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Abstract: To address the challenge of intelligently controlling air volume in regions affected by the
frequent fluctuations in underground ventilation networks, a remote intelligent air regulation method
based on machine learning was presented. This method encompasses three core components: local
fan frequency conversion regulation, associated branch air resistance regulation, and a comprehensive
integration of both. Leveraging foundational mine ventilation theory, the principles behind branch
sensitivity air regulation were dissected. By applying these principles, the key performance indicators
crucial for the regulation of air volume within the ventilation system were identified. Subsequently,
an intelligent model for regional air volume control was constructed. To validate the approach,
an experimental platform for intelligent air volume control was established, guided by geometric,
dynamic, and kinematic similarity criteria. Then, the experimental methodologies for simulating
various ventilation scenarios were discussed, the data acquisition techniques were introduced, and
the obtained results were analyzed. Employing machine learning techniques, we utilized five distinct
algorithms to predict the operational parameters of targeted air volume ventilation equipment. It
enabled precise and efficient control of air volume within the region. The results indicated that the
least squares support vector machine (LS-SVM) stood out by delivering high-precision predictions
of target air volume ventilation equipment parameters, all while maintaining a relatively short
calculation time. This swift generation of feedback data and corresponding air volume control
strategies will contribute to the precise management of air volume in the area. This work served as a
valuable theoretical and practical guide for intelligent mining ventilation control.

Keywords: mining ventilation; air volume control; regulation model; machine learning

1. Introduction

Effective control of air volume within a mine’s ventilation network is a critical factor
in ensuring the safe, stable, and economically efficient operation of the entire ventilation
system. The primary objective is to modify the distribution of air volume within the
network while ensuring that the required air volume at each specific location is met.
This is achieved through the most economically viable adjustments, ensuring that the
air volume at all underground points aligns with safety production requirements, with
a focus on the following principles: technological feasibility, reliability, and economic
optimization [1–3]. Furthermore, an exemplary air volume control scheme should strive for
low total energy consumption in the primary fan devices, high network efficiency, minimal
ventilation facility counts, reduced branch resistance adjustments, and logical adjustment
positioning [4,5].

Regional air volume adjustment primarily involves the redistribution of air volume
within a specific wing or mining area within the underground mine. This redistribution is
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carefully executed in a manner that ensures minimal or negligible changes in the overall
air volume within the entire region. The key objective of regional air volume adjustment
is to optimize the use of abundant air volume within the area, effectively meeting the
air volume requirements of individual air sites while ensuring that other areas of the
mine remain unaffected by these adjustments. This strategic utilization of localized air
volume serves to enhance efficiency and save energy [6–11]. Consequently, the study of air
volume regulation within a specific area is imperative, as it guarantees that the air volume
demands within that area are satisfied while concurrently achieving energy efficiency and
economic optimization. This holds significant importance for the effective management
and operational efficiency of the mine’s ventilation system.

In the study of regional air volume regulation, the main emphasis is placed on modify-
ing the opening and closing angles of air doors within the designated area or adjusting the
operating frequency of local fans. This procedure encompasses the utilization of diverse
methodologies, such as graph theory, nonlinear model solving techniques, and heuristic
algorithms, to formulate the most efficient regulation strategy for the ventilation network.
The overarching goal is to bolster the dependability and cost-efficiency of air volume
regulation. Graph theory was initially incorporated into the optimization of air volume
regulation within ventilation networks. Leveraging the distinctive features of ventilation
network structures and airflow parameters, a range of methodologies has been developed
to address the optimization challenge related to air volume regulation within ventilation
networks. These methodologies encompass the loop method [12], path method [13], double
tree method [14], and so on. In the context of the nonlinear model solution method, Johnson,
T [15] developed a mathematical model aimed at optimizing the air distribution network
with the objective of minimizing ventilation costs. Then, a network planning algorithm
to facilitate the solution process was introduced, and the corresponding air distribution
scheme was ultimately determined. Huang Yuanping et al. [16] studied the known condi-
tions, unknown conditions, and related constraints of air volume regulation in ventilation
network with the energy consumption of fans and regulating facilities in ventilation system
as the optimization objective. After establishing the objective optimization function, the
constrained variable metric method was introduced to solve the problem, and then the
corresponding software program was designed and developed. Cui Chuanbo et al. [17]
established a schedulable model for air volume adjustment and used the ventilation net-
work to solve the range and adjustment amount of the adjustable branch. Huang Guangqiu
et al. [18] analyzed the flow relationship between the branches of the ventilation system,
established an analysis model for the change in air volume between the underground
branches by installing the air window, and gave the sensitivity coefficient of air volume
response and verified it.

