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Abstract: In many different industrial domains, hydraulic control systems are extensively utilized.
This paper examines the current state of research and the trajectory of energy-efficient hydraulic
control system development. Initially, a quick introduction to the control principles of hydraulic
control systems is given. Secondly, hydraulic control systems are classified, the factors affecting
the energy consumption of hydraulic control systems are analyzed, and the method of reducing
its influence on hydraulic control systems is given. Subsequently, research concerning energy
conservation is compiled based on the classification of hydraulic control systems. In this paper,
the circuit structure of two control modes of a hydraulic control system (valve control system and
pump control system) and their related control algorithms (fuzzy PID control, adaptive robust control)
for reducing system energy consumption are studied. In summary, the evolution of energy-efficient
hydraulic control system approaches is forecasted and projected, offering some pointers for advancing
hydraulic control system study and implementation in the industrial future.

Keywords: valve control system; pump control system; energy conservation; hydraulic control
system; control strategy

1. Introduction

With the rapid development of the global economy and the continuous improvement
of human living standards and quality of life, human demand for energy is also rising at
an alarming rate. More than three-quarters of the world’s population lives in countries
where the rate of ecological degradation exceeds the rate of self-renewal, and the issue of
sustainable energy supply has become and will remain a hot topic for a long time. Due to
its many applications in the fields of aviation, aerospace, ships, weapons, engineering ma-
chinery, and other related industries, hydraulic control systems have grown in importance
as a technical force in the advancement of machinery and equipment development. They
offer the advantages of high power, fast response, high precision, and large rigidity [1,2].

Hydraulic control system development has been a protracted process. Additionally,
hydraulic control systems are continuously evolving and improving thanks to the tireless
work of numerous academics and specialists. The water clock, the earliest hydraulic
servo system ever created by humans, was created in 240 BC by an Egyptian, beginning
the history of hydraulic control technology. However, in the long historical period that
followed, hydraulic control technology remained sluggish until the late 18th and early 19th
centuries, when there were some major advances. Hydraulic control technology advanced
rapidly on the eve of World War II in response to the demands of industrial development;
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many of the early control valve concepts and patents came from this period. The first
hydraulic servo systems with single-stage open-loop control valves controlled by solenoids
debuted around the close of World War II. In the early 1950s of the 20th century, a fast-
responding permanent magnet torque motor appeared, which was combined with a spool
valve to form an electro-hydraulic servo valve. At the end of the 1950s of the 20th century,
electro-hydraulic servo valves with nozzle baffles as the pilot stage appeared, which further
improved the control performance. Since then, various new structures of electro-hydraulic
servo valves have been introduced one after another, and their performance is becoming
increasingly superior. Algorithms including adaptive fuzzy PID control, robust control,
and composite control have progressively been applied to hydraulic control systems since
the 20th century as a result of the advancement of electronic components and artificial
intelligence. Hydraulic control technology has become the basic technical composition of
modern mechanical equipment and devices, the basic technical element of modern control
engineering, and an important means of industrial and national defense automation, and
the degree of application of hydraulic control technology has become an important symbol
to measure the level of industrialization of a country [3–7].

Hydraulic control systems adjust the flow direction, pressure, and flow of the oil in
hydraulic control systems, so that the actuator and its driven working mechanism obtain
the required direction of movement, thrust (torque), and movement speed. The accuracy of
hydraulic control systems is typically difficult to guarantee because of nonlinear factors
such as leakage, contaminants, processing mistakes, and component degradation [8–10].
This paper analyzes the development process and research significance of hydraulic control
systems, studies the progress of two control methods of a hydraulic control system and re-
lated intelligent control algorithms for reducing energy consumption, analyzes the causes of
energy loss of hydraulic control system, and summarizes the relevant research of domestic
and foreign scholars on solving the energy loss of hydraulic control systems. Finally, on the
basis of the above research, the development trend of hydraulic control systems is predicted,
and their development prospect is prospected. Based on the assumption that a hydraulic
control system’s control accuracy must be guaranteed, the research presented in this paper
has some relevance for lowering a hydraulic control system’s energy consumption and can
be used as a guide for improving hydraulic circuits and control strategies.

2. Working Principle of Hydraulic Control System

Hydraulic control systems are a feedback control system that uses hydraulic compo-
nents as control and execution components, and hydraulic oil as the working medium for
energy transmission. The movement of hydraulic actuators refers to the system output
(including displacement, velocity, acceleration, and force), which is transmitted to the
controller through feedback components. The input signal of the control component is
adjusted according to the error size, so that the system output can automatically, quickly,
and accurately track the system input instructions. Hydraulic control systems are classified
into pump-controlled hydraulic control systems and valve-controlled hydraulic control
systems based on their various control modes and valve components [11–13].

2.1. The Working Principle of the Valve Control System

By regulating the hydraulic valve’s (proportional, servo, and other) valve opening,
the valve control system regulates the actuator’s speed. The control components of valve
control systems are generally servo valves or proportional valves, as they can reach and
maintain any intermediate valve core position. This can control the size of the throttling
gap, thereby controlling the flow through the throttling gap. This type of valve, especially
the servo valve, often works together with the bypass valve to form a series of connected
throttling control system structure. There are two types of throttle control methods in valve
control systems. One is the series throttle control method, where a portion of the flow
generated by the quantitative pump is returned to the oil tank through the overflow valve.
Another method is parallel throttle control, where a portion of the flow generated by the
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quantitative pump enters the hydraulic receiver through the throttle valve, and in this case,
the safety valve does not work. Therefore, not all of the oil output from the quantitative
pump is used to control the speed of the actuator, resulting in lower system efficiency and
higher system heat generation. This makes valve control systems generally only applicable
in scenarios where the speed of the actuator changes significantly and the control accuracy
requirements are not high [14–17].

