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Abstract: This paper addresses the issues of coupling and disturbances in a dual-tank water level
control system within the context of process control in chemical water treatment at industrial facilities.
In response to these challenges, a Layered Composite Decoupling Control system based on the
Regional Dynamic Sparrow Search Algorithm (RDSSA-LCDC) is proposed. The utilization of an
enhanced Regionally Dynamic Sparrow Search Algorithm (RDSSA) addresses the pitfalls of the Spar-
row Search Algorithm (SSA), such as susceptibility to local optima and inadequate precision. RDSSA
is employed for the parameter tuning of the system’s PID controller. Structurally, it incorporates a
Hierarchical Composite Decoupling Control (LCDC) strategy, initially establishing a forward channel
to construct an inner-layer decoupling model employing pre-feedback to rectify the lower-level
system’s inputs, thereby mitigating inter-branch coupling. Subsequently, it develops an improved
disturbance observer model based on pseudo-inverse compensation in the feedback channel, address-
ing conventional disturbance observer biases, and observing and suppressing system coupling and
disturbances. Finally, within the dual-tank water level control system, various control schemes are
simulated and compared, affirming the approach’s commendable decoupling, responsiveness, and
disturbance rejection performance.

Keywords: regional dynamics; layered composite decoupling; forward feedback decoupling; pseudo-
inverse compensation; disturbance observer

1. Introduction

In the context of chemical water treatment processes in industrial factories, the con-
trolled systems typically exhibit multi-input and multi-output characteristics. The dual-tank
water level control system is a typical example of a multi-input and multi-output control
system. When variables exhibit coupling among many pairs of variables, it is challenging to
achieve satisfactory control results using multiple single-loop controllers for independent
control. Therefore, it is necessary to consider the interrelationships among variables in
multi-input and multi-output systems and achieve decoupled control.

In recent decades, multiple-input multiple-output (MIMO) systems have found
widespread applications in industrial processes. Literature review [1] comprehensively
surveys various decoupling control algorithms and the most widely used methods for
coupling interaction analysis and decoupler design in industrial processes. It introduces
two categories of decoupling algorithms: general decoupling algorithms and specific decou-
pling algorithms, along with their properties, advantages, and application areas. General
decoupling algorithms include static decoupling and dynamic decoupling, where static
decouplers, such as ideal decoupling, simplified decoupling, and reverse decoupling, are
generally preferable due to their requirement of less controlled system information, ability
to reduce the impact risk of model uncertainties, and ease of implementation. Specific
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decoupling algorithms encompass a Smith predictor, dead-time compensator, adaptive
decoupling, and intelligent decoupling, among others. Intelligent decoupling, involving
optimization algorithms in system decoupling and control, stands out as a promising
research direction. On the other hand, study [2] provides a comprehensive analysis of
optimization techniques widely used in engineering applications. It extensively elaborates
on heuristic algorithms and swarm intelligence algorithms that emerge from phenomena
and behaviors in nature, comparing their effectiveness for various optimization problems.
These algorithms, utilizing natural evolutionary laws, deliver globally optimal results with
significance and impartiality. The primary idea behind swarm intelligence algorithms is to
simulate phenomena of biological populations in nature, quantify key indicators of various
phenomena, and formulate mathematical models for optimization. With in-depth research
in this field, more and more features of biological populations are being extracted for the
application in swarm intelligence algorithms. For instance, the Crayfish Optimization
Algorithm (COA) [3] and American zebra optimization algorithm (AZOA) [4] proposed in
2023, both mimic the unique behaviors of crayfish and American zebras, presenting new
metaheuristic optimization algorithms. These algorithms have been tested on benchmark
functions and several engineering problems like spring design, pressure vessel design,
welding beam design, cantilever beam design, etc., showcasing excellent optimization
results. Study [5] introduced a novel bio-inspired metaheuristic algorithm called Artifi-
cial Rabbit Optimization (ARO), which simulates the survival strategies of rabbits. The
algorithm was comprehensively tested on 31 functions and five semi-realistic engineering
problems. A comparative analysis with various algorithms revealed that ARO is more
effective in determining global optimal values for the majority of unimodal, multimodal,
and composite functions. Furthermore, ARO demonstrated significant competitiveness
in addressing engineering tasks involving unknown and constrained search spaces in
semi-realistic engineering problems. Leveraging the hunting behavior of giant trevallies,
study [6] introduces a metaheuristic algorithm named Giant Trevally Optimizer (GTO). The
performance of the proposed GTO is evaluated using 40 objective functions with distinct
characteristics and five challenging engineering design optimization problems. Compara-
tive experimental results against other well-known optimization algorithms demonstrate
that GTO exhibits excellent exploration and exploitation capabilities, showcasing robust
and powerful performance. Finally, several future research directions are proposed. Litera-
ture review [7] revisits the research on the Sparrow Search Algorithm (SSA) proposed since
2020, comparing the algorithm with function test experiments. In terms of optimization
ability and speed of finding the optimal solution, it evidently outperforms some classical
intelligent algorithms. The Sparrow Search Algorithm is simple in principle, easy to im-
plement, and holds promising applications in practical fields and engineering domains.
Its current application areas include power load prediction, image processing, robot path
tracking, fault diagnosis, and more. Scholars globally have improved the Sparrow Search
Algorithm through various approaches, such as enhancing population diversity, imple-
menting new search strategies, optimizing algorithm parameters, and studying algorithm
convergence accuracy and speed. In summary, starting from the widespread existence
of MIMO systems in industries, the utilization of optimization techniques in engineering
applications, and the Sparrow Search Algorithm in optimization algorithms, these aspects
provide insights for the research content of this paper.

Numerous scholars have conducted research on controllers and control strategies for
multi-input multi-output liquid level control systems. In the context of a four-tank liquid
level coupled control system with parameter uncertainties and centralized disturbances, Ref-
erence [8] proposed an adaptive parameter and disturbance compensation control method,
effectively reducing the impact caused by parameter uncertainties and centralized distur-
bances. The simulation results validated the effectiveness of this method. Study [9] ad-
dressed a dual-input dual-output liquid level control system using a linear extended state
observer to design a state estimation controller, achieving precise control of the dual-input
dual-output liquid levels. Study [10] proposed an improved multivariate generalized min-
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imum variance decoupling control method to eliminate steady-state errors, and its effec-
tiveness was verified on a semi-physical simulation platform of a two-tank water level
control system. Ref. [11] utilized fuzzy theory in the liquid level control system to re-
duce rise time, steady-state error, and overshoot, thereby endowing the system with ex-
cellent disturbance rejection capability. Refs. [12,13] incorporated adaptive control strate-
gies in the design process of the two-tank water level control system, providing good
trajectory tracking performance and robustness against disturbances and parameter vari-
ations. In [14,15], a disturbance observer was introduced into the liquid level control strat-
egy for a four-tank storage tank system to estimate and compensate for disturbances, ad-
dressing a class of disturbance problems arising from uncertain parameter disturbances.
Ref. [16] proposed a localized dispersion control method suitable for a benchmark boiler,
applicable to both stable and unstable systems, based on the generalized predictive control
method. This simple-structured control method demonstrated favorable control performance.
Ref. [17] designed single PI controllers and adaptive PI controllers for a conical tank system.
Experimental results showed that the PI controllers based on linear parameter varying
models and adaptive PI controllers performed significantly better than other control strate-
gies. Ref. [18] designed a robust multivariable control technique based on a multiple-model
(MM) linear parameter varying (LPV) method and H∞ synthesis for a three-cylinder non-
linear system, comparing the robust performance of the two controllers under nominal
and disturbance modes. Ref. [19] employed a series of classical control techniques such as
fuzzy logic control (FLC), artificial neural networks (ANN), adaptive neuro-fuzzy inference
systems (ANFIS), model predictive control (MPC), and nonlinear auto-regressive moving
average (NARMA-L2) controllers to regulate the nonlinear spherical tank level control
system. This analysis aimed to evaluate the performance of each control strategy.