Currently, numerous studies are underway that explore the application of heuristic
algorithms in regional air volume regulation [19,20]. The genetic algorithm (GA) [21,22],
particle swarm optimization (PSO) [23], simulated annealing algorithm (SAA) [24], grey
wolf optimization with differential evolution (DE-GWO) [25], and other intelligent optimiza-
tion techniques have been introduced into the research of mine air volume optimization
regulation. Based on a greedy algorithm (GA) and neighborhood search (NS), Si Junhong
et al. [26,27] designed and implemented the corresponding software function to optimize
the air volume in a complex ventilation network. Yang Xu et al. [28] developed a linkage
control system for on-demand air regulation of multiple coal mining faces in view of the air
volume demand of multiple underground air use locations. Wang Kai and Pei Xiaodong
et al. [29,30] established a mathematical model of branch air resistance and fan frequency
conversion air volume regulation and proposed a method for determining the air volume
on-demand regulation. Based on cellular automata (CA), the optimal adjustment branch
is calculated, and the branch adjustment air resistance value is solved by the network;
the experimental model is then established according to the typical ventilation system for
verification. Ren Zihui et al. [31] proposed an intelligent control method of air volume
in mine ventilation networks based on the improved beetle antennae search (BAS). The
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sensitivity and branch dominance theory were introduced to determine the branch set of
air volume regulation and the adjustable range of air resistance. The beetle antennae search
(BAS) was used to solve the optimal air regulation parameters, and then the corresponding
air regulation facilities were controlled to realize air volume regulation. Cheng Xiaozhi
et al. [32] used a Bayesian network (BN) algorithm to diagnose the health status of local
ventilators and sensor equipment. The rough set (RS) and genetic algorithm (GA) were
used to extract the characteristic samples and precursor information of the normal air
supply and the fault state of the local ventilation. Based on a support vector machine
(SVM), the decision rules of the local ventilation fault were established, and the research
and early warning model for a local ventilation anomaly was established. The research and
early warning for a local ventilation state and development trend were realized.

In summary, the aforementioned research has significantly advanced the optimal
regulation of air volume. While heuristic algorithms have found widespread application
in air volume optimization and regulation, there remain challenges in achieving real-time
processing and intelligent control of actual air volume fluctuations. The majority of existing
research primarily centers on the study of the overall air network, with comparatively fewer
investigations into regional air volume regulation. Therefore, there is an urgent need to
address how to manage changing air volume parameters and implement automatic control
of branch air demand within regions affected by frequent ventilation network fluctuations.
In this paper, a control method for handling air volume fluctuations within a specific
area is proposed, and an intelligent control model for regional air volume is established,
which is validated through experiments. In this study, the real-time data of the associated
branches and the air sites in different control states under normal ventilation conditions
were collected. Machine learning techniques were applied to validate and analyze the
regional air volume control model, which provided critical theoretical and practical insights
for the automation of ventilation system control.

The rest of the paper is organized as follows: Section 1 is the introduction. Section 2
conducted an in-depth analysis of the sensitivity air regulation principle, grounded in
the basic theory of mine ventilation. This section further scrutinizes key indicators for air
volume regulation, leading to the formulation of the intelligent control model for regional
air volume. Section 3 provided an overview of the experimental platform and the methods
employed to experimentally verify the proposed model. Moving to Section 4, five distinct
algorithms were employed to predict the operating parameters of the target air volume
ventilation facilities and equipment. Section 5 is dedicated to the discussion of findings,
and Section 6 presents the overall conclusion of the study.

2. Theory and Model

In a mine ventilation system, the stability of airflow stands as the critical determinant
of ventilation quality and safety. This challenge is not confined to diagonal air paths alone
but is a common concern in various ventilation routes. Due to interdependencies among
branches within the air network, changes in the aerodynamic characteristics of one branch,
such as alterations in air resistance and air speed, can impact the air volume distribution
across other branches. Modifications in the air resistance or resistance of a single branch
may result in shifts in the distribution of air volume, potentially influencing the ventilation
effectiveness of other branches. This intricate interaction can lead to instability in the venti-
lation system, subsequently compromising ventilation quality and safety. Consequently,
comprehending and effectively managing airflow stability within the ventilation system is
of paramount importance to ensure the normal operation and safety of mining activities.

2.1. Mine Ventilation Theory

Numerous factors influence the stability of a ventilation network. Constraints related
to the aerodynamic characteristics among network branches often exhibit intricate and
nonlinear relationships that resist straightforward mathematical expressions. Therefore,
by leveraging principles, like the ventilation system node, air volume balance, and the
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loop air pressure balance law, we can analyze the constraints related to aerodynamic
characteristics within the ventilation network. This analytical approach offers a theoretical
solution, helping to eliminate the influence of human or empirical factors and addressing
the network’s stability more effectively. The law of node air volume balance and loop air
pressure balance [33] is shown as follows:

N
∑

j=1
aijQj = 0

fk =
n
∑

j=1
bkj[Rj

∣∣Qj
∣∣Qj − Pk − Fk(Qk)] = 0

(1)

where aij represents the elements of the incidence matrix, meaning that node i is positively
associated with branch j when aij = 1, node i is negatively associated with branch j when
aij = −1, and node i is not associated with branch j when aij = 0. Qj represents the air
volume of branch j, m3/s. fk represents the algebraic sum of the air pressure of loop k, Pa.
bkj represents the independent loop matrix elements. Rj represents the air resistance of
branch j, kg/m7. Pk represents the algebraic sum of the natural air pressure of loop k, Pa.
Fk(Qk) represents the algebraic sum of the fan air pressure of loop k, Pa. i = 1, 2, . . ., m,
j = 1, 2, . . ., n, k = 1, 2, . . ., l.