The valve control system adjusts and controls parameters such as pressure, flow rate,
and direction of the hydraulic system by controlling the switch state of the hydraulic valve.
Figure 1 shows the control block diagram of a typical electro-hydraulic proportional valve
control hydraulic system. The electro-hydraulic proportional valve control system here
outputs a current signal from the control system center, adjusts the servo valve opening
through the action of a servo amplifier, sets the required pressure for the hydraulic system,
and transmits it to the control system center through a pressure sensor. The control system
center collects the actual output pressure, corrects it by comparing and analyzing it with the
previously set values. Then, the obtained correction signal is analyzed as the stable output
pressure of the system to ensure that the control system reaches the required pressure for
the hydraulic system [18–20].
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Figure 1. Control block diagram of valve-controlled hydraulic system.

Figure 2 shows the schematic diagram of the electro-hydraulic proportional valve-
controlled hydraulic system. The operator first sets the system oil pressure target value,
and the hydraulic oil in the tank is output by the oil pump. Currently, the directional valve
is positioned correctly among the three locations. The main purpose of this is to convert
the hydraulic energy of the hydraulic oil in the hydraulic cylinder into mechanical energy,
and then use a pressure sensor to measure the hydraulic oil pressure of the system. Under
the action of an A/D converter, the analog signal is converted into a digital signal and
transmitted to the system. The system obtains a set of values by subtracting the target
value of oil pressure from the obtained digital signal value. The difference in the obtained
signal is converted and transmitted to the electro-hydraulic proportional relief valve, and
the valve opening of the relief valve is adjusted to adjust the amount of hydraulic oil
entering the hydraulic cylinder, thereby accurately controlling the internal oil pressure
of the jack. The fundamental functions of the entire hydraulic system are to regulate the
hydraulic cylinder’s displacement by the amount of oil it receives, alter the proportional
relief valve’s opening area through the input current signal, and, in the end, use the
cylinder’s displacement to calculate the system pressure [21,22].

2.2. The Working Principle of the Pump Control System

Volume control is another name for the pump-controlled hydraulic control system.
Each actuator receives the same amount of oil input thanks to the pump-controlled hy-
draulic control system, which regulates actuator movement by varying the displacement of
the hydraulic variable pump. Pump-controlled hydraulic control systems, as opposed to
valve-controlled hydraulic control systems, use hydraulic variable displacement pumps
to control actuator components, which reduces the number of hydraulic valves and the
configuration of hydraulic pipelines. This improves system efficiency and considerably
lowers energy losses associated with overflow throttling loss, hydraulic oil leakage, and
frictional heat. The inherent frequency of the pump control system is therefore substantially
lower than that of the valve control system under identical circumstances, which causes
the pump control system to respond slowly. With steady or little load variations, the
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pump-controlled hydraulic synchronous system may achieve very tiny errors and has a
high volumetric efficiency. Table 1 shows the differences between pump control systems
and valve control systems [23–28]. The main difference between valve control systems and
pump control systems is that the control components of valve control systems are generally
proportional valves or servo valves, while the control components of pump control systems
are hydraulic variable displacement pumps.
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Table 1. Comparison between valve control system and pump control system.

Valve Control System Pump Control System

Main Control
Components Proportional Valve, Servo Valve Variable Displacement Pump

Characteristic

1. The system must have an air
circulation circuit to prevent
equipment overload;
2. When the system is idling, there
must be an unloading circuit;
3. When the system is overloaded,
excess hydraulic oil will flow back
to the oil tank through the safety
valve or overflow valve,
consuming a large amount of
energy and causing the system to
heat up;
4. In the valve control system,
there is internal leakage loss of
the valve and resistance loss
caused by hydraulic oil passing
through the valve. The more
valves are used, the greater the
leakage and resistance loss.

1. When the equipment is started, the
variable displacement pump is in the
zero-flow position, so there is no
unloading circuit, and the system will not
overload during startup;
2. When the equipment is in standby, the
pump can return to the zero-flow
position, thereby reducing the no-load
energy loss of the system;
3. When the system pressure reaches the
set value, excess hydraulic oil does not
overflow from the overflow valve, and
the system safety protection is achieved
by reducing the pump flow output;
4. When the system needs to accelerate or
decelerate, it can be achieved by
increasing or decreasing the pump flow
output to achieve speed regulation,
without the need for throttle valve speed
regulation;
5. The pump control system reduces
valve leakage and resistance loss due to
the reduction in the control valves.
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Table 1. Cont.

Valve Control System Pump Control System

Main Control
Components Proportional Valve, Servo Valve Variable Displacement Pump

Advantage

Good dynamic characteristics,
low cost, excellent control
precision, quick reaction time, and
simplicity of use

The system has high efficiency, low heat
generation, low energy loss, relatively
simple control principle, low noise, easy
maintenance, and convenient installation

Disadvantage
Low system efficiency, high
system heat generation, and
complex control principles

Poor dynamic characteristics, low control
accuracy, and high cost

The pump control system adjusts and controls the pressure, flow, and direction pa-
rameters of the hydraulic system by controlling the operating status and flow rate of
the hydraulic variable pump. Figure 3 shows the control block diagram of a typical
electro-hydraulic proportional pump control hydraulic system. Compared with the electro-
hydraulic proportional valve-controlled hydraulic system, the electro-hydraulic propor-
tional pump control system here has an additional feedback path, and the sensor can collect
the pressure and flow parameters in the system in real time, so that the system can change
the instructions of the command device according to the working conditions, and can find
problems and abnormalities in the system in time to improve the system efficiency [29,30].
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The pump control system realizes the adjustment and control of the pressure, flow,
direction and other parameters of hydraulic control systems by controlling the operating
state and flow of the hydraulic variable pump. Pump control systems typically consist
of hydraulic variable pumps, hydraulic valves, actuators, and controllers. The principle
of a typical pump control system is shown in Figure 4. In a pump-controlled system,
the hydraulic variable displacement pump is responsible for providing hydraulic energy,
pumping the hydraulic oil from the hydraulic tank and delivering it to the hydraulic valve
through the line. Based on the input of a control signal, the hydraulic valve modifies
the actuator’s movement state by controlling the hydraulic pump’s flow and start/stop
functions. The actuator can be a hydraulic cylinder or a hydraulic motor that enables
linear or rotary motion through the action of hydraulic oil. The controller is responsible for
receiving and processing input control signals and sending control commands to hydraulic
valves and hydraulic pumps to realize automatic control of the system [31–33].
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3. Factors Affecting Power Loss in Hydraulic Control Systems and Energy-Saving
Measures

The purpose of energy conservation is to improve energy utilization, reduce energy
waste, and ensure the required energy output with the least amount of energy input.
Efficiency is the main indicator of energy utilization during system operation, which is
the ratio of system output power to input power [34,35]. When the effectiveness of the
hydraulic system is enhanced by the efficiency of the prime mover powering the hydraulic
pump, the overall effectiveness of hydraulic control systems becomes:

η = ηeηcηtηm

In the equation, ηe is the efficiency of the prime mover, and its value is the output
power of the prime mover. That is, the ratio of the output power of the hydraulic pump to
the input power.

