and Drug Administration (FDA)
proposed an innovative approach to the research and development, manufacturing and
quality control of pharmaceutical products that utilizes process analytical technology
(PAT) [4]. PAT combines scientific and engineering approaches through the development
and implementation of analytical methods, advanced techniques and tools for the mea-
surement and control in real time of critical quality attributes (CQA) and critical process
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parameters (CPP). For the monitoring and subsequent control of crystallization processes,
in-line PAT probes have been developed to measure and determine the concentration,
particle size distribution, particle shape and polymorphic form directly in the process.

Accurate solute concentration measurements are essential to define process conditions
for effective process control strategies, as the driving force of the process is supersaturation,
which is defined as the difference between the current solute concentration and the equilib-
rium solute concentration [5-7]. Zhang et al. [8] provide a detailed overview of different
techniques for concentration measurement in crystallization processes. The most common
in situ method for solute concentration determination is the ATR technique in combination
with FTIR and UV /Vis spectroscopy. This is due to the small penetration depth of the beam
into the sample (i.e., solution or suspension), which makes the ATR technique insensitive to
the presence of particles, i.e., the heterogeneity of the crystallization system [9-11]. On the
other hand, Raman spectroscopy is more commonly used for monitoring the composition
of the solid phase [12-14] in terms of polymorphic form determination or transformation
monitoring. Due to the inherent properties of the Raman probe designs (focal point probes
and coherent beam probes), the Raman signal is far more complex, as it depends on many
factors, including the composition of the solid and liquid phases, the size and shape of
the suspended crystals and the temperature [15,16]. Due to the dynamic nature of the
crystallization process, during which all these variables change, the development of a
suitable calibration model facilitated by Raman spectra is challenging. Nonetheless, the
quantitative use of Raman spectroscopy for the measurement of solute and solid concen-
tration has been reported. The concentration of a solute can be estimated based on a
specific solute peak [17,18]. However, the univariate approach is not always feasible, as it
cannot account for peak shifts and signal overlapping. Cornel et al. [15] demonstrated that
despite weak and overlapping liquid- and solid-phase signals, solute concentration can
be estimated from data collected from suspensions considering multivariate approaches.
Several authors propose the collection of Raman spectra across a variety of temperatures
in solid-free experiments, and in suspensions with varying concentrations of solids for
solid-phase experiments [16,19,20]. However, the effects of temperature on Raman spectra
can be considered negligible compared to the size and quantity of the suspended crystals,
thus making this calibration step quite extensive. Various modeling approaches have
been employed, including classical least squares (CLS), multiple linear regression (MLR),
principal component regression (PCR), partial least square regression (PLSR) and artificial
neural networks (ANN), for solute and solid concentration estimation. Table 1 gives an
overview of the literature on quantitative applications of Raman spectroscopy for real-time
measurements in multiphase systems over the past decade.

Table 1. Recent literature on the application of in-line Raman spectroscopy for multiphase systems.

Application

Model System Description Modeling Approach Ref.

Solid concentration

Nuclear waste slurries

Suspended solids in dense nuclear
waste slurries were estimated using
Raman spectra. The concentration of
solutes could not be accurately
predicted from Raman spectra at high
solids concentration.

PLSR [21]

Solute concentration

The kinetic parameters for nucleation
and growth were estimated by
combining the solid-phase data from
the image analysis results with the
liquid-phase concentration data from
Raman spectra and temperature.

Taurine PLSR [22]
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Table 1. Cont.

Application

Model System Description Modeling Approach Ref.

Solute and solid
concentration

The solution concentration and slurry
density for two model-systems were
L-glutamic acid and determined simultaneously and
paracetamol quantitatively based on multivariate
models. ANNSs predicted the solute
concentration with high accuracy.

CPR, PCR, PLSR, ANN [20]

Solid composition and
concentration

Raman spectroscopy was used to
evaluate the composition of the solid
phase. In combination with
Carvedilol ATR/UV-Vis to measure the solute MLR, CLS [23]
concentration, the polymorphic
concentration of each polymorph
was calculated.

Solid concentration

Online Raman spectroscopy was used
Paracetamol to monitor the concentration of form II PCR [24]
crystals as a function of time.

The concentrations of undersaturated
solutions of carbamazepine were

Solute concentration Carbamazepine estimated based on Raman spectra univariate [18]
and temperature.
The solute concentration during the
. i llizati f
Solute concentration Paracetamol continuous crystallization o PLSR [19]

paracetamol with additives was
monitored using Raman spectroscopy.

Solute concentration

The liquid-phase concentration in an
aqueous polymorphic system of
D-mannitol was estimated and
D-mannitol monitored during the PLSR [16]
solvent-mediated polymorphic
transformation from the «- to the
3-form of mannitol.

Solute concentration
and polymorphic ratio

Raman spectroscopy was used to
accurately determine the solute
o-aminobenzoic acid conceptratlon in a solids-free PLSR, PCR [25,26]
experiment. Raman spectroscopy was
used to measure the polymorphic

ratio of forms I and II.