2.2. Principle of Regulating Air Principles of Branch-Sensitive

The core problem addressed by the branch regulation sensitivity model is how the air
volume of other branches in the ventilation system should respond to changes in the friction
air resistance of one branch. Let m represent the change in frictional air resistance and let the
change in frictional air resistance be ∆Rm. Due to the change in the frictional air resistance
of branch m, its ventilation resistance also changes accordingly. In order to maintain the
resistance balance of the ventilation system, the air volume of each branch must be adjusted
accordingly, with the change amount set to ∆Qi for each branch. Obviously, regardless of
any changes that occur, the ventilation network must adhere to the law of node air volume
balance, which can be expressed as follows:

∑ N
j=1aij(QJ + Qj) = 0, (i = 1, 2, · · · , J − 1) (2)

Combining Equations (1) and (2) allows us to obtain the following:

∑ N
j=1aij∆Qj = 0, (i = 1, 2, · · · , J − 1) (3)

According to the law of air pressure balance, an equation for air pressure balance is
established. It can be expressed as follows:

bim(Rm + ∆Rm)(Qm + ∆Qm)|Qm + ∆Qm|+
∑ N

j=1,j 6=mbij
[
Rj(Qj + ∆Qj)

∣∣Qj + ∆Qj
∣∣− Pj − Fj(Qj + ∆Qj)

]
= 0, (i = 1, 2, · · · , m)

(4)

Since Equation (3) determines J − 1 independent equations and Equation (4) also
determines M = N − J + 1 independent equations, the set of N equations formed by
combining Equations (3) and (4) can fully determine the variation in air volume for N
branches. Equations (5) and (6) are as follows:

fi(∆Q1, · · ·∆QN) = bim(Rm + ∆Rm)(Qm + ∆Qm)|Qm + ∆Qm|+
∑ N

j=1,j 6=mbij
[
Rj(Qj + ∆Qj)

∣∣Qj + ∆Qj
∣∣− Pj − Fj(Qj + ∆Qj)

]
= 0, (i = 1, 2, · · · , m)

(5)

fM+1(∆Q1, · · ·∆QN) = ∑ N
j=1aij∆Q

j
, (i = 1, 2, · · · , J − 1) (6)
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The problem can be solved using the following recursive algorithm:∆Q(k+1) = ∆Q(k) − Bk f (∆Q(k))

Bk+1 = Bk + (pk − Bkqk)
pT

k Bk
pT

k Bk pk

(k = 0, 1, 2, · · · ) (7)

where ∆Q(k) =
[
∆Q(k)

1 , · · · , ∆Q(k)
N

]T
; f (∆Q(k)) =

[
f1(∆Q(k)

1 ), · · · , fN(∆Q(k)
N )
]T

; Bk = HkT−1
k ;

Hk = [pk−1, pk−2, · · · , pk−N ]; Tk = [qk−1, qk−2, · · · , qk−N ]; pk = ∆Q(k+1) − ∆Q(k); qk = f (∆Q(k+1))− f (∆Q(k));

When the air resistance of branch m changes, the air volume of branch j also changes.
This relationship can be expressed as follows:

ε j =
∆Qj/Qj

∆Rm/Rm
(8)

where ε j represents the sensitivity index of the change in the air volume of branch j to
the change in air resistance of branch m. There are three possibilities for this sensitivity
index, namely:

a. When ε j > 0, there is a positive sensitivity index. With the increase in air resistance in
branch m, the air volume of the affected branch also increases. The sensitivity index
will not cause the airflow to reverse.

b. When ε j < 0, the inverse sensitivity index is undefined. As the air resistance change
in branch m increases, the air volume change in the affected branch also increases
inversely. The sensitivity index can cause the airflow to reverse.

c. When ε j = 0, there is no sensitivity index. With the change in air resistance in branch
m, the air volume of the affected branch remains constant.

For a specific ventilation network, the sensitivity index of the air volume change in
each branch to the air resistance change in other roadways is a fixed value. Calculating the
sensitivity index is of great value for selecting the position for adjusting the ventilation
network. By utilizing the sensitivity model for air resistance adjustment, the optimal
placement and quantity of air doors are determined. Subsequently, a remote intelligent
automatic adjustment wind door is installed in the designated location to facilitate the
regulation of air volume within the local ventilation network.

2.3. Construction of Regional Air Volume Control Model

The current condition of the ventilation network serves as the foundational reference
point for the subsequent air volume regulation. This state encompasses various airflow
parameters in each roadway, including air speed, air volume, temperature, humidity, and
more. Additionally, it accounts for the operational status of each ventilation facility and
fan, such as the positions of air doors, the angles of air doors, fan speeds, and so on. It
also encompasses other factors, like pressure differentials across air doors and local fan
pressure differentials.