ηc is the efficiency of conversion, it represents the ratio between the output power
and the input power of the energy conversion element in hydraulic control systems, that
is, the efficiency of the energy conversion element itself, such as a hydraulic cylinder or
hydraulic motor.

ηt is transmission efficiency, liquid flow can cause energy loss, which is partly neces-
sary for the hydraulic system to achieve control functions, such as pressure loss at valve
ports such as throttle valves and directional valves. The other part is unnecessary addi-
tional losses, such as pressure loss caused by wall friction resistance when liquid flows in
a long straight pipeline; but, it is often difficult to completely separate the two, and the
transmission efficiency comprehensively considers the degree of total loss of the two types
of pressure during the liquid transmission process.

ηm is the matching efficiency, which is the ratio of the input power required by the
actuator to the output power of the hydraulic pump after removing transmission losses.

From the calculation formula of the total efficiency of hydraulic control systems, it
can be seen that the energy loss generated by hydraulic control systems [36–39] mainly
includes the following four aspects of energy loss:

(1) Energy conversion loss

Energy conversion loss refers to the loss caused by energy conversion components in
hydraulic control systems during energy conversion, including mechanical friction loss,
pressure loss, and volume loss. For example, a hydraulic pump converts the mechanical
energy input from the prime mover into the hydraulic energy output. During the energy
conversion process, there is mechanical friction loss on the shaft and volume loss caused by
internal leakage of the pump. The hydraulic motor converts the input hydraulic energy
into the output mechanical energy, and there are also mechanical friction losses on the
output shaft of the hydraulic motor and volume losses caused by internal leakage of the
motor during the conversion process. The energy conversion loss is not only related to
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the type of energy conversion element, but also to factors such as operating conditions
and wear.

(2) Energy transmission loss

Energy transmission loss refers to the energy loss generated by the hydraulic working
medium during transmission throughout the entire hydraulic system, namely flow loss.
It depends on the structure and layout of other components besides energy conversion
components, such as the structure of control components, the type and layout of auxiliary
components such as accumulators, the connection method of pipelines between each
component, and the type, quantity, size, etc. of joints and pipelines.

(3) Energy-matching loss

Energy-matching loss is the energy loss caused by the mismatch between the energy
provided by the power source (usually an electric motor) of a hydraulic control system
and the energy required by the load. Due to the complex working conditions of hydraulic
control systems, the output power of the motor cannot be stabilized within the optimal
economic range, resulting in high energy issues. In addition, due to power fluctuations,
it is difficult for the electric motor to match the power demand of the hydraulic pump in
real-time. When the output power of the electric motor exceeds the required power of the
hydraulic system, excess energy is wasted through overflow and thermal energy; when
the power output from the motor is lower than the power required by hydraulic control
systems, the torque output of the motor is lower than the torque required by the hydraulic
pump for normal operation, which will lead to a decrease in the speed of the motor, thereby
increasing the energy consumption of hydraulic control systems.

(4) Energy loss caused by impact

The impact pressure may reach 3–4 times the normal working pressure, causing
damage to components, pipelines, instruments, etc. in the system; the impact pressure
generated by the impact causes the pressure relay to missignal, interferes with the normal
operation of the hydraulic system, and affects the stability and reliability of the hydraulic
system, causing vibration and noise, loosening of connections, oil leakage, changing pres-
sure regulation by pressure valves, and changing flow regulation by flow valves; this affects
the normal operation of the system.

For the four types of energy losses mentioned above, the energy consumption of the
system can be reduced by using the following methods [40–44]:

(1) Improving the efficiency of hydraulic components and reducing energy loss in control-
ling them

This can mainly be achieved by improving the quality of components and developing
new energy-saving components. For example, by optimizing the design of electromagnets
that drive electromagnetic directional valves to reduce the power consumption of electrical
control components, by optimizing the flow channels of various hydraulic valve ports to
reduce the pressure loss of oil flowing through the valve ports, and by designing reasonable
clearance to reduce leakage, energy-saving methods can be achieved.

(2) Improve the matching relationship of energy

This is mainly achieved by reducing the friction torque of the output shaft of the
prime mover to improve the power-matching relationship between the two, in order
to improve the operational efficiency of the prime mover. Reducing the excess power
between hydraulic pumps and the loads includes reducing pressure excess and flow excess.
Reducing excess pressure can be achieved by trying to match the supply pressure of the
hydraulic pump with the required load force, and reducing excess flow can also be achieved
by trying to match the supply flow of the hydraulic pump with the required flow of the load.
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(3) Reduce pressure loss during transmission

Pressure loss is usually caused by viscous friction, vortex formation, and sudden
changes in flow direction and cross-sectional area, including pressure loss in hydraulic
pipelines and pressure loss at pipe joints. Pipeline pressure loss can be reduced by selecting
a reasonable inner diameter pipeline to reduce pipeline heating and thus reduce pressure
loss; reducing the pressure loss along the way can be achieved by making the structural
design of the entire hydraulic system as compact as possible and minimizing the length of
the pipeline.

(4) Reduce the vibration generated during equipment startup

1© Add a more suitable coupling between the active and driven shafts of the equip-
ment. A coupling is a mechanical component used to connect the active and driven shafts
in different mechanisms and rotate them together, transmitting motion and torque. In
addition to transmitting motion, the coupling can also compensate for the displacement
(including axial displacement, radial displacement, angular displacement, or comprehen-
sive displacement) between two shafts due to inaccurate manufacturing and installation,
deformation during operation, or thermal expansion, alleviating impact and vibration
absorption, and playing an overload protection role to achieve stable motion transmission.