In terms of system structure design, ref. [20] proposed a decentralized model predic-
tive control algorithm based on the extended state observer. They decomposed complex
interconnected systems into multiple low-dimensional subsystems with fewer control
variables. The extended state observer was utilized for feed-forward compensation in
each subsystem to improve the system’s stability and disturbance rejection capability. For
the multi-level and heating furnace composite system, ref. [21] proposed a coordinated
control method based on total capacity balance for variable-period liquid level control. This
method achieved the separation of multi-level control and branch temperature balance
control in the structure, enabling overall coordinated control of the composite system. To
address the significant lag and strong coupling in the density and level regulation processes
of the heavy-medium coal preparation control system, ref. [22] proposed a density and
level PFC-PID control algorithm for heavy-medium suspension. The inner loop adopted
a PID control decoupled system, while the outer loop employed PFC predictive control
technology to resolve the time-delay issue. Ref. [23] utilized inverse decoupling technology
to decouple the dual-input dual-output process into two independent single-input single-
output processes. They designed controllers for each single-input single-output process and
tuned the controller parameters using frequency domain methods. Ref. [24] first decoupled
the dual-input dual-output system into two single-input single-output systems. Then, they
proposed a no-chattering discrete sliding mode controller (DSMC) with phase elimination
capability for controlling the two decoupled single-input single-output systems, and the
system’s stability was validated through the Lyapunov equation.

The main contributions of this paper are as follows:
Addressing the issues of coupling and disturbances in the dual-tank liquid level

control system.
Firstly, addressing the problems of the Sparrow Search Algorithm, such as suscepti-

bility to local optima and low precision, a Regional Dynamic Sparrow Search Algorithm
(RDSSA) is proposed, utilizing a regionalized dynamic adjustment strategy for controller
parameter tuning within the system.

Secondly, in terms of the system control structure, a Layered Composite Decoupling
Control (LCDC) strategy is introduced. This involves constructing an inner-loop decoupling
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model with feed-forward in the forward channel, which can simultaneously intervene and
correct the input and output signals of the controlled object, thus eliminating inter-branch
coupling. In the feedback channel, an outer-loop model is constructed using an improved
disturbance observer feedback module based on pseudoinversion compensation to observe
and suppress system coupling. This combination of inner- and outer-loop models addresses
issues related to system coupling and disturbances.

Finally, these two components are integrated into a strategy known as Layered Com-
posite Decoupling Control Based on Regional Dynamic Sparrow Search Algorithm (RDSSA-
LCDC). This strategy combines an improved intelligent optimization algorithm with a novel
control structure, and its excellent control performance is validated through simulation
models of the dual-tank liquid level control system.

The rest of this paper is organized as follows: Section 2 presents the mathematical
model of the dual-tank liquid level control system. Section 3 introduces RDSSA. Section 4
describes the LCDC strategy. Simulation experiments and the results’ analysis are presented
in Section 5, and Section 6 provides a summary of the entire paper.

2. Mathematical Model

Figure 1 presents a schematic diagram of the dual-tank water level control system.
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Figure 1. Structural schematic diagram of dual-capacity water tank.

The dynamic equilibrium equation for the system is expressed as follows:

A1
dh1

dt
= Q1in −Q1out (1)

A2
dh2

dt
= Q2in + Q1out −Q2out (2)

In the equation, A1 and A2 represent the bottom areas of the upper and lower tanks,
respectively. h1 and h2 denote the liquid level heights in tank 1 and tank 2, respectively.
Q1in represents the flow rate of the inlet valve 1, Q1out represents the flow rate of the outlet
valve 1, Q2in represents the flow rate of the inlet valve 2, and Q2out represents the flow rate
of the outlet valve 2.

If the cross-sectional area of the outlet orifice is represented as ai, under ideal condi-
tions, the flow rate through the outlet can be expressed as follows:

Qout = ai
√

2gh (3)
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The inflow rate through the inlet is typically dependent on factors such as valve
voltage u, flow coefficient k, and others, and can be expressed as follows:

Qin = kiui (4)

By substituting Equations (3) and (4) into Equations (1) and (2), the dynamic equilib-
rium equations of the system are modified as follows:

dh1

dt
= − a1

A1

√
2gh1 +

k1

A1
u1 (5)

dh2

dt
= − a2

A2

√
2gh2 +

a1

A2

√
2gh1 +

k2

A2
u2 (6)

The equation includes the following variables: a1 and a2 represent the cross-sectional
areas of the outlet pipes of the upper and lower tanks, respectively; g denotes the accelera-
tion due to gravity; k1 and k2 represent the flow ratio coefficients of inlet valves 1 and 2,
respectively; u1 and u2 represent the valve voltages of inlet valves 1 and 2, respectively.

At a certain steady-state operating point Q(h30, h50, u30, u50), Equations (5) and (6) are
linearized to obtain the incremental linear equations:

dh′1
dt

= − a1

A1

√
g

2h30
h′1 +

k1

A1
u′1 (7)

dh′2
dt

= − a2

A2

√
g

2h50
h′2 +

a1

A2

√
g

2h30
h′1 +

k2

A2
u′2 (8)

The equations involve the following variables: h′i = hi − hi0 represents the deviation
of the liquid level from the steady-state operating point, and u′i = ui − ui0 denotes the
deviation of the valve voltage from the steady-state operating point, where i = 1, 2.

Let Ti = Ai
ai

√
2hi0

g , be defined as such. By performing Laplace transforms on
Equations (7) and (8), the input–output transfer function matrix of the system can be obtained:

F(s) =


k1

A1

(
s+ 1

T1

) 0

k1

A2(sT1+1)
(

s+ 1
T2

) k2

A2

(
s+ 1

T2

)
 (9)

3. Improvement of Sparrow Search Algorithm

Intelligent optimization algorithms for tuning controller parameters are widely em-
ployed in the field of control. In this system, the Regional Dynamic Sparrow Search Algo-
rithm (RDSSA) is utilized for adjusting the parameters of the PID controller, as depicted in
Figure 2.
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3.1. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is a novel swarm intelligence optimization
algorithm inspired by the foraging and anti-predatory behavior of sparrow populations.
Sparrows exhibit three distinct behavioral strategies during their foraging process.