Solid concentration
ratio

Based on the ratio of the solids
concentrations of forms I and II
measured using Raman spectroscopy,
a feedback control of the
crystallization of the desired form II
was performed.

Carvedilol CLS [27]

Recent literature on crystallization shows that Raman spectroscopy has been promoted
to one of the most effective quantitative and qualitative in-line spectroscopic measurement
methods for crystallization process monitoring and control [28,29]. This stems from its
versatility in determining both solid- and solute-phase composition and concentration.

In this work, a novel calibration approach was investigated. The substantial calibra-
tion steps were reduced to measure suspensions of various solid concentrations within the
metastable zone, as no solid-free solutions exist in a seeded crystallization process. The
model system for the developed calibration approach was ceritinib form A in tetrahydrofu-
ran. Ceritinib is an active pharmaceutical ingredient that targets metastatic non-small lung
cancer cells by inhibiting the anaplastic lymphoma kinase (ALK) protein. The recrystalliza-
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tion process of ceritinib in tetrahydrofuran is likely to optimize the crystal size distribution
(CSD) of ceritinib, contributing to its improved granulometric properties. However, it is
important to note that the detailed exploration of CSD improvement through recrystalliza-
tion is not the scope of this work. Instead, this study concentrates on a novel calibration
model approach to effectively monitor this recrystallization process. The dataset for model
development consisted of Raman spectra, temperature and variables measured via in-line
process microscopy that are related to crystal size (chord-length distribution percentiles
D10, D50, D90) and solid concentrations (turbidity) measured in suspensions of different
solute and solids concentrations.

2. Materials and Methods

In this work, the model system for the proposed calibration approach is the active phar-
maceutical ingredient ceritinib of polymorphic form A in tetrahydrofuran. The IUPAC name
of the active pharmaceutical ingredient ceritinib is 5-chloro-2-N-(5-methyl-4-piperidin-4-yl-
2-propan-2-yloxyphenyl)-4-N-(2-propan-2-ylsulfonylphenyl)pyrimidine-2,4-diamine [30].
The molecular structure of the compound is shown in Figure 1. Ceritinib has three known
polymorphic forms. Of these three solid forms, form A and form C are anhydrous, and
form B is a hydrate [31].

~ +

N
H
Figure 1. The molecular structure of ceritinib.

All solvents were purchased from Lachner (Neratovice, Czech Republic). Ceritinib
form A was synthesized following the preparation steps described by Zoki¢ et al. [32].
Ceritinib dihydrochloride (Hui Chem Co., Ltd., Shanghai, China) was dissolved in an
acetone-water solvent mixture, followed by pH modification with sodium hydroxide and
cooling crystallization. Crystals were dried under a vacuum.

Tetrahydrofuran was chosen as a suitable solvent for the purification and granulo-
metric improvement of the synthesized ceritinib. The proposed calibration approach was
developed as the recrystallization process of form A ceritinib in tetrahydrofuran was to be
monitored and controlled based on the calibration model.

2.1. Offline Characterization Methods

The offline characterization of the prepared crystals was carried out using X-ray
powder diffraction (XRPD). The samples were recorded using D8 Advance (Bruker, Billerica,
MA, USA) with Cu K« radiation at an accelerating voltage of 40 kV and a current of 25 mA
in a Bragg-Brentano configuration in the range of 2-55° 20, with a step of 0.02° and a step
duration of 0.6 s.

The distinction of the characteristic Raman peaks of solid ceritinib form A and tetrahy-
drofuran was recorded offline using a fiber-optic probe (MarqMetrix Inc., Seattle, WA, USA)
connected to a Raman spectrometer (WP 785 nm, Wasatch Photonics, Logan, UT, USA).
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Raman spectra were collected in the range 2015-241 cm ~! with a resolution of 2 cm~!. The
exposure time was altered to increase the signal-to-noise ratio for each sample.

2.2. Solubility Determination

The solubility determination of ceritinib form A in tetrahydrofuran was carried out
in a CrystalSCAN (E2153, h.e.l Ltd., Borehamwood, UK) batch reactor with turbidity and
temperature probes. Tetrahydrofuran was kept at a constant temperature, ranging from
5-55 °C. A defined, small mass of form A ceritinib crystals was added until a consistent
turbidity plateau was reached, indicating that no further dissolution was occurring. An
aliquot was withdrawn from the reactor, filtered and the solubility was gravimetrically
determined using a moisture analyzer (MLS 50-3C, Kern & Sohn, Balingen, Germany).

A total of 10 solubility data points were measured as a function of temperature, and
the solubility curve was fitted using the solubility regress design module in Dynochem
software (version 2.2.). Within the solubility regress design module, several solubility
expressions were proposed. The solubility expression:

c*=exp (InA —B/(R x T) — C/(R x T)~ (1)

was selected based on the highest coefficient of determination, R?. The solubility is mea-
sured in g/kgsolution, T is the temperature in K and R is the ideal gas constant in k] /mol K.
A, B and C are solubility model parameters.