2© Reduce interference from proportional valves. Hysteresis is an important static
indicator of proportional valves, and the presence of hysteresis can reduce the repetitive
accuracy of open-loop control systems. For closed-loop control systems, excessive hysteresis
of the proportional valve can lead to system vibration and closed-loop control failure. The
hysteresis loop mainly comes from the frictional force between the valve core and valve
body, as well as static hydraulic force. For direct drive valves driven by proportional
electromagnets, the hysteresis and friction hysteresis of proportional electromagnets are
also important sources of hysteresis in proportional valves. The following methods can
reduce the hysteresis of the proportional valve: reasonable clearance and shape accuracy
of the valve core and valve hole. Choose a reasonable working air gap and non-working
air gap size for proportional electromagnets, and control the coaxiality between the iron
core and guide sleeve. The use of valve core displacement closed loop can significantly
reduce the hysteresis of the proportional valve (<1%). The open-loop control proportional
valve superimposes chatter on the coil driving the current. Here is the Summary of factors
affecting power loss and energy-saving measures (Table 2).

Table 2. Summary of factors affecting power loss and energy-saving measures.

Energy
Conversion

Loss

Energy
Transmission

Loss

Energy-Matching
Loss

Energy Loss
Caused by

External Shocks

Reason

The loss of
energy
conversion
components in
hydraulic
control systems
during energy
conversion

The energy loss
generated by
the
transmission of
hydraulic
working
medium
throughout the
entire hydraulic
system

The energy loss
caused by the
mismatch between
the energy provided
by the power source
and the energy
required by the load

The impact
pressure may
reach 3–4 times
the normal
working pressure,
causing damage to
components,
pipelines,
instruments, etc.
in the system

Classification

Mechanical
friction loss,
pressure loss,
and volume
loss

flow loss
Local pressure loss
and frictional
pressure loss
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Table 2. Cont.

Energy
Conversion

Loss

Energy
Transmission

Loss

Energy-Matching
Loss

Energy Loss
Caused by

External Shocks

Measure

By improving
component
quality and
developing new
energy-saving
components

Reduce the
friction torque
of the output
shaft of the
prime mover
and improve
the power-
matching
relationship
between the
two

By designing the
structure of
hydraulic
components
reasonably, the
usage of bent pipe
joints is reduced;
make the structural
design of the entire
hydraulic control
system as compact
as possible

Add a more
suitable coupling
between the active
and driven shafts
of the equipment;
reduce
interference from
proportional
valves

4. Current Status of Energy-Saving Research on Hydraulic Control Systems

The above energy loss analysis shows that a portion of the energy loss is caused by
the system’s own structure, such as motor transmission efficiency loss, hydraulic pump
efficiency loss, and hydraulic pipeline loss. This part can only be reduced as much as
possible by improving the product structure design. Another part is the energy loss
caused by the complex and variable operating conditions, such as hydraulic control system
overflow loss, pressure loss, etc., which make it difficult for the engine output power to
fully match the load demand. This part can be achieved by optimizing the control strategy
of the system to achieve the required state for operation [45,46].

At present, there are two main types of hydraulic control systems: the valve control
system and the pump control system. The valve control system has the advantages of good
dynamic characteristics and fast response speed, but due to the use of throttling control,
overflow and throttling losses are large, resulting in low energy efficiency; in high-power
systems, valve control systems require a large number of valve groups for system control,
resulting in significant throttling losses. The improvement methods of valve control systems
mainly focus on two aspects: the improvement of hydraulic circuits and the optimization
of control strategies. For the problems of low system efficiency, system connection loss,
and load step disturbance in hydraulic control systems, these types of problems are mainly
caused by the components of the system itself. They can be improved by optimizing the
hydraulic circuit to reduce the impact of these problems on system performance; for the
problems of motor load fluctuation, time delay, and nonlinearity caused by unknown initial
values in hydraulic control systems, these types of problems can be solved by changing the
control strategy of the original system [47,48].

The pump control system belongs to the volume control system, and the output
flow of the pump is matched with the working pressure, without throttling and overflow
losses. Therefore, the transmission efficiency is high, but there are problems such as slow
dynamic response and poor low-speed characteristics. The improvement methods of the
pump control system mainly focus on two aspects: the improvement of the hydraulic
circuit and the optimization of the control strategy. For the problems of asymmetric flow
and nonlinearity in hydraulic control systems, which are caused by defects in the system
composition, improvements can be made by optimizing the hydraulic circuit to reduce
the impact of these problems on system energy loss; for problems such as low steering
accuracy, tracking of system uncertainty, external load disturbance, and nonlinear flexible
transmission laws in hydraulic control systems, these problems are caused by the algorithm
of control system components and can be solved by changing the control strategy of the
original system [49,50].
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4.1. Current Research Status of Energy-Saving Circuits and Structures in Hydraulic
Control Systems

The traditional approach to various power losses in hydraulic control systems is
mainly focused on improving the circuit and structure of hydraulic control systems. The
valve control system in hydraulic control systems suffers energy loss due to throttling
losses, while the pump control system suffers energy loss due to problems such as slow
dynamic response and poor low-speed characteristics caused by nonlinearity in the system.