(1) Discoverer: Selected from the population based on higher fitness, discoverers
among the sparrows are responsible for searching for the direction and location of food.
The position updates of discoverers within the population are as follows:

Xt+1
i,j =

Xt
i,j exp

(
−i

α·itermax

)
i f R2 < ST

Xt
i,j + QL i f R2 ≥ ST

(10)

In the equations provided, where t represents the current iteration count, Xt+1
i,j rep-

resents the position of the jth dimension of the i-th individual during the current t-th
iteration process. itermax stands for the maximum number of iterations, and α ∈ (0,1] repre-
sents a parameter. R2 ∈ (0,1] signifies the warning value. ST is the safety threshold, with
ST ∈ (0.5,1], and Q is a random number following a normal distribution. L represents a
1 × d-dimensional matrix with all elements equal to 1. When R2 < ST, the current popula-
tion is in a safe location. When R2 ≥ ST, it indicates that sparrows have detected danger,
prompting the population to immediately fly elsewhere for foraging.

(2) Follower: These sparrows follow the discoverer sparrows during the foraging pro-
cess. The update formula for follower individuals in this process is given in Equation (11):

Xt+1
i,j =

Q exp
(

Xt
wrost−Xt

i,j
i2

)
i f i > n

2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣A+L otherwise
(11)

In the equations provided, Xp represents the position of the sparrow occupying
the optimal location, while Xworst denotes the position of the sparrow with the lowest
current fitness. A is a 1 × d-dimensional matrix where each value is either 1 or −1, and
A+ = AT(AAT)−1. When i > n/2, it indicates that the i-th follower sparrow has not obtained
food and is in a hungry state, necessitating a flight to another location for foraging.

(3) Sentinel: In the event of danger within the sparrow population, sentinels emit
alarms, prompting the population to swiftly relocate to secure areas. These sentinels
constitute 10% to 20% of the population, with their mathematical expression defined
as follows:

Xt+1
i,j =


Xt+1

p + β
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi 6= fg

Xt
i,j + K

( ∣∣∣Xt
i,j−Xt+1

p

∣∣∣
( fi− fw)+ε

)
i f fi = fg

(12)

In the equation, Xbest represents the current global optimum position, and β is the
adjusting step size factor following a standard normal distribution; K ∈ [−1,1] represents
the direction of sparrow movement; ε is a constant used to prevent a zero denominator;
f g and f w, respectively, denote the best and worst fitness values within the current popula-
tion, while f i signifies the fitness value of the i-th sparrow.

3.2. Regional Dynamic Sparrow Search Algorithm

In the later iterations of the SSA, the population of sparrows exhibits a pronounced
concentration among individuals due to constraints imposed by their search rules. This
homogeneity leads to oscillations in the algorithm near local optimal solutions, making it
susceptible to getting trapped in suboptimal conditions. Additionally, the SSA converges
too rapidly in its early stages, potentially terminating the search without sufficiently
exploring the search space, resulting in suboptimal accuracy. To address these issues,
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this paper introduces a novel approach termed the Regional Dynamic Sparrow Search
Algorithm (RDSSA), incorporating the following improvements:

Firstly, the search space is partitioned into four equally sized subregions, and the
population is evenly distributed among these subregions to ensure that individuals within
each subregion do not exceed boundaries during their movements.

Secondly, after more than half of the iterations have been completed, an evaluation is
performed based on the fitness values of individuals within each subregion. The average
fitness value is calculated, and it serves as an assessment metric for each subregion. The
best-performing subregion is identified (referred to as ZY), as well as the worst-performing
subregion (referred to as ZC).

Subsequently, the number of individuals in the ZC region is halved, while the number
of individuals in the ZY region is correspondingly increased, maintaining a constant total
population size.

Finally, during the early iterations, the scale of the ZY region is enlarged for extensive
exploration. As the remaining iterations exceed half, the scale of the ZY region is reduced
to facilitate more precise searching.

The improved Sparrow Algorithm workflow is depicted in Figure 3, as shown below:
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3.2.1. Regional Division

Partitioning the search space of the sparrow population effectively mitigates the issue
of population convergence near a specific optimal solution, thus alleviating the problem of
population homogeneity and reducing the risk of getting trapped in local optima. Following
partitioning, multiple sparrow subpopulations independently explore their designated
regions, thereby enhancing the global search capability of the entire population.

The search space is partitioned into four segments, with the position of each individual
represented as (xi, yi), where xi and yi denote the horizontal and vertical positions of the
individual within the search space, respectively. xmin and xmax represent the minimum and
maximum values of the horizontal range of the search space, while ymin and ymax denote
the minimum and maximum values of the vertical range of the search space. The region in
which an individual resides can be determined using Equation (13):

Region =

[
xi − xmin
xmax−xmin

2

]
+ 2

[
yi − ymin
ymax−ymin

2

]
+ 1 (13)

In the equation, both sets of parentheses take on values of 0 or 1. By combining these
two parts, the range of values for “Region” is from 1 to 4, corresponding to four distinct
regions. This regional identifier can be used to indicate in which area each individual is
located, thus representing the partitioning of the entire search space.

Equation (14) can be employed to compute the position of each individual:xi = xmin + (xmax−xmin)
2 ×

(
1 + cos

(
2πi
N

))
yi = ymin + (ymax−ymin)

2 ×
(

1 + sin
(

2πi
N

)) (14)

The formulas incorporate cosine and sine functions to ensure an even distribution of
the population.

3.2.2. Regional Evaluation and Population Changes

The average fitness values for the four partitioned regions are denoted Avg1, Avg2,
Avg3, and Avg4. The max and min functions are used to, respectively, identify the maximum
and minimum average fitness values, referred to as the optimal region ZY and the worst
region ZC: {

ZY = max(Avg1, Avg2, Avg3, Avg4)
ZC = min(Avg1, Avg2, Avg3, Avg4)

(15)

Suppose the original population size is N, and the population size within the ZC
region is NZC, while within the ZY region it is NZY. Equations (16) and (17) are used to
adjust the number of individuals within ZC and ZY:

NZC
′ =

NZC
2

(16)

NZY
′ = NZY +

NZC
2

(17)

In the equations, NZC’ represents the population size within ZC after the operation,
which is reduced by half, while NZY’ represents the population size within ZY after the
operation, which is increased by the same amount by which it was reduced within ZC, in
order to keep the overall population size unchanged.