2.3. Calibration Experiments

All experiments were carried out in a shaded 500 mL jacketed reactor coupled with
a cooling /heating circulator (Magio MS-1000F, Julabo, Seelbach, Germany), a Pt-100 tem-
perature sensor, an overhead stirrer and a PTFE propeller with three blades inclined at 45°
(Bohlender, Griinsfeld, Germany).

The Raman spectrum was measured in-line, using the same Raman spectrometer and
immersion probe as mentioned in the section as previously mentioned. The laser power
was set to 450 mW, and a consistent exposure time of 1500 ms was used for all sample
measurements, ensuring an optimal signal-to-noise ratio and avoiding saturation of the
CCD detector. Chord-length distribution percentiles and turbidity were recorded using an
in-line process microscope (Blaze 900, BlazeMetrics, Marysville, WA, USA). The agitation
speed and laser strength were kept constant throughout the experiments, as they could
cause a substantial amount of variation in the predicted solute concentration [18].

The Raman spectrometer, in-line process microscope and cooling /heating circulator
were integrated through data-linking, enabling synchronous data acquisition (Figure 2).
Dedicated software was developed for the systematic archiving of all measurement data
using the OPC UA protocol and a standard USB.

Tetrahydrofuran (THF) was heated to the desired saturation temperature, ranging
from 9 to 50 °C. The calculated mass of ceritinib form A was added to the tetrahydrofuran
at the saturation temperature. The suspension was heated slightly above the saturation
temperature until all crystals dissolved, which was observed using an in-line process mi-
croscope. When complete dissolution occurred, the solution was cooled back to saturation
temperature. Suspensions with different solid concentrations were prepared by adding
the known mass of form A ceritinib crystals to the saturated solutions (Figure 3). The
amount of crystals needed for the preparation of the suspensions was calculated based
on the solubility curve. For lower concentrations, a greater amount of crystals was added,
considering the crystallization yield.
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Raman spectrometer

} Raman spectrum

—
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Cooling/heating
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Cooling/heating medium

Figure 2. Experimental setup.
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Figure 3. Calibration experiment for two distinct saturated solutions of different concentrations and

their prepared suspensions.

In total, nine different saturated solutions were prepared, and for each distinct satu-
rated solution up to ten suspensions of different solid concentrations were prepared. The
Raman spectrum, temperature, turbidity and chord-length distribution (CLD) percentiles
(D10, D50 and D90) were collected simultaneously after each addition of crystals to the

saturated solution.

2.4. Model Development
Solute concentration estimation based on spectroscopy is carried out indirectly via
the interpretation and quantification of the spectral data using calibration models. The
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development of calibration models involves data collection, analysis and visualization, the
removal of outliers, signal preprocessing, variable selection or reduction, choosing the type
of model and training and validation of the model. As stated in the previous section, the
collected experimental data consisted of the Raman spectrum, temperature, turbidity and
chord-length distribution for a given suspension with varying solute (g/kg solution) and
solid concentrations (gcrystals/Kg solution)-

All computations were performed in the Python programming language using the
Sklearn and Keras libraries for the development of partial least squares regression (PLSR)
and artificial neural network (ANN) models, respectively.

The Raman spectrum is prone to baseline shifts, scattering effects and noise, which
affect its interpretability. In this work, several preprocessing methods were applied to
the spectral data. The aim was to identify and apply preprocessing algorithms that could
improve the model’s performance. Baseline effects were corrected using asymmetric
least squares smoothing (ALS) and a first-order Savitzky-Golay derivative. The Savitzky-
Golay filter was also used for smoothing and noise reduction, with careful parameter
selection to retain features of the spectra characteristic of ceritinib. Scattering correction
was performed using standard normal variate (SNV) and multiplicative scatter correc-
tion (MSC). In addition, the spectral range for the model’s development was reduced to
1800-400 cm ! after a visual inspection and analysis of the offline and in-line collected
data. The application of various preprocessing algorithms resulted in the generation of an
additional four datasets.

To ensure the robustness of the model across various solute concentrations, a leave-
one-out cross-validation adapted to the solute concentration was used. A distinct subset of
the data was represented by the unique solute concentration value. As the collected data
contained nine subsets (i.e., nine different solute concentrations), the model was trained on
eight subsets and validated on one. This process was repeated iteratively for each subset
to be used as a validation set, and the average root mean square error of cross-validation
(RMSECV) was calculated.

The partial least squares regression model was used to estimate the solute and solid
concentrations. When estimating multiple outputs, the partial least squares regression
is referred to as PLSR2. The algorithm calculates the PLS components that explain the
maximum covariance between the inputs and the outputs. The number of PLS components
was optimized using the adapted leave-one-out cross-validation based on the RMSECV
and the coefficient of determination (R?) for both outputs simultaneously. The final PLSR
model was fitted to the entire dataset.

Additionally, feedforward artificial neural networks with backpropagation algorithms
were developed. The neural network’s input layer initially consisted of 705 variables:
Raman spectrum, temperature, turbidity and chord-length distribution percentiles. The
output layer contained two neurons with linear activation functions. An optimal ANN
architecture and parameters were determined through an extensive analysis, in which
different numbers of neurons, hidden layers, activation functions and optimizers were
investigated. To minimize the RMSE in training, the Adam optimization algorithm was
utilized, along with dropout layers to avoid overfitting.