2.3.1. Airflow Status Indicators

The airflow state in each roadway within the current air network, particularly the air
volume in each branch of the current air network, serves as the foundation for regulating
the airflow within the air network. The distribution of air volume in all branches of
the ventilation network corresponds to the distribution of resistance in the ventilation
network. When the resistance distribution is known, the air volume of all branches in
the ventilation network can be easily obtained using the method of ventilation network
calculation. However, it is unrealistic to monitor the air volume or air resistance of all
branches in the air network in practical applications. Therefore, when adjusting the local
ventilation air volume, technical personnel primarily focus on the total air volume of the
current network and the air volume at the main air use location. They then use their



Processes 2023, 11, 3296 6 of 17

experience to redistribute the air volume by adjusting the ventilation facilities. The total
air volume of the air network and the air volume of the main air-using locations are
the fundamental indicators of the current air volume adjustment. They also indicate the
adjustability of the ventilation network.

2.3.2. Facilities and Equipment Status Indicators

On the one hand, the state of facilities and equipment refers to the operational state
of ventilation facilities and equipment, including the opening and closing of air doors,
the angle of air doors, the speed of fans, and so on. The redistribution of air volume
in the ventilation network is facilitated by these facilities and equipment. The current
working state determines the distribution of air volume in each branch of the current
ventilation network. In order to redistribute the air volume in the ventilation network and
meet the preset requirements, it is necessary to reset all or part of the ventilation facilities
and equipment.

In addition, the role of ventilation facilities and equipment in the existing ventilation
network, as well as their contribution to the distribution of air volume, can indicate the
significance of these facilities and equipment. This information serves as a crucial reference
for regulating air volume. In general, the greater the atmospheric pressure difference on
both sides of the ventilation facility, the more significant the facility’s role in the ventilation
system, and the stronger its impact on the distribution of current air volume. Here, the
difference in atmospheric pressure on both sides of the ventilation facility is used as another
indicator of the operational status of the ventilation facility. For local fans, the air pressure
of the fan can indicate the fan’s role in distributing air volume within the network and its
significance in the current network. Therefore, the air pressure of the local fan is selected as
another state indicator of the fan.

In summary, it is not realistic to fully grasp the air volume or air resistance of all
branches in the ventilation network when controlling the air volume of the actual ventilation
network [34]. According to the practices of engineering and technical personnel in adjusting
the air volume of the ventilation network, factors, such as the total air volume of the
network, the air volume of the air site, the opening and closing of air doors, the pressure
differentials on both sides, the angle of air doors, the operation frequency of fans, and the
fan pressure, can be considered as the basis for adjusting the air volume of the ventilation
network. Additionally, the use of machine learning methods can be explored for air volume
adjustment in the ventilation network. According to the above analysis of the air volume
control index, the machine learning method is used to predict the prediction control index.
Figure 1 shows the model for the intelligent adjustment of regional air volume.
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As shown in the Figure 1, the primary task in the intelligent adjustment of regional air
volume is to accurately monitor the indicators of facilities and equipment, as well as the
indicators of airflow status. Secondly, an intelligent air conditioning model is established
to determine the input and output parameters. The input indicators include the current
state parameters of the air network (total air volume of the network, air volume at each air
supply location, opening and closing status of each air door and pressure on both sides,
angle of each air door and pressure on both sides, operating frequency of each fan, and fan
pressure) and predicted target parameters (air supply volume after adjustment of each air
supply location). The output indicators are the angle of each air door and the operating
frequency of the local fan. Then, the air conditioning model calculates the abundant air
volume and adjustment range of each branch. It outputs the air door angle and local fan
frequency for the target air volume. Finally, the adjustment amount of the angle of air doors
and the local fan frequency are calculated to generate a scheme for controlling the regional
air volume.

3. Intelligent Control Experiment of Regional Air Volume

In order to simulate the fault scene of mine ventilation resistance and to collect data,
it is necessary to design a corresponding experimental model based on the actual mine
ventilation system. The experimental model should be built according to similarity criteria,
such as geometric similarity, dynamic similarity, and kinematic similarity.

3.1. Experimental Platform

The experimental platform simulates the regional ventilation in a mining area, which
consists of a transport alley, a return air roadway, uphill transport, uphill track, a mining
face, and a heading face, as shown in Figure 2. Four adjustable air doors and one explosion-
proof air door are installed in the utilization area of the model. These air doors are labeled
as AD-1, AD-2, AD-3, AD-4, and AD-5. By adjusting these air doors, the ventilation
mode of the working face can be converted to different modes, such as U-type ventilation,
U + L-type ventilation, and partial Y-type ventilation. Additionally, the air volume at each
location can be adjusted accordingly, as shown in Figure 3.

A high-precision and high-speed air pressure sensor is installed at each air door
position of the model, with a pressure accuracy of 2 Pa and a sampling rate of 50 Hz. The
main roadways and air vents are equipped with an average speed sensor, which is used
to monitor the airflow velocity in the branch of the roadway, in order to determine the
airflow volume of the roadway. The adjustable air doors can be controlled remotely through
electrical means or manually to achieve a 0~90-degree range of opening and closing. The
ventilation direction of the entire model utilizes extraction ventilation. The main fan is
controlled by a frequency converter, allowing the operating frequency to be adjusted within
the range of 0~50 Hz.
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As depicted in Figure 3, pressure difference sensors are positioned at each explosion-
proof air door location on the experimental platform, while air speed sensors are placed
at the mining face, heading face, and upcast shaft. The data acquisition system of the
experimental platform integrates a self-developed atmospheric pressure acquisition device
that interfaces with each high-precision sensor. A comprehensive setup comprising three
air speed sensors and five pressure difference sensors is implemented for the dynamic
monitoring of air volume in each branch and the pressure differential across each air door.
The IIC interface is used for data transmission between the acquisition device and the
sensor. The LAN communication is used between the acquisition device and the data
acquisition terminal computer, and the communication rate is up to 100 Mbps.