3.2.3. Regional Scale Changes

The scaling of individuals within the subregions is adjusted based on the iteration
count t to enhance the global and local search capabilities of discoverer individuals within
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the ZY region. The movement of discoverer individuals within the ZY region is described
by Equation (18):

Xt+1
i,j =

Xt
i,j exp

(
S(t) −i

α·itermax

)
i f R2 < ST

Xt
i,j + QL i f R2 ≥ ST

(18)

where

S(t) =

{
ZYs × α t > 3

4 δ

ZYs × β t ≤ 3
4 δ

(19)

In the equation, S(t) represents the scale parameter, δ ∈ (M/2, M), where M is the
maximum number of iterations, and α ∈ (1,2) and β ∈ (0,1) are parameters of scale change.
ZYs is the original scale in the ZY region, and its value is set to 1 in this context. The values
of α and β determine the scale multiplier increase or decrease during the global and local
search phases. For different problems, the optimal values of α and β vary. In the context
of this study, after testing with multiple datasets, the combination of α = 1.5 and β = 0.5
performed exceptionally well. The choice of δ determines the trade-off between generality
and precision during the execution of dynamic strategies, which is how much time is
needed to increase the scale for a more extensive global search and decrease the scale for a
more precise local search. When δ = 3

4 M, RDSSA demonstrates excellent performance.

4. Layered Composite Decoupling Control Strategy

The system architecture diagram of the system in Figure 1 is illustrated in Figure 4.
The upper-level water tank is solely influenced by its forward channel, while the lower-
level water tank is affected not only by its forward channel but also by the coupling effect
from the upper-level water tank. Additionally, the system encounters disturbances and
other issues.
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Figure 4. System structure block diagram.

To address the influence of coupling from the upper-level water tank and disturbances
on the lower-level water tank’s liquid level control, this paper proposes a hierarchical
control strategy in the control structure. The inner layer utilizes feed-forward decoupling,
while the outer layer adopts pseudo-inverse compensation feedback control, as depicted in
Figure 5.

4.1. Feed-Forward Decoupling

The diagonal decoupling eliminates coupling in the system by correcting the input
signals of the controlled object, while the output decoupling compensates the output signals
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of the controlled object to eliminate system coupling. If both the input and output signals
of the controlled object can be simultaneously corrected, superior decoupling effects can
be achieved.
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Therefore, this paper proposes a feed-forward decoupling controller, as shown in
Figure 6. This controller simultaneously utilizes the input signal U1 and the output signal Y1
of the upper-level controlled object as coupling quantities, which are fed into the prediction
module W(s) to estimate the coupling information of these two signals. The estimated
coupling signals are then subtracted from the lower-level system to achieve decoupling.
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Figure 6. Structure block diagram of feed-forward decoupling model.

As shown in Channel 1 of Figure 6, the signal output to the lower-level system through
W(s) is expressed as follows:

U1W(s)G22 (20)

This channel forwards the input signal of the upper-level controlled object to the
lower-level system through a feed-forward path.

For Channel 2, the signal output to the lower-level system through W(s) is as follows:

Y1W(s)G22 = U1W(s)G11G22 (21)

This channel utilizes a feedback path to deliver the output signal of the upper-level
system to the input terminal of the lower-level system.
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W(s) compares the signals from Channels 1 and 2 with the input signal of the lower-
level system and predicts and corrects them to eliminate the coupling effects in the system.
Consequently, the output Y2 of the lower-level system can be expressed as follows:

Y2 = U2G22 + U1G21 + (U1 + Y1)W(s)G22 (22)

In order to achieve that Y2 is solely controlled by this channel, i.e.,

Y2 = U2G22 (23)

By comparing Equations (22) and (23), we obtain

U1G21 + (U1 + Y1)W(s)G22 = 0 (24)

The decoupling controller W(s) is obtained from Equation (14):

W(s) = − G21

(1 + G11)G22
(25)

4.2. The Disturbance Observer Based on Pseudo-Inverse Compensation
4.2.1. The Disturbance Observer Based on the Nominal Inverse Model

The disturbance observer based on the nominal inverse model is a control structure
that constructs the nominal inverse model of the system and estimates and compensates
for the error in the inverse model using a disturbance observer. By observing the output
and the inverse of the controlled object, it approximates the value of the disturbance and
introduces it into the control system for compensation, thus eliminating the influence of
disturbances on the system.

In Figure 7, U(s) represents the controller output, D(s) denotes the external disturbance,
Gp(s) represents the system model, Gn(s) is the nominal model of the system, and Q(s) is
the filter of the disturbance observer.
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The disturbance observer based on the nominal inverse model can also observe the
uncertain part within the system. When considering centralized disturbances in the system,
D(s) in Figure 7 should be rewritten as Dl(s), and the corresponding system model Gp(s)
should be rewritten as the nominal value Gn(s), as shown in Figure 8. Figures 7 and 8 have
the following equivalent forms:

[U(s) + D(s)]Gp(s) = [U(s) + Dl(s)]Gn(s) (26)
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At this point, the centralized disturbance can be represented as follows:

Dl(s) = G−1
n Gp(s)D(s) +

[
G−1

n (s)Gp(s)− 1
]
U(s) (27)

The disturbance observation signal is expressed as follows:

D̂(s) = Q(s)G−1
n (s)Y(s)−Q(s)U(s) = Q(s)Dl(s) (28)

The observation error is defined as follows:

Ed(s) = D̂(s)− Dl(s) = [Q(s)− 1]Dl(s) (29)

To drive the disturbance observation error to zero, the condition lim
s→0

Q(s) = 1 is

imposed, and Q(s) can be designed in the form of a low-pass filter:

Q(s) =
1

λs + 1
(30)

The tuning parameter λ can adjust the performance of the disturbance observer.

4.2.2. Improved Disturbance Observer Based on Pseudo-Inverse Compensation

The N part in Figure 7 is the nominal model Gn(s), inverse-designed for the disturbance
observer, while there exists model deviation between Gn(s) and the system model Gp(s),
which affects the performance of the disturbance observer. If a new module can be designed
to replace the N part, eliminating Gn(s) from the disturbance observer, it can effectively
improve the problem of model deviation in the disturbance observer. For ease of subsequent
calculations, the N part in Figure 7 is defined as follows:

G−1
n (s) , G(s) (31)

Constructing the closed-loop control loop of G(s), as shown in Figure 9, where K(s)
represents the PID controller.

The system expression for Figure 9 is as follows:

[
K(s)G(s)

1 + K(s)G(s)
]R(s) = Y(s) (32)
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To eliminate the influence of G(s) in Equation (32), it is necessary to add a new loop in
Figure 7 to construct a V(s) that is independent of G(s), such that:

V(s)R(s) = Y(s) (33)

The general form of G(s) can be represented as follows:

G(s) = k
∏n

i=0 (s− zi)

∏m
j=0 (s− pj)

(34)

In the equation, k is a constant, zi and pj represent the zeros and poles of G(s), respec-
tively. n denotes the number of zeros zi, and m denotes the number of poles pj. If the inverse
of G(s) exists, it is given as follows:

G−1(s) =
1

G(s)
=

1
k
×

∏m
j=0 (s− pj)

∏n
i=0 (s− zi)

(35)

If G(s) has zeros with real parts less than or equal to zero, G−1(s) becomes unstable,
and when connected in series with the original system, the system remains unstable. If the
number of poles of G(s) is greater than the number of zeros, G−1(s) becomes non-causal. To
address this issue, the pseudo-inverse of G(s) is introduced:

G−1
(s) =

Gm(s)
G(s)

(36)

where

Gm(s) = n
∏k

i=0 (s− z+i )

(1 + sCr)
t (37)

In the equation, z+i represents the set of complex numbers zi with real parts greater
than or equal to 0. The parameter k denotes the cardinality of the z+i . Cr is a user-defined

constant, and t is an integer that ensures the same number of poles and zeros in the G−1
(s).