4.1.1. Current Research Status of Energy-Saving Circuits and Structures in Valve
Control Systems

In order to maintain high efficiency and achieve rapid adjustment of the high-power
hydraulic speed control system under load step disturbances, Sato et al. [51] proposed
a bypass valve-controlled hydraulic motor speed control system (as shown in Figure 5).
This system achieves rapid adjustment through valve-controlled leakage, which increases
the damping of the system and improves its stability. However, the system has problems
such as poor speed stiffness and high energy consumption; Sheng et al. [52] improved the
bypass valve-controlled hydraulic motor speed control system by adding independent oil
supply energy to the valve-controlled branch. The bypass servo valve is always in the state
of replenishing oil to the system. Compared to not adding independent oil supply energy,
the system’s response speed was improved by 1.2 s, the system’s efficiency was increased
by 24.5%, and the system’s energy saving was 36.7%.
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In response to the issues of high noise and high energy consumption generated by
heavy-duty construction machinery during operation, Bury et al. [53] conducted research on
the transmission in valve control systems. Through simulation and experimental methods,
it was found that by appropriately adjusting the parameters of the control signal provided
to the proportional spool valve coil, the high load time of the hydraulic pump can be
reduced, moreover, the maximum pressure value at the inlet of the hydraulic motor during
startup can also be modified by adjusting the shape of the proportional spool valve control
signal. It can also reduce the noise generated by the transmission during startup, prevent
excessive wear of hydraulic components, enable construction machinery to quickly reach
working conditions, increase normal operation time of construction machinery, reduce
system energy loss, and effectively improve the efficiency of heavy-duty construction
machinery. During the steering process of the loader, the hydraulic pump supplies oil
to the steering system separately. Due to the fact that the working power of the steering
is much lower than that of the lifting and turning bucket, the hydraulic pump is in a
partial load condition, and the excess flow returns to the oil tank through the overflow
valve, resulting in significant overflow loss; the oil provided by the hydraulic pump is
distributed to the steering hydraulic cylinder through the steering valve, and the steering
valve often uses a rotary valve with more throttling ports to achieve high-precision steering,
resulting in a large amount of throttling loss. And the steering condition is the most
frequent operating condition during the working process of the loader. Improving the
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energy efficiency of the steering system is one of the main methods to reduce the energy loss
of the loader hydraulic system [54,55]. Dell et al. conducted research on the steering system
of loaders, replacing the original steering valve with four electric proportional valves. By
collecting real-time steering wheel torque and hydraulic cylinder pressure signals during
the steering process to control the opening and closing of the hydraulic valve, the overflow
loss that existed during the steering process was eliminated and the throttling loss was
reduced. Compared with traditional steering systems, the energy loss was reduced by
2.3 times, improving the machine’s productivity by 22.6%; not only does it reduce the
energy consumption of the steering system, but it also improves the stability during the
steering process [56,57]. Zhao et al. [58] proposed a valve-controlled hydraulic energy-
saving system based on a hydraulic transformer to address the problem of low energy
utilization efficiency in the valve-controlled hydraulic system of hydraulic excavators
and studied its energy-saving effect. They studied the energy consumption of valve-
controlled hydraulic systems and valve-controlled hydraulic energy-saving systems based
on hydraulic transformers in AMESim and AMESim MATLAB environments, respectively,
and compared and analyzed the energy utilization efficiency and energy-saving effect of
the valve-controlled hydraulic system and the valve-controlled hydraulic energy-saving
system. After simulation verification, the simulation results displayed that the valve-
controlled hydraulic energy-saving system using hydraulic transformers as the main control
component has good dynamic performance, and the energy utilization rate is significantly
improved compared to the valve-controlled hydraulic system. The system saves 35.63% of
energy, and the energy-saving effect is excellent.

Hydraulic control systems have the advantages of high load, high stiffness, high
power to weight ratio, and high technological maturity. Based on the above advantages
of hydraulic control systems, hydraulic brakes are still the mainstream of anti-skid brake
control hydraulic actuation for military and civilian aircrafts. The performance of the
anti-slip braking system directly affects the aircraft’s rapid response, safe return, takeoff,
and sustained combat capabilities, thereby affecting the overall performance of the aircraft.
Due to the short duration of the aircraft landing process (about 20 s), the anti-slip braking
system must be safe, reliable, and responsive to ensure that the aircraft can brake safely.
When vibration occurs in the aircraft brake control system, it can cause discomfort to the
driver and passengers, and in severe cases, damage to the landing gear and serious safety
accidents [59,60]. Regarding this issue, Q Cao et al. [61] established a finite element model of
aircraft brake discs and analyzed their instability frequency. Most of the research on aircraft
brake vibration both domestically and internationally focuses on friction between dynamic
and static brake discs, brake system control rate, and anti-slip system chatter. However,
there is little research on the characteristics, vibration, and vibration suppression methods of
the brake pressure servo valve actuator system in wheel brake devices. Zhang [62] revealed
the mechanism behind nonlinear self-excited oscillation in the brake pressure servo valve
control cylinder system, clarified the influence of key parameters in the system on the
dynamic behavior of nonlinear self-excited oscillation, and proposed effective vibration
suppression measures for the brake pressure servo valve control cylinder system. Based on
the fundamental principle of completely eliminating the positive feedback phenomenon
of oil return, a new type of two-stage brake pressure servo valve structure was optimized.
The experimental results showed that under various operating conditions, the fluctuation
range of the brake pressure output by the new valve only needs to be within 0.1 MPa, and
the system has no resonance.

Wrat G et al. [63] addressed the low efficiency of hydraulic systems caused by throt-
tling, overflow, and other issues in linear actuators commonly found in construction
machinery. Therefore, they implemented energy-saving position control using two dif-
ferent hydraulic circuits and compared their efficiency. The first hydraulic circuit uses a
conventional proportional directional control valve for position control, while the second
hydraulic circuit adopts an innovative solution of flow control valves and evaluates the
efficiency of the system by creating artificial leaks at both ends of the actuator. During
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the control process, the additional flow of the pump can be discharged through the flow
control valve, reducing energy loss and improving the efficiency of the electro-hydraulic
servo system. The experimental results show that the circuit using flow control valves
saves 8.5% energy compared to the traditional circuit using proportional directional control
valves. For the energy-saving analysis of the system, in addition to analyzing the circuit
structure, it should also be analyzed from the perspective of connection loss and angle fit-
tings. Karpenko et al. [64] studied the pipeline system through simulation, using equivalent
length straight pipes, pipes connected to 45-degree angle fittings, and pipes connected to 90-
degree angle fittings to compare with their corresponding K-shaped pipes. The simulation
results show that the pipeline connected by 90-degree fittings has the highest power loss,
with a power loss range of 5.22–10.3–16.261 W; the power loss of the pipeline connected to
the 45-degree angle fitting is the second, with a power loss range of 3.81–10.3–13.438 W; the
power loss of equivalent length straight tubes is not significant, and the range of power
loss is 1.52–10–3–11.177 W; this indicates that reducing the use of bent pipes can reduce the
energy loss of the system.

