
Citation: Ma, X.; Yu, Y. Training

Tricks for Steel Microstructure

Segmentation with Deep Learning.

Processes 2023, 11, 3298. https://

doi.org/10.3390/pr11123298

Academic Editors: Weisen Zheng,

Wei Lv, Wanqiang Liu, Li Yang and

Feng Wang

Received: 23 October 2023

Revised: 15 November 2023

Accepted: 17 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Training Tricks for Steel Microstructure Segmentation with
Deep Learning
Xudong Ma 1 and Yunhe Yu 2,*

1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2310186@stu.neu.edu.cn

2 Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China
* Correspondence: yhyu@suda.edu.cn; Tel.: +86-136-1404-2499

Abstract: Data augmentation and other training techniques have improved the performance of deep
learning segmentation methods for steel materials. However, these methods often depend on the
dataset and do not provide general principles for segmenting different microstructural morphologies.
In this work, we collected 64 granular carbide images (2048 × 1536 pixels) and 26 blocky ferrite
images (2560 × 1756 pixels). We used five carbide images and two ferrite images and derived
from them the test set to investigate the influence of frequently used training techniques on model
segmentation accuracy. We propose a novel method for quickly building models that achieve the
highest segmentation accuracy for a given dataset through combining multiple training techniques
that enhance the segmentation quality. This method leads to a 1–2.5% increase in mIoU values.
We applied the optimal models to the quantization of carbides. The results show that the optimal
models achieve the smallest errors of 5.39 nm for the mean radius and 29 for the total number of
carbides on the test set. The segmentation results are also more reasonable than those of traditional
segmentation methods.

Keywords: steel microstructure; segmentation; transfer learning; data augmentation; receptive field

1. Introduction

Quantitative microstructure analysis is at the heart of materials engineering and
design [1]. Microscopy image segmentation is usually the first and most difficult step in
quantifying material structure. Traditionally, it is often processed manually or using expen-
sive equipment. With the development of practical stereology [2] and digital techniques,
theoretical studies performed with simple image processing software, such as image thresh-
olding, have attracted much attention. Martyushev et al. [3,4] present the software that
can automate the analysis and furthermore determine upper and lower boundaries for the
intensity levels of the corresponding phases. Stuckner et al. [5] present a Python package
for complex multiphase material analysis. These methods are accurate and reproducible
but are not stable to small changes in imaging or sample conditions, and the complex
theoretical foundations hamper their further extension. Therefore, the development of a
simple and convenient segmentation method is a pressing problem for us.

Deep learning [6] has achieved impressive performance in visual domains such as
autonomous driving [7,8] and healthcare [9,10], creating new opportunities for experts
to utilize images directly in their AI applications. Unlike traditional complex theoret-
ical methods, deep learning fits a large number of parameters through mimicking the
human learning process. It has high robustness and is easy to apply to material classifica-
tion and quantization processes, which has garnered significant attention. For example,
Cui et al. [11] proposed a deep learning method for additive manufacturing quality in-
spection with a high practical value. Additionally, the proposal of fully convolutional
neural networks (FCNs) has opened up new avenues for pixel-level segmentation [12–14].
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Ma et al. proposed a symmetric 3D information segmentation method based on Al–La
alloy micrographs that enables segmentation of high-resolution images. However, the
study used artificially (subjectively) generated labeled data to train the network, which
led to some errors. To address this challenge and achieve more accurate segmentation for
complex organizations, Shen et al. [13] proposed a deep learning method based on EBSD
data to classify and quantify stainless steels and QP steels using only conventional SEM
images, while achieving robustness of segmentation effects for different forming qualities
and magnifications. S. Breumier et al. [14] developed a U-Net model for the segmentation
of ferrite, bainite, and martensite using EBSD data. The overall accuracy of the model
was 92%, and the accuracy of each sample varied between 86.6% and 95% based on its
microstructure complexity.

While model accuracy has steadily improved, most semantic segmentation algorithms
still lack a systematic theoretical study due to the difficulty of collecting steel material image
datasets and the lack of transparency in convolutional neural network (CNN) decision
making [15]. Additionally, training strategies, such as transfer learning, data preprocessing,
and loss function optimization, play an important role. In recent years, numerous improve-
ments have been proposed, but they are often limited to a specific method for a specific
dataset and lack a generalizable model guide. Therefore, establishing a comprehensive
model training system to fully exploit the potential of existing deep learning segmentation
models is an urgent need.