3. Results and Discussion

Ceritinib can exhibit three different crystalline forms. Ceritinib form A has character-
istic X-ray Powder Diffraction (XRPD) peaks at angles 10.63°, 12.78°, 13.25°, 15.60° and
17.58°, which are absent in both forms B and C. No peaks characteristic of forms B and
C at the angles 5.05°, 5.42°, 9.37°, 9.61°, 10.09°, 15.04° and 15.11° were observed [31,32].
The results of the XRPD analysis verify that the crystallization of ceritinib dihydrochloride
in acetone-water yielded ceritinib form A (Figure 4). Hence, the prepared ceritinib was
used for calibration experiments in tetrahydrofuran. The studied ceritinib form A is the
most stable form; therefore, under the given conditions, form A is the most likely to form
crystals and remain unchanged. The recrystallization of ceritinib in tetrahydrofuran did
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not change the crystal structure, as the peaks of the crystals complied with the standard.
This demonstrates that the use of tetrahydrofuran as a solvent in the recrystallization of
ceritinib is effective for purification and can also aid to achieve an improved crystal size
distribution after the initial crystallization in an acetone-water solvent mixture.

—— Ceritinib form A
—— Ceritinib from acetone:water
—— Ceritinib from tetrahydrofuran

MM\»AMW

Relative intensity, a.u.

T T T T 1

5 10 15 20 25 30
20, °

Figure 4. XRPD patterns of the prepared and recrystallized ceritinib.

The offline Raman spectrum of ceritinib form A and tetrahydrofuran shown in Figure 5
helped identify the spectral region for model development. Tetrahydrofuran had broad
bands in the ranges 1500-1400 cm !, 1300-1200 cm !, 1050-1000 cm~! and 950-850 cm .
The peaks of ceritinib form A did not overlap with tetrahydrofuran in the spectral range of
1650-1550 cm ! and at the lower wavenumbers.

—— Ceritinib form A
—— Tetrahydrofuran

Relative Raman intensity

1800 1600 1400 1200 1000 800 600 400
Raman shift, cm~1

Figure 5. Offline Raman spectrum of ceritinib form A and tetrahydrofuran.

3.1. Solubility Determination

The determination of the solubility curve is a prerequisite for crystallization process
development, as it defines the crystallization method (e.g., cooling, anti-solvent) and
operating conditions and determines the yield [33]. Thus, for the proposed calibration
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method, an accurate solubility curve is crucial to avoid the dissolution of crystals at a
given temperature.

Table 2 contains the fitted solubility parameters. Solubility model 5 (Figure 6) dis-
played the highest correlation coefficient (R? = 0.995) among the other proposed Dynochem
models when fitting the experimental data points, with an estimated average percent error
of the measurements of 3.81%.

Table 2. Estimated solubility equation parameters.

InA B, kJ/mol C, (kJ/mol)2
3.02 —31.74 66.89

300 A

250 A

200 A

150 4

Concentration, g/kgsoution

100 A

—— Solubility model
® Measured solubility

10 20 30 40 50 60
Temperature, °C

Figure 6. The estimated solubility curve and experimentally determined data.

Performing calibration experiments from saturated solutions confirmed the accuracy
of the solubility model, as no dissolution of crystals was observed upon the addition of
solids (indicated by the turbidity measurement).

3.2. Calibration Experiments and Raman Spectra Analysis

The visual inspection of the Raman spectra is a crucial step in the development of the
calibration model. It provides useful information about the characteristic spectral features
and variability of the data. It also helps to detect underlying data artifacts that influence
Raman spectra, such as baseline shift, fluorescence background, noise and possible cosmic
spikes, that need to be preprocessed before model development [34,35]. The influence of
the changes in solute and solid concentrations on the Raman spectra is shown in Figure 7.

An increase in the intensity of the Raman spectra was observed for the increase
in the solute concentration, although three of the most concentrated solutions did not
follow the trend (Figure 7a). With the addition of crystals, an increase in the relative
intensity of the characteristic ceritinib peaks to the tetrahydrofuran peaks was observed
(Figure 7b). With the increase in both solute and solid concentrations, the suppression
of tetrahydrofuran wide bands (1530-1410 cm™ 1, 1140 em~! and 970-870 cm ™) revealed
additional ceritinib peaks. This also indicated that the solid and solute peaks overlap.
To address this issue, turbidity was introduced as an input variable for both training
and prediction, as it correlates strongly with solid concentration [36,37]. The calculated
Pearson correlation coefficient supported this calibration approach, with a correlation of
0.91 indicating that turbidity should indirectly provide solid concentration information to
the model. Additionally, as turbidity depends on particle size [38], the percentiles of the
chord-length distribution were chosen as input variables.
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(a) (b)

Figure 7. The raw Raman spectra of (a) saturated solutions with different solute concentrations and
(b) saturated solution (csat = 100.4 g/kg solution) With various solid concentrations.