3.2. Experimental Method

According to the on-site airflow transmission characteristics, combined with the
regional air volume intelligent control model, in order to avoid the destruction of the exper-
imental system caused by the short circuit of the airflow and insufficient air volume during
the experiment, the similarity criterion is used to calculate the air speed threshold of the
coal mining face and the tunneling face in advance, and to determine the reasonable sensor
placement location. The fan frequency conversion air conditioning and the associated
branch air conditioning are used, respectively. The combination of the two methods is used
to study the variation law of the air volume of each branch in the area under the control
state. The predictive capability of the intelligent control model for regional air volume is
verified by comparing the target air volume at each air site under different control states.

Preparatory Work: Select a day with favorable weather conditions to conduct the
experiment. Ensure the experimental environment is stable to minimize the impact of
external factors on the experiment. Connect the calibrated experimental platform and
data acquisition instrument to the data acquisition cabinet and display the results on the
data acquisition software. The data acquisition software is connected to the database, the
experimental equipment is started for preheating, and the experiment begins once the data
is stable.

Experimental Method: Based on the characteristics of on-site airflow transmission and
air volume distribution, the experimental platform is equipped with air speed sensors and
air pressure sensors. The regional air volume control model is combined with the method
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of local fan frequency conversion regulation, associated branch regulation, and combined
regulation of the two. This allows for the collection of dynamic airflow parameter data
under different ventilation conditions by remotely adjusting the working parameters of
ventilation facilities and equipment. After each state, the airflow is allowed to stabilize. The
data is then recorded and uploaded to the database for one minute. This process collects
all state ventilation data, integrates and processes the experimental data, and forms air
volume intelligent control data samples. Some of the collected data are shown in Table 1.

Table 1. Real-time monitoring data samples.

SN AP-1/
(Pa)

AP-2/
(Pa)

AP-3/
(Pa)

AP-4/
(Pa)

AV-1/
(m/s)

AV-2/
(m/s)

AV-3/
(m/s)

AP-5/
(Pa)

LFF/
(Hz)

Op1/
(◦)

Op2/
(◦)

Op3/
(◦)

Op4/
(◦)

1 62.09 5.23 62.15 60.86 0.55 0.41 1.59 85.97 40.00 10.00 10.00 20.00 20.00
2 83.62 3.73 88.16 89.88 0.38 0.57 1.59 118.2 50.00 10.00 10.00 0.00 30.00
3 58.98 4.22 62.53 63.37 0.27 0.51 1.92 83.34 50.00 20.00 10.00 0.00 30.00
4 51.95 5.63 51.61 49.94 0.64 0.32 1.89 71.36 10.00 10.00 10.00 20.00 30.00
5 75.18 5.28 75.50 76.12 0.53 0.30 2.03 104.7 10.00 10.00 10.00 20.00 10.00
6 48.07 4.69 48.05 47.54 0.42 0.35 1.86 66.57 30.00 20.00 10.00 10.00 40.00
7 38.45 4.78 37.45 36.77 0.52 0.52 1.83 52.36 50.00 20.00 10.00 20.00 30.00
8 44.38 3.80 45.61 44.26 0.42 0.52 1.57 61.15 30.00 20.00 20.00 0.00 40.00
...

...
...

...
...

...
...

...
...

...
...

...
...

...
93 40.49 6.82 38.00 35.99 0.87 0.40 1.82 54.65 30.00 10.00 20.00 0.00 60.00

It should be noted that the air volume sensitivity of each air usage location and its
related branches is high under different conditions. Therefore, it is important to avoid the
short circuiting of airflow and insufficient air volume during the experiment. The collected
data should be screened to ensure that the air volume of the air site and the associated
branches is within the range of the air speed threshold, so as to ensure the accuracy and
practicability of the rich air volume control data in the region.

3.3. Experimental Result Analysis

In order to verify the feasibility of the intelligent control method of air volume under
different control states in the region, the curve is drawn based on the relationship between
the opening and closing angle of the key branch No. 4 air door and the change in air
volume and other air door pressure differences in different control states, and the supply
and demand characteristics of ventilation air volume under the control state are analyzed.
Figure 3 shows the characteristic curve of the opening and closing angle of the No. 4 air
door and the air volume and other air door pressure difference in different control states.