In this paper, we investigate methodological techniques to improve the segmentation
performance of deep learning models for steel material image datasets without increasing
model size or computational complexity. We consider common training techniques such
as transfer learning and data augmentation. Transfer learning improves a target learner’s
performance in a current domain through transferring knowledge from different but related
domains [16]. It utilizes previously collected data to its full potential. Data augmentation
prevents model overfitting through simulating possible changes in real data, extracting
more generalized information and features from small datasets [17]. We also investigate
reducing the input image size to improve the model’s receptive field, given the importance
of microstructures’ multi-scale nature for model training. We evaluate our techniques on
multiple network architectures and datasets to provide effective training guidelines for
building models with optimal segmentation accuracy.

The remainder of this paper is organized as follows: Section 2 presents the datasets
and methods used in the study. Section 3 presents the segmentation results of the baseline
training model with and without training techniques. Section 4 discusses the process of
building an optimal model for a given dataset, and compares the quantization results of the
optimal models with traditional methods to demonstrate the superiority of deep learning.

2. Materials and Methods

The overall framework is shown in Figure 1. First, we will establish a baseline model
training procedure. Then, we will investigate the impact of common training techniques on
segmentation accuracy to prepare for constructing the most accurate model and microstruc-
ture quantization. This section describes the dataset construction process and the specific
implementation of the baseline model and training techniques.

2.1. Dataset Description

To develop training guidelines for the segmentation of different material organiza-
tional forms in SEM images of steel, we collected 90 images of Fe-0.2C-1.35Mn-2.5Cr-1.5Si
alloy subjected to different heat treatments. The data were divided into two parts: 64 high-
magnification (20,000×) SEM images of carbide precipitation and 26 ordinary (5000×) SEM
images of ferrite, martensite, and residual carbides. Both parts underwent austenitizing,
tempering, and annealing, but the former had a shorter tempering time. To account for
the differences in quantity and texture between the two parts, we separated them into
two datasets: the carbide dataset with categories of carbide and matrix, and the ferrite
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dataset with categories of ferrite and matrix (martensite and residual carbide). A materials
science expert labeled the two datasets, as shown in Figure 2.
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Figure 2. Typical images: (a) the carbide dataset image; (c) the ferrite dataset image; (b) labeled image
from (a) input image; (d) labeled image from (c) input image.

For the carbide dataset, the training set consists of 59 images of 2048 × 1536 pixels as
input and 59 labeled images as output. The test set consists of the remaining five images.
For the ferrite dataset, the training set consists of 24 images of 2560 × 1756 pixels as input
and 24 labeled images as output. The test set consists of one image from the same process
as the training set and one image from a different process.

We did not augment the datasets offline but used online augmentation. See Section 2.2
for more details.
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2.2. Baseline Training Procedure

In this study, we trained two widely used semantic segmentation architectures, PSP-
Net [18] and DeepLabV3Plus [19], with ResNet18 as the encoder using PyTorch [20] and
the Segmentation Model Library (MMSegmentation) [21]. We used Focal Loss [22] with
alpha and gamma of 0.25 and 2, respectively, as the loss function because it has a stable
gradient, is more robust for unbalanced categories, and resembles the true goal of maximiz-
ing intersection over union (IoU) [23]. We used the standard SGD optimizer with an initial
learning rate of 1 × 10−2 and a batch size of eight. To accelerate convergence and avoid
oscillating around the optimal point late in training, we used a polynomial decay strategy
for the learning rate. After 8000 training generations, the learning rate decayed to 0, and
the model stopped training.

In the data loading stage, we first resized the input images to a specified size and
decoded them into 32-bit floating-point raw pixel values in the range [0, 255]. Then, we
randomly cropped each image into a square region with a width and height of 256 pixels,
ensuring that no single category occupied more than 75% of the cropped region. Finally,
we normalized all regions through subtracting 123.675, 116.28, and 103.53, respectively, and
dividing by 58.395, 57.12, and 57.375, respectively.

In the validation stage, we used the sliding window model to perform inference.
Specifically, we slid a fixed window from left to right and from top to bottom over the
test image. At each slide, we normalized the current window in the same way as during
training, then used the segmentation model to perform inference. We repeated this process
until we had covered the entire image. Finally, we stitched the inference results together.
To mitigate edge cracking, we set the sliding window size to 256 × 256 and the moving
step size to 128 × 128. To further improve segmentation accuracy, we adopted the “test
set data augmentation” method, in which we scaled the test image to different multiples
and performed inference on each scaled image. We then averaged the output results to
obtain the final prediction. We trained and validated the model on a system equipped with
an Intel(R) Xeon(R) Gold 6271 CPU (16 cores) and an NVIDIA Tesla P100 (16 GB video
memory) graphics card.