Additionally, N is a constant, and now replacing it with a low-pass filter Q(s) can improve
system stability as follows:

Gm(s) =
1

λs + 1
× ∏k

i=0 (s− z+i )

(1 + sCr)
t (38)

Therefore, the instability issue G−1(s) in Equation (35) is resolved by eliminating the
poles of Gm(s) at −1/Cr. Likewise, the non-causal problem of G−1(s) is addressed by
eliminating the zeros of Gm(s) by set z+i . Consequently, the concatenation of G−1

(s) and
G(s) results in Gm(s).
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Therefore, the pseudo-inverse G−1
(s) of G(s) is introduced as a new loop in Figure 9,

and Gm(s) is added at the input to reduce the system control error, as depicted in Figure 10.
The system expression can be represented as follows:{

R(s)
Gm(s)
G(s)

+ [R(s)Gm(s)−Y(s)]K(s)
}

G(s) = Y(s) (39)

Processes 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 10. Structure diagram of pseudo-inverse compensation. 

 
Figure 11. Pseudo-inverse compensated disturbance observer. 

4.3. Hierarchical Compound Decoupling Control Model 
The interaction of the inner model and the outer model constitutes the proposed 

LCDC (layered compound decoupling control) strategy, as illustrated in Figure 12. 

 
Figure 12. Block diagram of the LCDC structure. 

5. Experimental Design, Results, and Discussion 
5.1. RDSSA Performance Analysis 

This paper evaluates the performance of RDSSA using five test functions, and com-
pares it with Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), 
Grey Wolf Optimization (GWO), Harris Hawks Optimization (HHO), Dung Beetle 

𝐺 (𝑠)𝐺(𝑠)

𝐺 (𝑠)𝐺(𝑠)
𝐾(𝑠)𝐺 (𝑠)𝑅(𝑠) 𝑌(𝑠)

𝐺 (𝑠)

𝐺 (𝑠)
𝑄(𝑠)

𝐷(𝑠)𝑈(𝑠)

𝐺(𝑠)
𝐺 (𝑠)𝐺(𝑠)

𝐾(𝑠)

𝑌(𝑠)

𝐺 (𝑠)
𝑀

Controller 1

Controller 2

Inner Layer

Outer Layer

1R

2R

1U

2U

( )W s

11( )G s

21( )G s

22( )G s ( )pG s

( )mG s

( )Q s

( )K s1( )nG s−

( )G s

( )
( )
mG s
G s

Figure 10. Structure diagram of pseudo-inverse compensation.

After simplification, we obtain

R(s)Gm(s) = Y(s) (40)

Comparing Equation (33) with Equation (40), we can conclude that V(s) = Gm(s) and is
independent of G(s), achieving the design objective.

In summary, the design process for section N as shown in Figure 7 results in the
creation of a disturbance observer based on pseudoinverse compensation, as illustrated in
section M in Figure 11.
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4.3. Hierarchical Compound Decoupling Control Model

The interaction of the inner model and the outer model constitutes the proposed LCDC
(layered compound decoupling control) strategy, as illustrated in Figure 12.
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5. Experimental Design, Results, and Discussion
5.1. RDSSA Performance Analysis

This paper evaluates the performance of RDSSA using five test functions, and com-
pares it with Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA),
Grey Wolf Optimization (GWO), Harris Hawks Optimization (HHO), Dung Beetle Opti-
mization (DBO), Coati Optimization Algorithm (COA), and Yang’s Double-Slit Experiment
Optimizer (YDSE).

The relevant information for the five test functions is shown in Table 1. All func-
tions aim to solve minimization problems, with F1 to F4 belonging to the CEC2019 test
function set, and F5 being part of the latest CEC2022 test function set. Each algorithm
is independently run 500 times to assess RDSSA’s solving capabilities across different
dimensions. The evaluation of RDSSA’s performance is based on the Best (optimal value),
Mean (average value), and Std (standard deviation) metrics. The Best and Mean values
reflect the algorithm’s solution quality and precision, while the Std value reflects the
algorithm’s stability.

Table 1. Test function information.

Number Test Function Name Dimension Search Scope

F1 Storn’s Chebyshev Polynomial
Fitting Problem 9 [−8192, 8192]

F2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384]
F3 Griewangk’s Function 10 [−100, 100]
F4 Ackley Function 10 [−100, 100]

F5 Shifted and full Rotated
Expanded Schaffer’s f6 Function 10 [−100, 100]

Based on the experimental results from Tables 2–6, the following observations can
be made:
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Table 2. Optimization results for test function F1.

Number Algorithm Best Mean Std

F1

WOA 0.0001 × 107 1.0540 × 107 1.1533 × 107
HHO 1 1 0
GWO 0.0001 × 104 3.3968 × 104 8.8189 × 104
DBO 0.0001 × 106 0.4835 × 106 1.5365 × 106
COA 1 1 0
PSO 0.0035 × 106 0.9161 × 106 2.5680 × 106

YDSE 1.3638 × 103 5.0845 × 103 2.6164 × 103
RDSSA 1 1 0

Table 3. Optimization results for test function F2.

Number Algorithm Best Mean Std

F2

WOA 0.0734 × 103 7.6976 × 103 3.1976 × 103
HHO 4.6394 4.9891 0.0509
GWO 16.7378 385.7093 220.7347
DBO 0.0042 × 103 0.5226 × 103 1.0838 × 103
COA 4.6196 4.9981 0.0271
PSO 65.5895 433.1770 583.0885

YDSE 139.8328 254.3482 47.0417
RDSSA 0 1.0000 0.1082

Table 4. Optimization results for test function F3.

Number Algorithm Best Mean Std

F3

WOA 1.4480 2.1746 0.4158
HHO 1.4067 1.9781 0.2718
GWO 1.1532 1.7336 0.5441
DBO 1.1101 1.1896 0.1462
COA 10.9873 69.5888 24.3862
PSO 1.1099 1.3677 1.4108

YDSE 1.3852 1.6747 0.1043
RDSSA 1.0498 1.0069 0.0045

Table 5. Optimization results for test function F4.

Number Algorithm Best Mean Std

F4

WOA 21.2020 21.2300 0.1393
HHO 21.9550 21.1367 0.0956
GWO 21.5773 20.9699 2.6603
DBO 21.1105 21.3302 0.1535
COA 21.0828 21.3831 0.1055
PSO 21.0668 21.3675 4.3023

YDSE 21.1292 21.3710 0.0864
RDSSA 20.9713 21.2146 0.0522
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Table 6. Optimization results for test function F5.