4.1.2. Current Research Status of Energy-Saving Circuits and Structures in Pump
Control Systems

The pump control system mainly faces problems such as imbalanced flow and nonlin-
earity. Scholars have optimized the pump-controlled asymmetric cylinder system for issues
such as asymmetric flow caused by the difference in hydraulic cylinder area, starting from
the hydraulic circuit. Ma et al. [65] proposed two schemes: using a hydraulic transformer
and using two variable displacement pumps driven by coaxial to compensate for the
asymmetric flow caused by the difference in hydraulic cylinder area. Rahmfeld et al. [66]
conducted in-depth research on a pump control system that uses hydraulic control one-way
valves to compensate for asymmetric flow and designed a hybrid pump control system
for the entire excavator. The load potential energy was recovered through an auxiliary
pump/motor coaxial connected to a closed hydraulic pump and torque coupling. Com-
pared with the original system, the system’s energy consumption was reduced by 50%.
Ni et al. [67] proposed a new linear driving principle that combines closed pump control ro-
tation with mechanical linear conversion. Through theoretical analysis and simulation, this
method allows the variable displacement pump to operate at large displacement, medium
to high speed, and the system can maintain high efficiency over a large load range, with
an efficiency of 60%−68%. However, this method has not been experimentally verified.
Zhang et al. [68] designed a new type of three-port hydraulic pump, changing the flow
distribution window of the hydraulic pump from 2 to 3. The flow distribution window was
used to balance the asymmetric flow of the system, and the hydraulic pump was used to
drive the excavator bucket rod, achieving good control characteristics and energy-saving
effects. Wang et al. [69] proposed the circuit principle of using a hydraulic transformer
and two hydraulic pumps driven by a shaft to compensate for the asymmetric flow of
the differential cylinder. The differential flow is balanced by a hydraulic transformer, and
this system uses a large number of hydraulic pumps with complex structures and high
installation costs. Chen et al. [70] used two variable displacement pumps driven in parallel
to compensate for the asymmetric flow of the hydraulic cylinder and added an accumu-
lator to balance the load weight and recover gravitational potential energy. Yao et al. [71]
proposed an open-pump control principle that uses two coaxial-driven open hydraulic
pumps to control the two chambers of the hydraulic cylinder and uses the displacement
of the hydraulic pump to balance asymmetric flow. Wang et al. [72] designed a three-port
pump-controlled asymmetric cylinder system, as shown in Figure 6. The new three-port
pump balances the asymmetric flow of the hydraulic cylinder through a flow plate, without
one-way throttling loss and unbalanced flow loss. Compared with the symmetric pump
control system, the three-port pump control system can save 18.6% of energy, reduce energy
loss by 32.43%, and achieve good energy-saving effects.
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In response to the problem of asymmetric flow in the pump-controlled differential
cylinder system, Gao et al. [73] used a hydraulic-controlled one-way valve to balance the
asymmetric flow and applied it to the differential cylinder control circuit in engineering
machinery. A variable pump control scheme is proposed for the hydraulic cylinder circuit in
engineering machinery, where each variable pump is driven by the engine through different
reducers. This scheme opens up a new way for the hydraulic pump to directly control the
multi-actuator hydraulic circuit. The system principle is shown in Figure 7. Because the
engine is driven by a reducer with a certain speed ratio, this scheme can only control the
differential cylinder by changing the displacement of the variable displacement pump.
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For the pump-controlled differential cylinder system, due to the uneven flow rate
between the two chambers, Gao and Huang [74,75] proposed an asymmetric axial piston
pump with three suction and discharge ports (as shown in Figure 8), which can compensate
for the uneven flow rate between the two chambers. In order to further improve the energy
efficiency of the pump-controlled differential cylinder system, the system is subjected to
energy recovery and reuse. Add an accumulator to the system to achieve the recovery and
reuse of gravitational potential energy. Wang et al. [76] established a mathematical model
for the potential energy recovery process based on theoretical analysis by studying the
potential energy recovery efficiency of the asymmetric pump control differential cylinder
system and analyzed the influence of accumulator pressure on energy recovery efficiency;
establish a physical simulation model for the potential energy recovery system and con-
duct simulation research on the potential energy recovery process. The results show that
compared with ordinary airbag-type accumulators, using a constant pressure accumulator
for energy recovery can avoid the possibility of asymmetric pumps transitioning from
motor operating conditions to pump operating conditions during the potential energy
recovery process, resulting in the inability to recover residual energy; when the load is
10 kN, the maximum energy-saving efficiency of using a constant pressure accumulator
can reach 29.8%.
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Figure 8. Asymmetric pump-controlled potential energy recovery system.

For the unbalanced flow rate of the system, Christopher et al. [77] used an auxiliary
pump and accumulator to compensate through a hydraulic control one-way valve, and the
system schematic is shown in Figure 9. The boom oil cylinder and the stick oil cylinder are
directly controlled by two servo variable displacement pumps, which are driven by the
engine through the shaft. Research has shown that the operating performance of loaders is
good. Experimental studies have been conducted on loaders under both no-load and load
conditions, and the full load acceleration is about 80% of the no-load acceleration, which is
more than 30% energy-saving compared to valve control systems. In order to improve the
control performance of the system, a two position two-way solenoid valve is added to each
of the two chambers of the differential cylinder, which increases the complexity and energy
consumption of the system.
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valve of loader.