2.3. Training Tricks
2.3.1. Transfer Learning

Larger datasets generally produce better deep learning models [24,25]. However,
materials scientists face the challenge of small sample problems, as collecting and labeling
data typically requires manual effort, and factories and laboratories only have specific
steel grades.

Transfer learning is a powerful machine learning technique that enables knowledge
sharing between related domains [26–28]. However, for the materials domain, there is
still no clear standard for selecting and transferring which dataset due to the lack of large,
high-quality labeled datasets. Typically, we pre-train on the ImageNet dataset [29]. Given
the texture difference between natural and microscopic image data, we only transfer the
encoder of the segmentation model, i.e., for the baseline training model, we load the model
parameters provided by the model library [21] for the encoder part (ResNet18) and do not
make any changes to other parts.

2.3.2. Strong Data Augmentation

Data augmentation, a popular approach for solving data scarcity, involves expanding
the size of a dataset using heuristics or synthetic samples [30]. It can be divided into
two main categories: transformations, which involve applying multiple operations to
existing data, such as cutout [31] and random erasing [32], and generative models, which
involve using a generated model to generate new data, such as variational autoencoders
(VAEs) [33].

The original data augmentation method only includes random cropping. We introduce
several additional data augmentation methods based on this, such as random flip with
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0.5 probability; 90 degrees clockwise rotation with 0.5 probability; random cutout with
0.5 probability, which masks five areas of 5 × 5 pixels, with masked areas set to zero; and
finally, applying photometric distortion (random brightness and random contrast). We
refer to the original augmentation method as weak data augmentation. We refer to this
new augmentation as strong data augmentation.

2.3.3. Enlarging the Receptive Field

The receptive field of a CNN model is the size of the region in the input image that
is mapped to a pixel in the feature map output by a given layer. The larger the receptive
field, the greater the model’s scope of perception of the image’s context, which can lead
to a better understanding of the semantic associations between pixels. For example, in
the semantic segmentation of images containing multiple objects of different categories, a
larger receptive field can provide the model with a wider range of contextual information,
helping it to make more accurate classification decisions. This is especially important in the
materials domain, where observations at different scales have different physical meanings,
such as phases and grain boundaries. A too-small receptive field can split the original
features into small fragments and lose the original physical meaning, which can affect the
segmentation accuracy. Therefore, increasing the receptive field is a necessary operation for
semantic segmentation in the materials domain. However, common operations to increase
the receptive field, such as pooling and increasing the number of layers, can increase the
computational complexity of the model and lose a lot of favorable information.

To increase the receptive field of a CNN model without modifying its architecture
or losing favorable information, we propose a simple and effective approach: scaling the
original image size to 0.5 times during image loading.

2.4. Evaluation Indicators and Quantitative Analysis Process

To evaluate the performance of our semantic segmentation models, we will use two
standard metrics: the intersection over union (IoU) for a specific microstructure type
(carbide or ferrite) and the mean intersection over union (mIoU) for all microstructure
types. These metrics are defined in Equations (1) and (2).

IoU =
TP

TP + FP + FN
(1)

mIoU =
1
k

k−1

∑
i=0

IoUi (2)

Here, k represents the number of categories (which is two in this study). FP denotes
false positives (samples predicted to be positive but are actually negative), FN denotes
false negatives (samples predicted to be negative but are actually positive), TP denotes true
positives (correctly categorized positive samples), and TN denotes true negatives (correctly
categorized negative samples).

An automatic quantitative analysis of microstructure is established using the OpenCV
software package (version 4.6.0.) based on the existing trained segmentation model. The
quantitative process is as follows:

The target SEM image is directly fed into the trained segmentation model for pixel-
level classification of organizations using the window sliding mode, eliminating the need
to cut sub-images beforehand. The morphological information of the organizations, such
as average carbide radius and number of carbides, can be quickly calculated using the
OpenCV method based on the obtained output image.

3. Results
3.1. Baseline Training

We evaluated the validation results of the aforementioned baseline models on both
datasets. Table 1 shows that DeepLabV3Plus and PSPNet achieved mIoU values of 80.38%
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and 81.14% on the carbide dataset, respectively, and 80.35% and 80.32% on the ferrite
dataset, respectively. These mIoU values are higher than 80%, suggesting that both models
have high segmentation accuracy. It should be noted here that unlike Shen et al. [13], our
evaluations are performed on the original large-size images, rather than the small images
after slicing.