Number Algorithm Best Mean Std

F5

WOA 3.4522 4.6194 0.2243
HHO 3.5133 4.6704 0.3177
GWO 3.7638 3.7265 0.4789
DBO 3.8505 4.1130 0.4183
COA 3.9187 4.7242 0.3358
PSO 3.4419 3.9088 0.5025

YDSE 3.7893 4.4211 0.3754
RDSSA 3.4025 3.7648 0.1899

For the F1 test function, the objective is to fit a Chebyshev polynomial to a set of data
points, minimizing the error between the polynomial and the data points. Table 2 shows
that HHO, COA, and RDSSA all exhibit excellent performance.

The F2 test function involves the inversion of a Hilbert matrix, which raises issues of
numerical stability. From Table 3, it can be observed that RDSSA’s standard deviation is
slightly higher than HHO and COA, but still better than other optimization algorithms.

Test function F3 is a multivariate function often used to assess the global search
capabilities of optimization algorithms, with the goal of minimizing the function value.
Based on the best, mean, and standard deviation values in Table 4, RDSSA demonstrates
superior convergence accuracy and numerical stability compared to other algorithms.

The Ackley function in F4 is also a multivariate function with numerous local extrema
within its defined range. Analyzing the data in Table 5 reveals that RDSSA excels in both
global search capability and the ability to escape local optima.

F5 is a non-convex, multi-modal function designed to assess an algorithm’s capability
to adapt to the structure of the search space, as well as its performance in balancing global
and local search. Analyzing the data provided in Table 6 reveals that RDSSA demonstrates
outstanding performance, consistently iterating to the optimal value with the fastest speed,
surpassing other algorithms.

The following Figures 13–17 illustrate the iteration curves of each algorithm on five
test functions. The objective function values in the iteration curves have been normalized
to reduce the numerical range, enhance numerical stability, decrease the scale of the search
space, expedite algorithm convergence, and facilitate comparisons.
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As depicted in Figure 13, the iteration curves for various algorithms on the F1 test
function show that HHO, COA, and RDSSA perform exceptionally well. They all exhibit
rapid convergence towards the optimal value, consistent with the conclusions drawn from
the data in Table 2.

Figure 14 displays the iteration curves for the F2 test function. HHO, COA, and RDSSA
demonstrate a clear advantage in terms of convergence speed, as they can rapidly converge
to the optimal value.

Figure 15 depicts the iteration curves for test function F3. In conjunction with the
data from Table 4, it can be observed that although various algorithms converge to the
vicinity of the optimal value, RDSSA approaches the optimum more closely and exhibits
strong stability.

Figure 16 indicates that RDSSA has achieved a relatively good fitness value in the initial
stages of iteration, and converges to the optimal value after approximately 160 iterations.
In contrast, other algorithms become trapped in local optima during the iterative process,
highlighting RDSSA’s superior ability to escape local optima.

Figure 17 displays the iteration curves for test function F5. RDSSA converges to the
optimal value first and exhibits strong stability, consistent with the data in Table 6.

The time cost is also a crucial metric for evaluating algorithm performance.
Figures 18–22 illustrate the time cost of each algorithm over 500 iterations on five test functions.
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Figure 18. Time costs of various algorithms on function F1.
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Figure 20. Time costs of various algorithms on function F3.
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Figure 21. Time costs of various algorithms on function F4.
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It can be observed that among the eight algorithms, RDSSA tends to incur relatively
higher time costs when dealing with the same problem under the same number of iterations.
The reasons for this phenomenon are as follows:

(1) Region partition: Introducing the division of the search region into four uniform
sub-regions adds extra computational costs. Managing the boundaries of sub-regions and
ensuring the uniform distribution of the population require more computational resources.

(2) Sub-region evaluation: Calculating the average fitness value for each sub-region
beyond half of the iterations increases computational costs.

(3) Individual quantity adjustment: Adjusting the number of individuals in the optimal
and worst sub-regions involves population operations, adding computational costs.

(4) Scale adjustment: Adjusting the scale of sub-regions requires additional computa-
tional resources, contributing to increased computational costs.

The advantages of improving SSA through the implementation of the dynamic region
adjustment strategy are as follows:

(1) The subdivision of sub-regions and the redistribution of the population avoid the
concentration of sparrow populations due to the constraints of the search strategy, thereby
improving search efficiency.

(2) The process of evaluating sub-regions is aimed at gaining a more precise un-
derstanding of the quality of each region, enabling different operations on regions with
varying qualities.

(3) Adjusting the number of individuals in regions is designed to optimize the search
process by increasing search intensity in regions wherein the optimal solution is most likely
to be found.

(4) Scale adjustment is implemented to optimize the breadth and depth of the search
at different stages.

Therefore, despite the relatively higher time cost incurred by implementing the dy-
namic adjustment strategy in RDSSA, it addresses the drawback of excessive population
clustering during the iterative process of the original SSA. This adaptability enhances
the algorithm’s probability of finding the optimal solution, and optimizes its global and
precise search capabilities at different stages of the search process. From the data analysis
in Tables 2–6 and the iteration curves in Figures 13–17, it is evident that the increased time
investment is reasonable and effective. This trade-off, sacrificing a certain range of time
costs to obtain higher-quality solutions, is a common phenomenon in algorithm design.
Moreover, due to the high search efficiency of RDSSA, it allows for shorter iteration times
to achieve the desired goals when handling the same problem, resulting in a significantly
shorter actual runtime.

In summary, the improved Sparrow Search Algorithm, RDSSA, proposed in this paper
exhibits characteristics such as fast convergence, high precision, and strong ability to escape



Processes 2023, 11, 3350 22 of 27

local optima. Therefore, RDSSA has advantages over other algorithms, demonstrating the
feasibility of the proposed improvement strategy in this study.

5.2. Design of Experimental Content for Double-Tank Liquid Level Control System

To validate the effectiveness of the RDSSA-LCDC strategy, this paper uses a dual-tank
liquid level control system as the experimental subject, as depicted in Figure 4 in the
previous sections. The mathematical model of the controlled object in this system has been
provided by Equation (9). The experimental conditions include the following:

The bottom areas of the upper and lower tanks are A1 = A2 = 150 cm2, and the cross-
sectional areas of the outlet pipes are a1 = a2 = 2 cm2. The flow rate ratio coefficients for the
inlet valves are set to k1 = k2 = 1.2. The steady-state liquid level in the upper tank remains at
h30 = 30 cm from 0 s to 4500 s and then rises to 90 cm after 4500 s. Similarly, the steady-state
liquid level in the lower tank stays at h50 = 50 cm from 0 s to 8500 s, and then rises to 90 cm
after 4500 s.

By substituting these parameters into Equation (9), the transfer function matrix of the
system can be obtained:

F(s) =

[
1.2

150s+0.82 0
1.2

27556s2+265.5s+0.63
1.2

150s+0.63

]
(41)

The simulation experiments were conducted in the MATLAB environment on a Win-
dows 10 system. Simulation data were obtained, and further analysis was performed using
plots. The comparative schemes included PID control, diagonal decoupling, LCDC, and
PSO-LCDC.