It can be seen from Figure 4 that the opening and closing angles of the different
control states of AD-4 have a significant effect on the air volume and other door pressure
differences at the air location when the other door angles remain unchanged. As the angle
of AD-4 increases from 10◦ to 60◦, the pressure difference between the inside and outside
of AD-1, AD-3, and AD-5 decreases, while the pressure difference between the inside and
outside of the AD-2 does not change significantly. At the same time, the air volume of
the coal mining face gradually increases, the air volume of the tunneling face gradually
decreases, and the total air volume in the area does not change much. It can be seen that the
opening and closing angle of the air door in the area greatly influences the distribution of
air volume in that area. It is necessary to collect data on ventilation parameters in different
control states through the air volume control experiment. According to the data collected
from the experiment, we are attempting to use machine learning techniques to redistribute
the air volume.
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4. Verification of Regional Air Volume Intelligent Control Model

By conducting air volume control experiments, a sample database is established, and
machine learning techniques are employed to predict air door angles and local fan frequen-
cies. To enhance the promptness and precision of air volume control, this study harnesses
various semi-supervised learning methods for regression prediction, including a BP neural
network (BP), a particle swarm optimization BP neural network (PSO-BP), a genetic algo-
rithm optimization BP neural network (GA-BP), an extreme learning machine (ELM), and
a least squares support vector machine (LS-SVM). The performance and accuracy of the
prediction models are comprehensively evaluated using metrics, such as the determination
coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean
relative error (MBE).

4.1. Training Parameter

Firstly, the establishment of a training sample set is the premise of model training.
Combined with the contents described in Section 2.3. Input indicators should include the
air volume of the mining face (AV-1), the air volume of the heading face (AV-2), the total air
volume of the ventilation network (AV-3), angle of AD-1 (Op1), internal and external air
pressure of AD-1 (AP-1), angle of AD-2 (Op2), internal and external air pressure of AD-2
(AP-2), angle of AD-3 (Op1), internal and external air pressure of AD-3 (AP-3), angle of
AD-4 (Op1), internal and external air pressure of AD-4 (AP-4), local fan frequency (LFF),
local fan air pressure (AP-5), target air volume of the mining face (AT-1), and the target air
volume of the heading face (AT-2). The output indicators are the prediction frequency of
local fan LFFT (Ot-1), the prediction angle of AD-1 (Ot-2), the prediction angle of AD-2
(Ot-3), the prediction angle of AD-3 (Ot-4), and the prediction angle of AD-4 (Ot-5).

In the prediction of regional air volume regulation using regression, it is necessary
to determine the optimal parameters for each prediction algorithm. After continuous
optimization and parameter adjustment, the optimal parameters of machine learning
methods, such as the BP neural network (BP), particle swarm optimization BP neural
network (PSO-BP), genetic algorithm optimized BP neural network (GA-BP), extreme
learning regression machine (ELM), and least squares support vector regression machine
(LS-SVM), are shown in Table 2.



Processes 2023, 11, 3296 11 of 17

Table 2. Optimal parameter settings of each algorithm.

Algorithms Parameters Optimal Parameters

BP

Hidden number 13
Epochs 10,000

Learning rate 0.0001
Training precision 0.00001

PSO-BP

Particle swarm size 10
Update number 1000
Learning factor [4.494]

Speed boundary [−1.0~1.0]
Range boundary [−1.0~1.0]

The remaining parameters are the same as BP

GA-BP

Genetic iterations 50
Population size 10

Crossover probability 2
Mutation probability 2 gen 3

The remaining parameters are the same as BP

ELM
Number of hidden neurons 50

Activation function Sigmoidal

LS-SVM
Gamma 50

Penalty factor 2
Kernel function RBF_kernel

4.2. Performance Evaluation

Through the parameter configuration of five distinct semi-supervised learning al-
gorithms, the regression prediction for each output of the proposed regional air volume
control model is conducted in this paper. In this paper, the coefficient of determination R2

is used to evaluate the performance of each algorithm. The coefficient of determination R2

is shown in Table 3. The coefficient of determination R2 is calculated as follows:

R2 = 1−
n

∑
i=1

(yi −
∧
yi)

2

/
n

∑
i=1

(yi −
−
y i)

2

(9)

where yi represents the true value,
∧
yi represents the predicted value, and

−
y i represents the

average value, i ∈ [1, n].
In the field of machine learning, error comparison analysis is a crucial step in assessing

the performance of different models or algorithms. In this paper, three commonly used
error indicators, namely root mean square error (RMSE), mean absolute error (MAE), and
mean bias error (MBE), are used to compare and analyze the errors of the five regression
prediction algorithms.

From Figure 5, it becomes evident that the determination coefficient R2 for various
algorithms spans within specific ranges for each output aspect, ranging from −0.1629 to
1 for Ot-1, −0.2016 to 1 for Ot-2, −0.2094 to 0.992 for Ot-3, −0.5892 to 0.982 for Ot-4, and
−0.3437 to 0.988 for Ot-5. Comparing the R2 determination coefficients across different
algorithms, it is apparent that the LS-SVM yields the highest R2 values, with an average of
0.9924, followed by ELM with an average of 0.5859. In contrast, the performance of the BP
algorithm is the least satisfactory. Even with the optimization efforts applied to the PSO-BP
and GA-BP algorithms, there is only a marginal improvement in model performance, which
remains subpar.

When comparing the root mean square error (RMSE), mean absolute error (MAE),
and mean bias error (MBE) results for each output, it is evident that the LS-SVM model
demonstrates the most accurate predictive performance. The RMSE, MAE, and MBE values
for LS-SVM are significantly lower than those of the other four algorithms. Within each
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algorithm, the largest error discrepancy is observed in Ot-4, followed by Ot-3. This suggests
that Ot-3 and Ot-4 are the most responsive to regional air volume regulation. In other
words, regulating Ot-3 and Ot-4 is of paramount importance in meeting the air volume
requirements at the air usage locations.