Table 1. Validation accuracies of different models trained with our “tricks”. The number in the table
represents the size of the mIoU value (%).

Dataset Method Baseline Transfer Learning Gain Strong Data
Augmentation Gain

Enlarging the
Receptive Field Gain

Carbide
DeepLabV3Plus 80.38 +0.64 +1.35 −0.37

PSPNet 81.14 −1.06 +1.19 +0.15

Ferrite
DeepLabV3Plus 80.35 +0.75 −0.79 +0.87

PSPNet 80.32 +0.68 +0.25 +0.24
Average gain +0.25 +0.5 +0.22

Figures 3b, 4b, 5b and 6b show the validation results of the baseline training mod-
els. White pixels indicate true positive predictions, black pixels indicate true negative
predictions, green pixels indicate false positive predictions, and pink pixels indicate false
negative predictions. As shown in Figures 3a, 4a, 5a and 6a, these raw input images contain
ambiguous boundaries and numerous interfering regions, such as bright boundaries in
the matrix of the carbide dataset. Therefore, it is difficult to perform fast and accurate
segmentation. However, the semantic segmentation models solve this problem, and most of
the carbides and ferrites are recognized. A small number of matrix regions are misidentified
as positive samples, such as the portion in the orange box. This is understandable, given
the high similarity in texture and brightness between it and normal carbides, and the fact
that the baseline training models lack a priori knowledge of the materials science.
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3.2. Baseline Training Procedure with Training Trick

Table 1 shows the evaluation results of the baseline training models with training
tricks for the two datasets. For the carbide dataset, the DeepLabV3Plus model achieves a
higher mIoU with transfer learning and strong data augmentation than the baseline model,
but a lower mIoU with smaller input images. These results suggest that transfer learning
and strong data augmentation are beneficial training techniques for the DeepLabV3Plus
model on this dataset. Similarly, the PSPNet model benefits from enlarging the receptive
field and strong data augmentation. For the ferrite dataset, the DeepLabV3Plus model
benefits from transfer learning and enlarging the receptive field, while the PSPNet model
benefits from transfer learning, strong data augmentation, and enlarging the receptive field.

Figures 3c–e and 4c–e show the segmentation results of the DeepLabV3Plus and
PSPNet models for the carbide dataset with the addition of a training technique. These
figures reveal that the misclassified regions, especially the false positive regions, become
smaller with the addition of a beneficial technique, demonstrating the improved ability
of the baseline models to recognize other bright interfaces in the matrix. In contrast,
after adding an unfavorable technique, the misclassified regions become larger, which is
consistent with the trend of mIoU. Figures 5c–e and 6c–e show the segmentation results
of the models on the ferrite dataset, and the transformation is not obvious after adding
training techniques.

Based on the above results, transfer learning, strong data augmentation, and enlarging the
receptive field have improved model prediction accuracy in most cases, indicating that these
techniques can play a positive role without significantly increasing computational complexity.

4. Discussion
4.1. Building the Optimal Segmentation Model

Constructing a highly accurate model for subsequent quantization is a challenge we
must address. Based on the findings in Section 4.2, we will gradually stack beneficial
training techniques onto the baseline model to explore the possibility of constructing a
model with the highest mIoU value.
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Tables 2–5 show that gradually stacking beneficial training techniques onto the base-
line training models gradually increases the IoU and mIoU values. Specifically, the mIoU
values of DeepLabV3Plus and PSPNet increased by 2.43% and 1.36%, respectively, on the
carbide dataset, and by 1.91% and 1.45%, respectively, on the ferrite dataset. The highest
model accuracy was achieved when all beneficial training techniques were superimposed.
This suggests that to train an optimal model, we can simply explore the effect of each
training technique on the baseline model and superimpose the beneficial training tech-
niques. Therefore, if we set the number of training techniques to n, we only need to train
n + 2 models.

Table 2. Validation accuracy of DeepLabV3Plus on the carbide dataset through stacking beneficial training
techniques. The IoU values of carbide and ferrite are expressed as IoUcarbide and IoUferrite, respectively.

Method Transfer Learning Strong Data
Augmentation

Enlarging the
Receptive Field IoUcarbide% mIoU%

DeepLabV3Plus 63.65 80.38
DeepLabV3Plus X 64.7 81.02
DeepLabV3Plus X X 67.88 82.81

A check mark indicates that the corresponding training technique has been applied.