3.3. Model Development

The preprocessing of spectral data is essential for noise removal and the reduction
and elimination of variability in the data that is not related to the property of interest, all to
enable the examined spectra to be further modeled more effectively [39]. Careful selection
of the spectral preprocessing algorithm can improve the robustness and quality of the
final model.

The raw Raman spectra (Figure 7) are noisy and show a baseline shift. Therefore,
asymmetric least squares (ALS), a first-derivative Savitzky—Golay filter, standard normal
variate (SNV) and multiplicative scatter correction (MSC) were applied to correct these
effects (Figure 8). However, it is important to establish a balance between the various
preprocessing steps to avoid overfitting and the potential risk of distorting the original
data to the extent of losing essential information from the spectrum. In addition, when
setting the parameters for preprocessing, particular attention was taken to ensure that
the prominent peak of ceritinib form A was preserved, especially in the spectral range of
1650-1550 cm~!. This consideration was crucial to ensure that this key spectral feature
was not lost or distorted, maintaining the integrity and relevance of the spectral data for
accurate analysis. All the preprocessing techniques are listed in Table 3.

The preprocessing steps aim to increase the linearity of the data; this is particularly
important for PLSR models, as it facilitates their ability to more effectively identify and
exploit linear correlations within the data, thus enabling a better solute concentration
prediction. The application of standard normal variate (SNV), Savitzky-Golay smoothing
and both asymmetric least squares (ALS) and first-derivative baseline correction reduced
the variation in the data caused by light scattering effects [40]. These preprocessing steps
significantly enhanced the linearity of the data, namely, of the P2 and P3 datasets. As
a result, the prediction performance of the PLSR models was improved compared to
the unprocessed data. On the other hand, for the developed ANN models, none of the
preprocessing methods significantly improved their prediction performance (results shown
in Table 3).
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Figure 8. Spectra of all samples preprocessed using: (a) ALS algorithm, Savitzky—Golay filter and
SNV, i.e., datasets P2 and A2; (b) first-derivative Savitzky—Golay smoothing and SNV, i.e., datasets
P3 and A3.
Table 3. Preprocessing techniques and RMSECV.
Baseline Noise Scatter RMSECV g/kg
Model Dataset R . .
Correction Reduction Correction Solute Solids
P1 none 18.97 20.99
P2 ALS SNV 9.82 20.99
PLSR P3 1st derivative Savitzky-Golay filter SNV 10.22 21.46
P4 1st derivative MSC 22.49 22.29
P5 ALS MSC 23.33 22.29
Al none 0.79 48.55
A2 ALS SNV 0.60 36.64
ANN A3 1st derivative Savitzky-Golay filter SNV 0.61 40.20
A4 1st derivative MSC 0.48 20.93
A5 ALS MSC 0.49 22.12

ALS—asymmetric least squares smoothing algorithm; ANN—artificial neural network; A1-A5 denote the de-
veloped artificial neural network models; MSC—multiplicative scatter correction; PLSR—partial least squares
regression; P1-P5 denote the developed partial least squares regression models; SNV—standard normal variate.

The PLSR model’s performance was evaluated by varying the number of PLS compo-
nents from 1 to 10 and observing the changes in R? and RMSECYV for each of the response
variables. This approach allowed the selection of an optimal number of components based
on a balance between model complexity and prediction accuracy. To reduce the possibility
of overfitting, for the dataset P2, a PLSR model with three PLS components was used to fit
the data, as additional components did not increase predictive performance (Figure 9).
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Figure 9. PLSR model optimization for the dataset P2.

The optimized PLSR P2 model overestimates and underestimates solute concentra-
tion (Figure 10) and the errors are not equally distributed, which indicates a non-linear

relationship in the dataset.
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Figure 10. P2 (a) results on the validation dataset and its (b) residuals.

Due to the complex and non-linear relationship in the data that PLSR models could not
deconvolve, ANN models were developed, as discussed by Lin et al. [20]. In multivariate
modeling, linear models are generally employed for systems with linear behavior, while
non-linear models are applied to systems with non-linear relationships. Linear models are
often preferred for linear systems because they are reliable, simple and result from basic
physico-chemical principles such as the Beer-Lambert law.

Through comprehensive analysis involving various numbers of hidden layers, neu-
rons, activation functions and optimizers, the optimal neural network architecture was
established. The most effective ANN configuration included a first hidden layer with
705 neurons, followed by a second hidden layer comprising 100 neurons with a sigmoid
activation function. The model’s performance was evaluated through leave-one-out cross-
validation across nine distinct solute concentration subsets, ensuring robustness and accu-
rate predictions.

The average RMSECYV did not exceed 2 g/kgso1ution, Which is less than 1% of the lowest
solution concentration used in the model development (Figure 11).
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Figure 11. NN A5 (a) results on the validation dataset and its (b) residuals.