To simplify the system principle, reduce installation costs, and automatically compen-
sate for flow asymmetry caused by differential cylinder area difference, Zhang et al. [78]
proposed a new hydraulic pump with a flow distribution principle. The pump has three
oil ports, which are respectively connected to the rod chamber, rodless chamber, oil tank,
or accumulator of the differential cylinder. Changing the area ratio of the flow distribu-
tion window corresponding to the three oil ports can automatically compensate for the
asymmetric flow caused by the difference in area of the differential cylinder. The system
principle is shown in Figure 10. At present, the flow rate of the pump in this system is
controlled by changing the speed of the electric motor. For variable speed and constant
displacement control, it has been applied in injection molding machines, and the control of
the hydraulic pump displacement is still in the preliminary research stage.
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In response to the problems of large inertia, slow system response, dead zone, and
nonlinearity in the large closed-loop variable frequency control system, Xu et al. [79] and
others studied the energy consumption characteristics of variable frequency volumetric
speed control hydraulic elevators. By detecting the current value provided by the control
board when the one-way valve is opened in the upstream stage, the leakage amount of
the pump is determined, and then compensated in the program to obtain good control
performance. In terms of energy consumption, compared to variable frequency valve-
controlled variable speed hydraulic elevators, the average energy-saving rate of variable
frequency volume-controlled hydraulic elevators should reach at least 70% [80].

4.2. Current Research Status of Energy-Saving Control Strategies for Hydraulic Control Systems

With the emergence of more hydraulic control technologies and the increasing empha-
sis on energy conservation in society, more attention is being paid to using advanced control
methods to solve the problem of high energy consumption in electro-hydraulic servo sys-
tems. Domestic and foreign scholars have conducted various studies on energy-saving in
electro-hydraulic servo systems [81].

4.2.1. Research Status of Energy-Saving Control Strategies for Valve Control Systems

The throttling loss of the valve control system during operation can cause the output
power to not match the actual working conditions. There is still great room for improvement
in the control performance of valve control systems. In order to improve energy efficiency,
as the valves in the valve control system are directly driven by circuits, better control
strategies are applied to the valve control system to match the output power of the system
with actual working conditions, thereby achieving the goal of energy conservation [82,83].

The key to solving the problem of low cotton-picking efficiency caused by the opera-
tion of the cotton-picking head motor of the cotton-picking machine under load fluctuations
is to study the constant speed control method of the valve-controlled motor hydraulic sys-
tem. By solving this problem, the cotton-picking machine can achieve energy-saving and
environmental protection during the cotton picking process. In response to the issues
raised above, a single control strategy cannot effectively solve this problem. Mao et al. [84]
proposed a fuzzy adaptive PID control strategy without manual intervention, which effec-
tively improved the response speed and anti-interference ability of the valve control system.
Jiang et al. [85] proposed an intelligent control method based on fuzzy neural network
control of motor speed, which effectively improves the adaptive ability and robustness
of valve-controlled motor systems. Dang et al. [86] used a robotic arm as the research
object and adopted a fuzzy PID control method to improve the dynamic response ability
and tracking characteristics of the valve-controlled motor system. Li et al. [87] established
a simulation model to improve the control performance of the valve-controlled motor
system by combining the anti-saturation PID control of variable structure and fuzzy PID
control. Wang et al. [88] established a mathematical model for the speed control problem
and improved the model by using the PID control strategy to improve the speed control
accuracy of the valve-controlled vane air motor system. Yan et al. [89] proposed a dual
channel equivalent cross-coupling synchronization control strategy for valve-controlled
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dual motor synchronization and combined it with PID control correction to improve re-
sponse speed and stability accuracy. Yan [90] compared and analyzed the application effect
of PID control and pole placement method in valve-controlled motor systems, as well as
the influence of the pole position of the state observer on the dynamic characteristics of
the system. Lei et al. [91] used PID and parameter self-tuning fuzzy PID control strategies
to achieve constant speed control of hydraulic motors for electro-hydraulic proportional
valve-controlled hydraulic motor systems. Simulation results showed that the fuzzy PID
control effect was better. From the above analysis, it can be seen that for valve-controlled
motor speed control systems, PID or its improved control algorithms are often used to im-
prove the control effect to achieve the goal of energy conservation. Liu et al. [92] proposed a
method based on load feedforward compensation and self disturbance rejection composite
control of speed, which reduces the response time of the system by 23.3% under constant
load step input; under the action of sudden load, the maximum overshoot of the motor
output speed decreased by 66.7% and the stability time decreased by 59.6%. In response to
issues such as power output fluctuations in the valve control system, Tian [93] conducted
research on the control performance of the valve control motor speed control system using
two control methods: ordinary PID control and neural network PID control. The results
showed that compared to the ordinary PID control system, the overshoot of the neural
network PID control system was reduced from 15% to 8%, and the adjustment time of
output power was reduced from 1.75 s to 1.5 s. The control curve was smoother, and the
power output was stable, effectively achieving the goal of energy conservation.

In response to the nonlinear problem caused by unknown initial control variables in
hydraulic systems, Guan [94] proposed a nonlinear adaptive controller to compensate for
nonlinear uncertain parameters, and ultimately achieved good control results. Xiong [95]
proposed a data-driven adaptive control method based on an extended state observer to
address the inherent nonlinear characteristics and structural uncertainty issues in valve-
controlled electro-hydraulic servo rotary systems. Using optimal theory, he proposed a
time-varying parameter update algorithm and a data-driven adaptive control law. The
tracking error convergence of the system was verified. In response to the problem of
backlash nonlinearity in the valve-controlled hydraulic motor system of rocket weapons,
Zhao [96] designed an adaptive robust control algorithm to compensate for backlash
nonlinearity and improve system performance. For the problem of dynamic asymmetry in
the valve-controlled asymmetric cylinder electro-hydraulic position servo system, Mu [97]
designed an adaptive control system based on Lyapunov stability theory and applied it to
the valve-controlled asymmetric cylinder electro-hydraulic position servo system. When
the step response time of the system is shortened to 100 ms of the model response time, a
constant external interference is applied to the system, and the system can quickly make
adjustments and has high robustness.

4.2.2. Current Research Status of Energy-Saving Control Strategies for Pump
Control Systems

The nonlinearity and uncertainty of the pump control system during operation can
lead to a mismatch between the power source and the actual working conditions. The effi-
ciency of the power source is only about 75%, and there is still great room for improvement
in the control performance of the hydraulic system. In order to improve energy efficiency,
as the pumps in the pump control system are directly driven by circuits, better control
strategies are applied to the pump control system to match the power source of the system
with the actual working conditions, thus achieving the goal of energy conservation.