Table 3. Validation accuracy of PSPNet on the carbide dataset through stacking beneficial
training techniques.

Method Transfer Learning Strong Data
Augmentation

Enlarging the
Receptive Field IoUcarbide% mIoU%

PSPNet 64.95 81.14
PSPNet X 67.11 82.33
PSPNet X X 67.52 82.5

A check mark indicates that the corresponding training technique has been applied.

Table 4. Validation accuracy of DeepLabV3Plus on the ferrite dataset through stacking beneficial
training techniques.

Method Transfer Learning Strong Data
Augmentation

Enlarging the
Receptive Field IoUferrite% mIoU%

DeepLabV3Plus 71.19 80.35
DeepLabV3Plus X 72.32 81.1
DeepLabV3Plus X X 73.75 82.26

A check mark indicates that the corresponding training technique has been applied.

Table 5. Validation accuracy of PSPNet on the ferrite dataset through stacking beneficial
training techniques.

Method Transfer Learning Strong Data
Augmentation

Enlarging the
Receptive Field IoUferrite% mIoU%

PSPNet 70.83 80.32
PSPNet X 72.06 81
PSPNet X X 72.28 81.09
PSPNet X X X 73.1 81.77

A check mark indicates that the corresponding training technique has been applied.

4.2. Comparison with the Traditional Binary Segmentation Method

We used segmentation models to quantify the carbides in the test set. As shown in
Figure 7, the established models (DeepLabV3Plus and PSPNet) with the highest mIoU
values outperformed other models in terms of quantitative accuracy. The established
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PSPNet model achieved the lowest error with strong data augmentation and receptive field
enlargement. The predicted total carbide number and average carbide radius differed from
the actual values by 29 and 5.39 nm, respectively.
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To demonstrate the advantages of the deep learning method, we compared it to the
traditional binary method. A representative image is shown in Figure 8a, and the ground
truth labeling result is shown in Figure 8b. Using the OpenCV library, we calculated
the actual carbide number (44) and average carbide radius (91.01 nm). According to the
quantization of the above PSPNet model, as shown in Figure 8c, we get the predicted values
of 51 and 79.27 nm, respectively. The predicted and actual values are highly consistent.
Figure 8f,g shows the trends of the carbide number and average carbide radius with
changes in the threshold. Figure 8d,e shows the binary plots corresponding to the carbide
number closest to the real value and the average carbide radius closest to the real value,
respectively. As shown in the figures, the relationship between the threshold and the
quantitative results is essentially linear, and the optimal binarization accuracy is similar
to that of the deep learning model. However, the thresholds used in Figure 8d,e are
different and have a significant difference. Additionally, the binarized images have a large
amount of noise, and the matrix or the carbide has been basically connected, losing the
morphological information. The deep learning method completely avoids these problems
and obtains the optimal quantification results through automatic model calculation without
any human input.
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Figure 8. Comparison of the method in this study and the traditional binary image method:
(a) selected SEM image; (b) labeled image; (c) deep learning segmentation image; (d,e) binary plots
of the quantitative results closest to the actual carbide number and average carbide radius, re-
spectively; (f,g) graphs of the variation of the carbide number and average carbide radius as the
threshold changes.

5. Conclusions

In this work, we trained dozens of semantic segmentation models on the granular
carbide dataset and the blocky ferrite dataset to study the impact of common training tech-
niques on model accuracy. This study provides systematic guidance for the segmentation
and quantitative analysis of steel material datasets. Our main findings are:

1. Transfer learning, strong data augmentation, and enlarging the receptive field can
improve segmentation accuracy in most cases, improve the model’s ability to mi-
crostructure segmentation, and reduce the area of misclassified regions.

2. Stacking multiple beneficial training techniques that improve segmentation accuracy
leads to more accurate semantic segmentation models. Evaluation results demon-
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strate a 1–2.5% increase in mIoU for DeepLabV3Plus and PSPNet models across
both datasets.

3. To quantify the average radius and total number of the carbides of the test set, we
applied optimal segmentation models. The established PSPNet model with strong
data augmentation and receptive field enlargement achieved predicted deviations of
5.39 nm and 29 from the actual values, respectively. These results agree well with
the ground truth. Additionally, the PSPNet model does not require manual input
and generates more reasonable and accurate segmented images than the traditional
binarization method.
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