Table 3. Model evaluation and error analysis of each semi-supervised learning algorithm.

Algorithms Evaluation
Performance Evaluation of Algorithms

Time
Ot-1 Ot-2 Ot-3 Ot-4 Ot-5

BP
R2 −0.1629 −0.0436 −0.2094 −0.58923 −0.3437

25 sRMSE 5.3366 5.0846 11.1149 18.1934 0.3131
MAE 4.44 4.4497 8.8026 14.8726 0.2399
MBE −1.2493 −0.9857 3.0692 2.8352 −0.0868

PSO-BP
R2 −0.0678 −0.2016 0.0392 −0.1575 −0.0128

281 sRMSE 4.8136 5.6333 12.8574 14.9195 0.3789
MAE 4.1205 4.4003 8.4777 12.3023 0.2358
MBE −0.2128 0.2124 1.493 1.366 −0.0091

GA-BP
R2 0.0049 −0.0999 −0.0161 −0.1149 −0.1363

18 sRMSE 4.9364 5.2066 10.2332 15.4052 0.3039
MAE 4.461 4.3043 8.6077 12.5021 0.2508
MBE 0.0125 −1.9356 −0.3678 0.9872 0.06063

ELM
R2 0.6212 0.5791 0.6467 0.5223 0.6252

5 sRMSE 3.072 3.2356 6.1457 9.9177 0.1942
MAE 2.5109 2.5464 4.8736 7.855 0.1571
MBE 0.5568 0.3968 1.8956 0.3245 0.1336

LS-SVM
R2 1 1 0.992 0.982 0.988

2 sRMSE 0 0 0.8911 1.4433 0.024
MAE 0 0 0.635 1.296 0.021
MBE 0 0 1.90 × 10−17 −3.25 × 10−11 2.84 × 10−13Processes 2023, 11, 3296 13 of 18 
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In conclusion, the semi-supervised learning model for air volume regulation based on
LS-SVM demonstrates exceptional accuracy in predicting the angles of dampers and the
frequencies of local fans during air volume regulation. Furthermore, LS-SVM boasts the
shortest training time when compared to other algorithms, allowing for swift information
feedback. This not only enhances the promptness and precision of air volume control within
the region but also elevates the efficiency of regional air volume management. Importantly,
it contributes to the overall stability and reliability of the ventilation system, ensuring safe
and effective operation.

4.3. Error Analysis

The LS-SVM air volume control model, as established earlier, is utilized to predict
the test set for each damper angle and local fan frequency. The R2 data for the test set are
presented in Table 4.

Table 4. Error comparison analysis of LS-SVM test sample.

Algorithms Evaluation
Performance Evaluation of LS-SVM

Ot-1 Ot-2 Ot-3 Ot-4 Ot-5

LS-SVM

R2 0.9756 0.9718 0.9178 0.8952 0.9385
RMSE 0.0458 0.0523 1.4569 1.9456 0.2658
MAE 0.0364 0.0489 0.8456 1.7496 0.2145
MBE 1.45 × 10−11 2.32 × 10−12 2.56 × 10−7 −2.96 × 10−5 6.45 × 10−8

Table 4 displays the prediction results of the regional air volume control model using
the LS-SVM regression prediction algorithm. For regression prediction, a higher R2 coef-
ficient, closer to 1, indicates a better predictive effect. Additionally, the closer the RMSE
(root mean square error), MAE (mean absolute error), MBE (mean bias error), and other
error indicators are to 0, the more accurate the predictions. The determination coefficient
R2 for each output ranges between 0.8952 and 0.9756, with Ot-4 having the minimum value
(0.8952) and Ot-1 the maximum (0.9756). Simultaneously, the RMSE, MAE, MBE, and other
errors for each output are relatively small, signifying a generally strong predictive effect.
Based on the experimental model and analysis results, it is evident that AD-3 and AD-4 are
highly sensitive to air volume regulation. Figure 6 illustrates the error comparison for the
predicted angles of these two air doors.
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4.4. Verification of Regional Air Volume Intelligent Control

In this study, the control target is defined as the required air volume for the air site,
specifically the mining face and heading face within the defined region. This regulation
is achieved by adjusting the angles of one or more air doors and the operating frequency
of local fans to meet the target air volume requirements for the region. The trained least
squares support vector machine (LS-SVM) model is used to predict the intelligent control
of air volume. The angle of each air door and the frequency of the local fan are predicted
according to the different demands for air volume of the air site. To assess the accuracy
of the model, an analysis of the test dataset is conducted, and the prediction results are
presented in Table 5.

Table 5. Regional air volume control data.