In response to the problems of high energy consumption and low steering accuracy
in traditional agricultural machinery hydraulic systems, Wang et al. [98] proposed to
use the difference between the target displacement value of the cylinder and the actual
displacement value of the cylinder as the input of the PID controller. By controlling
the opening of the electromagnetic proportional valve through the PID controller, the
control accuracy and response characteristics of the tractor hydraulic system are improved.
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Wen et al. [99] proposed a dual closed-loop PID road-sensing system control strategy, which
significantly improves the smoothness of the hydraulic system’s step response torque input
and the following performance of the triangular input, reducing the system’s response time.
Diao et al. [100] used a fuzzy immune PID controller to control the tractor’s wire-controlled
steering, achieving a response time of 0.272 s under step response. Ma et al. [101] proposed
the use of a deep plowing fuzzy PID automatic control strategy. Through simulation, it can
be seen that the proposed control strategy can improve the control accuracy of the tractor
electro-hydraulic suspension system under deep plowing conditions.

In response to the tracking problem of nonlinearity and uncertainty in hydraulic servo
pump control systems, Li et al. [102] combined the time optimal and the Lyapunov function
and proposed an improved second-order approximate time optimal control algorithm.
By using this control algorithm, while ensuring robustness, the response speed of the
second-order sliding mode can be significantly improved and chattering can be effectively
suppressed. In response to the nonlinearity and time delay of the variable speed pump
control hydraulic system of the boom, Huang [103] designed a BP neural network PID
controller for the variable speed pump control hydraulic system of the boom. The maximum
displacement tracking error of the system is 0.92 mm, and the error is within 1 mm.
However, using only ordinary PID control, the maximum error of the system is 3.39 mm,
and the error is 2.11 mm. From this, it can be seen that the system control effect using BP
neural network PID controller is significantly superior to ordinary PID control.

In order to improve the control effect of the hydraulic system of engineering vehicles
during the construction process, Kan et al. [104] proposed a hybrid fuzzy PID control
algorithm. The common components in the mechanical hydraulic system of engineering
vehicles were selected and the pump-controlled motor speed control system was used
to construct a mathematical model for it. Simulation experiments were conducted using
MATLAB (https://www.mathworks.com). The results showed that during the initial
acceleration stage and the load action stage, the fuzzy PID control strategy is used to
improve the control process of the system, and the maximum overshoot of the two levels
is reduced by 48.05% and 40.01%, respectively, and reduced the time required to reach a
stable state by 20.18% and 26.71%, respectively. Zhang et al. [105] proposed a direct drive
dual pump-controlled three-chamber cylinder system based on speed feedforward and
fuzzy PID composite control to address the potential energy loss of the boom during the
working process of hydraulic excavators and applied the proposed system to the excavator
boom. The results show that compared to the direct drive pump-controlled differential
cylinder system, the proposed system reduces peak power by 25.12% and saves energy by
33.11%; at the same time, the designed controller controls the displacement tracking error
to 3%, which has a faster response speed, smaller overshoot, and higher position tracking
accuracy compared to traditional PID and speed feedforward PID.

5. Discussion

The nonlinear and time-varying properties of hydraulic control systems make the
adoption of suitable control algorithms a crucial area of research. Although each has pros
and cons, common advanced control methods include fuzzy control, fuzzy PID control,
adaptive control, and neural network control. It is frequently not possible to obtain good
control outcomes using a single control algorithm for hydraulic control systems that are
nonlinear, readily disturbed, and time-varying. To obtain effective control effects, several
researchers have therefore organically merged multiple control methods. As hydraulic
control systems progress toward reduced energy consumption, minimal leakage, minimal
noise, maximum responsiveness, and immunity to interference, more demands have
been placed on control methodologies and hydraulic constituents. High precision is a
prerequisite for hydraulic control systems, which also need to have quick response times,
robust anti-interference capabilities, and overshoot tolerance. When the system is exposed
to external disturbances, the chosen control method can guarantee that the system has a
satisfactory control effect.

https://www.mathworks.com
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A pump control system has the benefit of great volumetric efficiency and can achieve
high synchronization precision under steady or slight load variations. In situations with
large dynamic loads or load changes, the pump control system has difficulty achieving high
synchronization accuracy in practice due to its slow response. The valve control system has
the advantage of fast dynamic response, so under dynamic load conditions, using a valve
control system can ensure high synchronization accuracy, but the efficiency of the valve
control system is low. The single use of valve control systems or pump control systems
cannot meet the growing demands of industrial production in hydraulic control systems.
Recently, several researchers have looked at the application of new synchronous systems
that exactly combine the benefits of valve control and pump control by using valve control
compensation as the primary way. This guarantees the system’s excellent synchronization
precision as well as its overall high efficiency.

The future development trend of hydraulic control systems is to improve and optimize
the performance of valve control systems and pump control systems, thus reducing system
energy loss. Pump valve composite control systems are still a relatively new kind of
hydraulic control system, with few studies on them. In the future, as more scholars conduct
relevant research on pump valve composite control systems, pump valve composite control
systems will occupy a place in hydraulic control systems.

6. Conclusions

Hydraulic control systems are the core of hydraulic synchronous motion mechanical
equipment, which determine the functionality and technical performance of the mechanical
equipment. By improving the power-matching degree of hydraulic control systems, the
energy loss of hydraulic control systems can be reduced and the energy-saving level can
be improved. However, the valve control system and pump control system introduced
in this article can only achieve local power matching, and the overall power matching
and coordinated control of the engine hydraulic pump load system has not yet been
achieved. At present, the global power-matching technology is still immature, and the
main difficulty lies in achieving power matching and coordination between the engine
hydraulic pump and the hydraulic pump load. By adding more energy-saving or better
control performance components to the circuit structure of hydraulic control systems,
reducing mechanical vibration during system startup, and reducing the use of bends,
selecting appropriate control algorithms to control hydraulic valves or pumps can reduce
power loss during transmission.
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