4. Conclusions

This research highlights the challenges of accurately predicting solute concentration
using Raman spectroscopy in the presence of suspended crystals, considering the com-
plex non-linear relationship of the solute concentration and the Raman spectrum in a
multiphase crystallization system. This complexity is a major challenge and limitation to
the application of Raman spectroscopy for in-line monitoring and control of the solution
crystallization process. By integrating additional variables that are related to the crystal
size and solid concentration using an advanced data-driven approach, a calibration model
for solute concentration was developed. It was demonstrated that artificial neural net-
works (ANNs) estimated the solute concentration with higher accuracy compared to partial
least squares regression (PLSR). The prediction error did not exceed 1% of the nominal
solution concentration.

This research demonstrates the practical applicability of the proposed calibration
approach for real-time monitoring and control of crystallization processes. The results
indicate that this approach could also be suitable for other multiphase systems.

Author Contributions: Conceptualization, M.G., Z.U.A,N.B,NR and DS,; methodology, M.G. and
N.R; software, M.G., N.R. and ].S.; validation, M.G. and N.R.; formal analysis, M.G.; investigation,
M.G.; writing—original draft preparation, M.G.; writing—review and editing, M.G., Z.U.A., N.B. and
D.S.; visualization, M.G.; supervision, 7Z.U.A.,N.B. and D.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by European Structural and Investment Funds, grant number
KK.01.1.1.07.0017 (CrystAPC—Crystallization Advanced Process Control).

Data Availability Statement: Data available on request.

Acknowledgments: We would like to express our sincere gratitude to our colleague Marko Sejdi¢ for
the technical support and colleagues Katarina MuZzina and Arijeta Bafti from the Dept. of Inorganic
Chemical Technology and Non-Metals.

Contflicts of Interest: Damir Sahni¢ was employed by the company PLIVA Croatia Ltd. The remaining
authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

1. Orehek, J.; Tesli¢, D.; Likozar, B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org. Process

Res. Dev. 2021, 25, 16-42. [CrossRef]
2. Gao, Y.; Zhang, T.; Ma, Y.; Xue, EF; Gao, Z.; Hou, B.; Gong, J. Application of Pat-based Feedback Control Approaches in

Pharmaceutical Crystallization. Crystals 2021, 11, 221. [CrossRef]


https://doi.org/10.1021/acs.oprd.0c00398
https://doi.org/10.3390/cryst11030221

Processes 2023, 11, 3439 14 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Perini, G.; Salvatori, F.; Ochsenbein, D.R.; Mazzotti, M.; Vetter, T. Filterability Prediction of Needle-like Crystals Based on Particle
Size and Shape Distribution Data. Sep. Purif. Technol. 2019, 211, 768-781. [CrossRef]

U.S. Department of Health and Human Services. Food and Drug Administration Guidance for Industry: PAT—A Framework for
Innovative Pharmaceutical Development, Manufacturing and Quality Assurance; U.S. Food and Drug Administration: Silver Spring,
MD, USA, 2004.

Nagy, Z.K.; Braatz, R.D. Advances and New Directions in Crystallization Control. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 55-75.
[CrossRef] [PubMed]

Herceg, T.; Ujevi¢ Andriji¢, 7.; Gavran, M.; Sacher, J.; Vrban, L; Bolf, N. Primjena Neuronskih MreZa Za Procjenu Koncentracije
Otopine Ksilometazolin Hidroklorida u N-Butanolu Primjenom ATR-FTIR Spektroskopije in Situ. Kem. Ind. 2023, 72, 639-650.
[CrossRef]

Sacher, J.; Sejdi¢, M.; Gavran, M.; Bolf, N.; Ujevi¢ Andriji¢, 7. Proratun Optimalnog Temperaturnog Profila Hladenja éarinog
Kristalizatora. Kem. Ind. 2023, 72, 443-453. [CrossRef]

Zhang, F.; Du, K.; Guo, L.; Huo, Y.; He, K; Shan, B. Progress, Problems, and Potential of Technology for Measuring Solution
Concentration in Crystallization Processes. Meas. ]. Int. Meas. Confed. 2022, 187, 110328. [CrossRef]

Lewiner, F,; Klein, ].P,; Puel, E; Févotte, G. On-Line ATR FTIR Measurement of Supersaturation during Solution Cystallization
Processes. Calibration and Applications on Three Solute/Solvent Systems. Chem. Eng. Sci. 2001, 56, 2069-2084. [CrossRef]
Zhang, F; Liu, T.; Wang, X.Z; Liu, J.; Jiang, X. Comparative Study on ATR-FTIR Calibration Models for Monitoring Solution
Concentration in Cooling Crystallization. J. Cryst. Growth 2017, 459, 50-55. [CrossRef]

Billot, P.; Couty, M.; Hosek, P. Application of ATR-UV Spectroscopy for Monitoring the Crystallisation of UV Absorbing and
Nonabsorbing Molecules. Org. Process Res. Dev. 2010, 14, 511-523. [CrossRef]

Qu, H.; Alatalo, H.; Hatakka, H.; Kohonen, J.; Louhi-Kultanen, M.; Reinikainen, 5.P; Kallas, . Raman and ATR FTIR Spectroscopy
in Reactive Crystallization: Simultaneous Monitoring of Solute Concentration and Polymorphic State of the Crystals. J. Cryst.
Growth 2009, 311, 3466-3475. [CrossRef]