The experimental design is as follows: At 4500 s, there is a sudden change in the liquid
level of the upper tank. Due to the existence of coupling relationships, the liquid level of
the lower tank is also affected and undergoes a change. At 8500 s, the setpoint for the lower
tank’s liquid level is raised to 90 cm. Additionally, at 12,000 s, a step signal is introduced as
a disturbance.

5.3. Analysis of Simulation Results

The simulation waveforms of the lower tank’s liquid level for the five control schemes
are illustrated in Figure 23.
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Figure 23. Simulation waveform of lower water tank level for five control schemes.
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In the comparative schemes, both PSO-LCDC and RDSSA-LCDC involve optimizing
PID parameters. As shown in Figure 24, the iteration curves of the objective functions for
both approaches indicate that PSO iterates to the optimal value only after approximately
30 iterations, while RDSSA reaches the optimal value as early as the fifth iteration.
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Figure 24. Iteration curves for tuning PID parameters using PSO and RDSSA.

The time costs for tuning PID parameters and finding the optimal parameter sets for
both methods are presented in Table 7. Due to the superior performance of RDSSA, its time
cost for addressing this problem is significantly lower than that of PSO.

Table 7. Time costs for PSO and RDSSA.

Timing Algorithm PSO RDSSA

Time consumed/(s) 264.5917 140.4080

5.3.1. Decoupling Performance

The five curves displayed in region A of Figure 23 reflect the decoupling performance
of the five different control schemes, as shown in Figure 25.

At 4500 s, due to the rise in the liquid level of the upper tank, there are corresponding
fluctuations in the liquid level of the lower tank due to coupling relationships. Based on
the extent of curve fluctuations:

(1) PID control exhibits weaker decoupling performance, with relatively high coupling
between the upper and lower tank levels.

(2) Diagonal decoupling shows a noticeable improvement in decoupling effectiveness.
(3) LCDC, PSO-LCDC, and RDSSA-LCDC all demonstrate excellent decoupling per-

formance, as the liquid level in the lower tank does not exhibit significant fluctuations in
response to changes in the upper tank’s liquid level.

However, when examining the errors between the setpoint and actual liquid level
values in the lower tank, as shown in Table 8, LCDC has a maximum absolute error of
0.50 cm; PSO-LCDC has a maximum absolute error of 0.13 cm; and RDSSA-LCDC has the
best decoupling performance, with a maximum absolute error of 0.07 cm.
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Figure 25. Decoupling performance comparison of various schemes.

Table 8. Changes in lower tank level after variation in upper tank level.

Control Scheme Time/(s) Set Value/(cm) Actual
Value/(cm)

Max Absolute
Error/(cm)

PID

4500 50

61.09 11.09
Diagonal

decoupling 53.76 3.76

LCDC 49.50 0.50
PSO-LCDC 50.13 0.13

RDSSA-LCDC 50.07 0.07

5.3.2. Response Performance

At 8500 s, the liquid level in the lower tank is raised from 50 cm to 90 cm, and the
response performance of the five control schemes is depicted in Figure 26 (Region B in
Figure 23).
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From the waveforms, it can be observed that
(1) PID control and PSO-LCDC exhibit the poorest response performance. While they

respond quickly, they suffer from significant overshoot and continuous oscillations;
(2) LCDC and diagonal decoupling show improved response performance, with

increased stability but slower response times;
(3) RDSSA-LCDC demonstrates the best response performance, featuring rapid liquid

level response, stable waveforms, and no observable oscillations.

5.3.3. Disturbance Rejection Performance

At 12,000 s, the lower tank is subjected to a step disturbance with a value of −10,
causing fluctuations in the liquid level. The disturbance rejection performance of the five
different control schemes is illustrated in Figure 27 (Region C in Figure 23).
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Table 9 presents the performance of each control scheme in terms of setpoint val-
ues, actual liquid levels, and the maximum absolute error between them when external
disturbances occur.

Table 9. Changes in lower tank level after disturbance occurrence.

Control Scheme Time/(s) Set Value/(cm) Actual
Value/(cm)

Max Absolute
Error/(cm)

PID

12000 90

78.68 11.32
Diagonal decoupling 80.88 9.12

LCDC 84.41 5.59
PSO-LCDC 88.19 1.81

RDSSA-LCDC 88.90 1.10

Among them,
(1) PID control exhibits the weakest disturbance rejection performance, with a max-

imum absolute error of 11.32 cm. Its system dynamics are easily disturbed by external
disturbances, and the recovery speed is relatively slow. During the recovery process, the
waveform exhibits periodic oscillations.

(2) Diagonal decoupling and LCDC achieve maximum absolute error values of 9.12 cm
and 5.59 cm, respectively, indicating improved disturbance resistance.

(3) PSO-LCDC and RDSSA-LCDC demonstrate excellent disturbance rejection capa-
bilities. They exhibit minimal oscillation and rapid recovery when subjected to external
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disturbances, resulting in stable waveforms. However, in terms of the maximum absolute
error, RDSSA-LCDC’s 1.10 cm outperforms PSO-LCDC’s 1.81 cm.

6. Conclusions

This paper addresses the issues of coupling and disturbance in the widely encountered
dual-tank water level control system in industrial process control. The RDSSA-LCDC
strategy is proposed, making the following contributions:

(1) An improvement to the Sparrow Search Algorithm (SSA) is proposed, introduc-
ing the Regionally Dynamic Sparrow Search Algorithm (RDSSA). The RDSSA algorithm
addresses the limitations of the Sparrow Search Algorithm during the later stages of iter-
ation, where the concentration of individuals due to search rule constraints may lead to
susceptibility to local optima and rapid early convergence, resulting in reduced algorithm
precision. The modified RDSSA algorithm exhibits characteristics such as fast convergence,
high precision, and strong capability to escape local optima.

(2) For the multi-input, multi-output system represented by the dual-tank water level
control system, the LCDC structure is proposed to reduce system coupling by employing
a forward feedback decoupling controller. An improved disturbance observer is used in
conjunction with the forward feedback decoupling controller to decouple the system and
enhance disturbance rejection performance.

(3) Simulation experiments verify the advantages of RDSSA over several other algo-
rithms. Subsequently, the RDSSA algorithm is integrated with the LCDC structure to form
the RDSSA-LCDC strategy. Comparative analysis is conducted with other control schemes
in a simulation experiment of the dual-tank water level control system, demonstrating the
effectiveness of the proposed control approach.

However, there are limitations in this study. For instance, the RDSSA algorithm
has a relatively high computational cost that needs further improvement. Additionally,
real-world validation of the RDSSA-LCDC strategy is yet to be conducted due to exper-
imental constraints. Future work will focus on refining the RDSSA algorithm to reduce
computational costs and conducting real-world validation once experimental conditions
are favorable, extending the strategy to industrial process control with similar issues.