Simone, E.; Saleemi, A.N.; Nagy, Z.K. Application of Quantitative Raman Spectroscopy for the Monitoring of Polymorphic
Transformation in Crystallization Processes Using a Good Calibration Practice Procedure. Chem. Eng. Res. Des. 2014, 92, 594-611.
[CrossRef]

Schéll, J.; Bonalumi, D.; Vicum, L.; Mazzotti, M.; Miiller, M. In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic
Transformation of L-Glutamic Acid. Cryst. Growth Des. 2006, 6, 881-891. [CrossRef]

Cornel, J.; Lindenberg, C.; Mazzotti, M. Quantitative Application of in Situ ATR-FTIR and Raman Spectroscopy in Crystallization
Processes. Ind. Eng. Chem. Res. 2008, 47, 4870-4882. [CrossRef]

Su, W,; Li, C.; Hao, H.; Whelan, J.; Barrett, M.; Glennon, B. Monitoring the Liquid Phase Concentration by Raman Spectroscopy in
a Polymorphic System. J. Raman Spectrosc. 2015, 46, 1150-1156. [CrossRef]

Hu, Y,; Liang, ].K.; Myerson, A.S.; Taylor, L.S. Crystallization Monitoring by Raman Spectroscopy: Simultaneous Measurement
of Desupersaturation Profile and Polymorphic Form in Flufenamic Acid Systems. Ind. Eng. Chem. Res. 2005, 44, 1233-1240.
[CrossRef]

Acevedo, D.; Yang, X.; Mohammad, A.; Pavurala, N.; Wu, W.L.; O’Connor, T.F; Nagy, Z.K.; Cruz, C.N. Raman Spectroscopy for
Monitoring the Continuous Crystallization of Carbamazepine. Org. Process Res. Dev. 2018, 22, 156-165. [CrossRef]

Powell, K.A.; Saleemi, A.N.; Rielly, C.D.; Nagy, Z.K. Monitoring Continuous Crystallization of Paracetamol in the Presence of an
Additive Using an Integrated PAT Array and Multivariate Methods. Org. Process Res. Dev. 2016, 20, 626—636. [CrossRef]

Lin, M.; Wu, Y.; Rohani, S. Simultaneous Measurement of Solution Concentration and Slurry Density by Raman Spectroscopy
with Artificial Neural Network. Cryst. Growth Des. 2020, 20, 1752-1759. [CrossRef]

Prasad, R.; Crouse, S.H.; Rousseau, RW.; Grover, M.A. Quantifying Dense Multicomponent Slurries with In-Line ATR-FTIR and
Raman Spectroscopies: A Hanford Case Study. Ind. Eng. Chem. Res. 2023, 62, 15962-15973. [CrossRef]

Wu, Y,; Gao, Z.; Rohani, S. Deep Learning-Based Oriented Object Detection for in Situ Image Monitoring and Analysis: A Process
Analytical Technology (PAT) Application for Taurine Crystallization. Chem. Eng. Res. Des. 2021, 170, 444—455. [CrossRef]

Tacsi, K.; Gytirkés, M.; Csontos, I.; Farkas, A.; Borbas, E.; Nagy, Z.K.; Marosi, G.; Pataki, H. Polymorphic Concentration Control
for Crystallization Using Raman and Attenuated Total Reflectance Ultraviolet Visible Spectroscopy. Cryst. Growth Des. 2020, 20,
73-86. [CrossRef]

Nicoud, L.; Licordari, F.; Myerson, A.S. Polymorph Control in Batch Seeded Crystallizers. A Case Study with Paracetamol.
CrystEngComm 2019, 21, 2105-2118. [CrossRef]

Simone, E.; Saleemi, A.N.; Nagy, Z.K. Raman, UV, NIR, and Mid-IR Spectroscopy with Focused Beam Reflectance Measurement
in Monitoring Polymorphic Transformations. Chem. Eng. Technol. 2014, 37, 1305-1313. [CrossRef]

Simone, E.; Saleemi, A.N.; Tonnon, N.; Nagy, Z.K. Active Polymorphic Feedback Control of Crystallization Processes Using a
Combined Raman and ATR-UV /Vis Spectroscopy Approach. Cryst. Growth Des. 2014, 14, 1839-1850. [CrossRef]

Pataki, H.; Csontos, I.; Nagy, Z.K.; Vajna, B.; Molnar, M.; Katona, L.; Marosi, G. Implementation of Raman Signal Feedback to
Perform Controlled Crystallization of Carvedilol. Org. Process Res. Dev. 2013, 17, 493-499. [CrossRef]