Author Contributions: In the writing of this article, B.F. and B.Y. contributed the most, followed by
G.H. Conceptualization, B.F. and G.H.; methodology, B.Y.; software, B.Y.; validation, B.Y., B.F. and
G.H.; formal analysis, B.Y.; investigation, B.Y.; resources, B.F.; data curation, B.Y.; writing—original
draft preparation, B.Y.; writing—review and editing, B.F. and G.H.; visualization, B.Y.; supervision,
B.F. and G.H.; project administration, B.F. and B.Y.; funding acquisition, B.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to multiple authors and the confidentiality
requirements of the authors’ organizations.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, L.; Tian, S.; Xue, D.; Zhang, T.; Chen, Y.; Zhang, S. A Review of Industrial MIMO Decoupling Control. Int. J. Control Autom.

Syst. 2019, 17, 1246–1254. [CrossRef]
2. Susaimanickam, A.; Manickam, P.; Joseph, A.A. A Comprehensive Review on RSM-Coupled Optimization Techniques and Its

Applications. Arch. Comput. Methods Eng. 2023, 30, 4831–4853. [CrossRef]
3. Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [CrossRef]
4. Mohapatra, S.; Mohapatra, P. American zebra optimization algorithm for global optimization problems. Sci. Rep. 2023, 13, 5211.

[CrossRef]
5. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm

for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [CrossRef]
6. Sadeeq, H.T.; Abdulazeez, A.M. Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global Optimization and

Challenging Engineering Problems. IEEE Access 2022, 10, 121615–121640. [CrossRef]

https://doi.org/10.1007/s12555-018-0367-4
https://doi.org/10.1007/s11831-023-09963-4
https://doi.org/10.1007/s10462-023-10567-4
https://doi.org/10.1038/s41598-023-31876-2
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1109/ACCESS.2022.3223388


Processes 2023, 11, 3350 27 of 27

7. Yue, Y.; Cao, L.; Lu, D.; Hu, Z.; Xu, M.; Wang, S.; Li, B.; Ding, H. Review and empirical analysis of sparrow search algorithm. Artif.
Intell. Rev. 2023, 56, 10867–10919. [CrossRef]

8. Xu, T.; Yu, H.S.; Yu, J.P. Adaptive disturbance compensation control of four tank liquid level with uncertain parameters. Control.
Eng. 2021, 28, 1289–1296.

9. Zhang, H.W.; Lv, B.Z. Design of a state estimation controller for dual input and dual output liquid level control systems. Mach.
Tool Hydraul. 2022, 50, 100–105.

10. Liu, J.J.; Zhou, P.; Li, M.J. Improved multivariable generalized minimum variance decoupling control method and its application.
Control Eng. 2021, 28, 375–381.

11. Jegatheesh, A.; Kumar, C.A. Novel fuzzy fractional order PID controller for non linear interacting coupled spherical tank system
for level process. Microprocess. Microsyst. 2020, 72, 102948. [CrossRef]

12. Mohideen, K.A.; Saravanakumar, G.; Valarmathi, K.; Devaraj, D.; Radhakrishnan, T. Real-coded Genetic Algorithm for system
identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system. Appl. Math. Model. 2013,
37, 3829–3847. [CrossRef]

13. Basci, A.; Derdiyok, A. Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measure-
ment 2016, 91, 12–18. [CrossRef]

14. Meng, X.; Yu, H.; Xu, T.; Wu, H. Disturbance Observer and L-2-Gain-Based State Error Feedback Linearization Control for the
Quadruple-Tank Liquid-Level System. Energies 2020, 13, 5500. [CrossRef]

15. Meng, X.; Yu, H.; Zhang, J.; Xu, T.; Wu, H.; Yan, K. Disturbance Observer-Based Feedback Linearization Control for a Quadruple-
Tank Liquid Level System. ISA Trans. 2022, 122, 146–162. [CrossRef]

16. Cai, F.F.; Wen, T. Partially Decentralized Control for a Benchmark Boiler. J. Control Eng. Appl. Inform. CEAI 2017, 19, 77–84.
17. Vijayalakshmi, S.; Manamalli, D.; Palani Kumar, G. Closed Loop Experimental Validation of Linear Parameter Varying Model

with Adaptive PI Controller for Conical Tank System. J. Control Eng. Appl. Inform. CEAI 2014, 16, 12–19.
18. Bait, F.; Sari, B. Multi-Model Based Robust LPV-H∞ Control and Observation Design of non Linear Multivariable Three Tank

System. J. Control Eng. Appl. Inform. CEAI 2021, 23, 3–14.
19. Claudio, U.; Yainet, G. Design and Performance Analysis of Level Control Strategies in a Nonlinear Spherical Tank. Processes

2023, 11, 720.
20. Liu, A.D.; Zhang, R.C.; Yu, L.; Zhang, W.A. Decentralized Model predictive control based on extended State observer. Control

Decis. 2016, 31, 1093–1098.
21. Qi, L.G.; Lv, W.X.; Gao, X.Y.; Luan, Z.Y.; Huang, D.X. Coordinated Control of Multi level and Heating Furnace Composite System.

J. Chem. Eng. 2016, 67, 690–694.
22. Guo, X.J.; Shao, H.Q.; Yang, C.B.; Zhang, Z.Q. Research on PFC-PID control algorithm for density and liquid level of heavy

medium suspension. Ind. Min. Autom. 2018, 44, 89–95.
23. Gurumurthy, G.; Das, D.K. An FO-[PI](lambda) controller for inverted decoupled two-input two-output coupled tank system. Int.

J. Syst. Sci. 2019, 50, 392–402. [CrossRef]
24. Hajare, V.D.; Khandekar, A.A.; Patre, B.M. Discrete sliding mode controller with reaching phase elimination for TITO systems.

ISA Trans. 2017, 66, 32–45. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10462-023-10435-1
https://doi.org/10.1016/j.micpro.2019.102948
https://doi.org/10.1016/j.apm.2012.08.019
https://doi.org/10.1016/j.measurement.2016.05.026
https://doi.org/10.3390/en13205500
https://doi.org/10.1016/j.isatra.2021.04.021
https://doi.org/10.1080/00207721.2018.1552772
https://doi.org/10.1016/j.isatra.2016.10.010

	Introduction 
	Mathematical Model 
	Improvement of Sparrow Search Algorithm 
	Sparrow Search Algorithm 
	Regional Dynamic Sparrow Search Algorithm 
	Regional Division 
	Regional Evaluation and Population Changes 
	Regional Scale Changes 


	Layered Composite Decoupling Control Strategy 
	Feed-Forward Decoupling 
	The Disturbance Observer Based on Pseudo-Inverse Compensation 
	The Disturbance Observer Based on the Nominal Inverse Model 
	Improved Disturbance Observer Based on Pseudo-Inverse Compensation 

	Hierarchical Compound Decoupling Control Model 

	Experimental Design, Results, and Discussion 
	RDSSA Performance Analysis 
	Design of Experimental Content for Double-Tank Liquid Level Control System 
	Analysis of Simulation Results 
	Decoupling Performance 
	Response Performance 
	Disturbance Rejection Performance 


	Conclusions 
	References