Kim, E.J.; Kim, J.H.; Kim, M.S,; Jeong, S.H.; Choi, D.H. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit
Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021, 13, 919. [CrossRef]


https://doi.org/10.1016/j.seppur.2018.10.042
https://doi.org/10.1146/annurev-chembioeng-062011-081043
https://www.ncbi.nlm.nih.gov/pubmed/22468599
https://doi.org/10.15255/KUI.2023.011
https://doi.org/10.15255/KUI.2023.001
https://doi.org/10.1016/j.measurement.2021.110328
https://doi.org/10.1016/S0009-2509(00)00508-X
https://doi.org/10.1016/j.jcrysgro.2016.11.064
https://doi.org/10.1021/op900281m
https://doi.org/10.1016/j.jcrysgro.2009.04.018
https://doi.org/10.1016/j.cherd.2013.11.004
https://doi.org/10.1021/cg0503402
https://doi.org/10.1021/ie800236v
https://doi.org/10.1002/jrs.4745
https://doi.org/10.1021/ie049745u
https://doi.org/10.1021/acs.oprd.7b00322
https://doi.org/10.1021/acs.oprd.5b00373
https://doi.org/10.1021/acs.cgd.9b01482
https://doi.org/10.1021/acs.iecr.3c01249
https://doi.org/10.1016/j.cherd.2021.04.013
https://doi.org/10.1021/acs.cgd.9b00539
https://doi.org/10.1039/C8CE01428K
https://doi.org/10.1002/ceat.201400203
https://doi.org/10.1021/cg500017a
https://doi.org/10.1021/op300062t
https://doi.org/10.3390/pharmaceutics13060919

Processes 2023, 11, 3439 15 of 15

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

Cote, A.; Erdemir, D.; Girard, K.P; Green, D.A.; Lovette, M.A; Sirota, E.; Nere, N.K. Perspectives on the Current State, Challenges,
and Opportunities in Pharmaceutical Crystallization Process Development. Cryst. Growth Des. 2020, 20, 7568-7581. [CrossRef]
Burns, M.W.; Kim, E.S. Profile of Ceritinib in the Treatment of ALK+ Metastatic Non-Small-Cell Lung Cancer. Lung Cancer Targets
Ther. 2015, 6, 35-42. [CrossRef]

Chennuru, R.; Koya, R.T.; Kommavarapu, P.; Narasayya, S.V.; Muthudoss, P.; Vishweshwar, P.; Babu, R.R.C.; Mahapatra, S. In
Situ Metastable Form: A Route for the Generation of Hydrate and Anhydrous Forms of Ceritinib. Cryst. Growth Des. 2017, 17,
6341-6352. [CrossRef]

Zoki¢, I; Prli¢ Kardum, ]J. Crystallization Behavior of Ceritinib: Characterization and Optimization Strategies. ChemEngineering
2023, 7, 84. [CrossRef]

Tung, H.H.; Paul, E.L.; Midler, M.; McCauley, ].A. Crystallization of Organic Compounds: An Industrial Perspective; Pearson: London,
UK, 2008; ISBN 9780471467809.

Rinnan, A. Pre-Processing in Vibrational Spectroscopy-When, Why and How. Anal. Methods 2014, 6, 7124-7129. [CrossRef]
Bocklitz, T.; Walter, A.; Hartmann, K.; Rosch, P.; Popp, ]. How to Pre-Process Raman Spectra for Reliable and Stable Models? Anal.
Chim. Acta 2011, 704, 47-56. [CrossRef] [PubMed]

Rabesiaka, M.; Porte, C.; Bonnin-Paris, J.; Havet, ].L. An Automatic Method for the Determination of Saturation Curve and
Metastable Zone Width of Lysine Monohydrochloride. ]. Cryst. Growth 2011, 332, 75-80. [CrossRef]

Raphael, M.; Rohani, S. On-Line Estimation of Solids Concentrations and Mean Particle Size Using a Turbidimetry Method.
Powder Technol. 1996, 89, 157-163. [CrossRef]

Crawley, G.; Cournil, M.; Benedetto, D. Di Size Analysis of Fine Particle Suspensions by Spectral Turbidimetry: Potential and
Limits. Elements 1997, 91, 197-208.

Rinnan, A.; Nergaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Chapter 2—Data Pre-Processing. Infrared Spectrosc.
Food Qual. Anal. Control. 2009, 3, 29-50.

Engel, ]J.; Gerretzen, J.; Szymanska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with Trends in Pre-
Processing? TrAC Trends Anal. Chem. 2013, 50, 96-106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1021/acs.cgd.0c00847
https://doi.org/10.2147/LCTT.S69114
https://doi.org/10.1021/acs.cgd.7b01027
https://doi.org/10.3390/chemengineering7050084
https://doi.org/10.1039/C3AY42270D
https://doi.org/10.1016/j.aca.2011.06.043
https://www.ncbi.nlm.nih.gov/pubmed/21907020
https://doi.org/10.1016/j.jcrysgro.2011.07.016
https://doi.org/10.1016/S0032-5910(96)03177-4
https://doi.org/10.1016/j.trac.2013.04.015

	Introduction 
	Materials and Methods 
	Offline Characterization Methods 
	Solubility Determination 
	Calibration Experiments 
	Model Development 

	Results and Discussion 
	Solubility Determination 
	Calibration Experiments and Raman Spectra Analysis 
	Model Development 

	Conclusions 
	References