Class State
AV-1 AV-2 Ot-1 Ot-2 Ot-3 Ot-4 Ot-5

(m/s) (m/s) (Hz) (◦) (◦) (◦) (◦)

1
Initial 0.55 0.41 40 10 10 20 20
Goal 0.77 0.30 19.31 (20) 10 (10) 10 (10) 29.62 (30) 11.76 (10)

2
Initial 0.38 0.57 50 10 10 0 30
Goal 0.61 0.51 50.03 (50) 20 (20) 10 (10) 9.72 (10) 39.48 (40)

3
Initial 0.27 0.51 50 20.00 10 0 30
Goal 0.76 0.44 40.02 (40) 10 (10) 20 (20) 0.19 (0) 49.35 (50)

4
Initial 0.64 0.32 10 10 10 20 30
Goal 0.31 0.34 11.25 (10) 20 (20) 10 (10) 19.89 (20) 21.93 (30)

5
Initial 0.53 0.30 10 10 10 20.00 10
Goal 0.48 0.37 30.91 (10) 10 (10) 20 (20) 18.88 (20) 22.24 (20)

The bold font in the table represents the predicted value.

Table 5 shows the data of the initial air volume and the target air volume at the air
site under different working conditions. The analysis of the first set of data shows that
when the coal mining face needs to increase the air volume, the air speed increases from
0.55 m/s to 0.77 m/s; when the air volume needs to be reduced in the heading face, the air
speed is reduced from 0.41 m/s to 0.30 m/s. When the frequency of the local fan is adjusted
from 40 Hz to 20 Hz, Ot-2 (AD-1) and Ot-3 (AD-2) remain unchanged. The angle of Ot-4
(AD-3) is increased from 20◦ to 30◦, and the angle of Ot-5 (AD-4) is reduced from 20◦ to 10◦.
Moreover, the procedures and data sets for the other groups are consistent with the initial
group’s approach to air volume control. Within air volume control, it is possible to predict
the status of the target air volume ventilation facility based on real-time dynamic airflow
parameters and the condition of the ventilation equipment. This predictive approach allows
for precise and accurate air volume control.

In summary, the machine learning model based on LS-SVM demonstrates exceptional
predictive capabilities for intelligent regional air volume control. It accurately forecasts the
operational parameters necessary for achieving the target air volume at specific air usage
locations. This method operates swiftly, facilitating rapid information feedback and the
generation of air volume control strategies. By utilizing the operational parameters of the
targeted air volume ventilation facilities and equipment, it enables remote, rapid control
of air volume within the region. This approach has proven to be highly applicable and
efficient in the realm of intelligent regional air volume control.

5. Discussion

In response to the pressing need for intelligent air volume control within specific
regions, this paper delved into the principles of branch-sensitive air regulation, leveraging
fundamental mine ventilation theory. Through an analysis of key performance indicators
for regional air volume control, an intelligent control model for managing air volume in
the region was established. To validate the model’s effectiveness, an experimental platform
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for intelligent regional air volume control was built, guided by similarity criteria for data
acquisition and experimental verification.

With a focus on addressing the requirements for real-time processing and intelligent
control of mine ventilation systems in response to air volume fluctuations within specific
regions, a comprehensive air conditioning approach was introduced.

The research’s focal point resides in the application of machine learning for predicting
operational parameters pertaining to target air volume ventilation facilities and equipment
within the defined area. This approach, characterized by swift information feedback,
adeptly accommodates rapid adjustments to the dynamic working conditions of facilities
and equipment. This facilitates the efficient modulation of air volume in subterranean
air supply locations, responding promptly to fluctuations and, therefore, meeting the air
volume requisites of these specific locations. This innovative methodology culminates in
the realization of intelligent control within the mine ventilation system, thereby elevating
overall system efficiency and responsiveness.

6. Conclusions

Employing machine learning techniques, five distinct algorithms were employed to
predict the operating parameters of target air volume ventilation equipment, ultimately re-
alizing intelligent air volume control within the designated area. The following conclusions
are drawn:

(1) Based on the principle of branch sensitivity adjustment, this study identified key
performance indicators critical to effective air volume control within the ventilation
system. These insights served as the foundation for the development of an intelligent
control model designed to manage regional air volume with precision.

(2) Taking into consideration the actual conditions of the mine ventilation system, a model
for an experimental platform was meticulously designed. The experimental setup for
regional air volume control adheres to similarity criteria, such as geometric similarity,
dynamic similarity, and kinematic similarity. This platform was equipped with an
innovative method for data acquisition. Furthermore, it delved into the various
experimental methodologies employed to simulate diverse ventilation scenarios. The
subsequent analysis of the experimental results yielded valuable insights.

(3) Five machine learning algorithms were employed to validate the intelligent control
model for regional air volume. The study includes parameter optimization and error
analysis of these five semi-supervised learning methods. The results demonstrated
that the least squares support vector machine (LS-SVM) is the optimal choice for
predicting the operational parameters of the target air volume ventilation facilities
and equipment. It also effectively generated the corresponding air volume control
scheme, ultimately achieving precise control of air volume within the designated area.

It is imperative to underscore that the confines of this research are delimited to the
regulation of air volume within a specific mine region. The imperative task of coordinating
air volume control throughout the entire mine necessitates further dedicated inquiry and
exploration. The intricacies of data acquisition and linkage control in the broader context of
intelligent ventilation across the entire mine pose multifaceted challenges, encompassing
real-time monitoring of mine ventilation facilities’ operational parameters, fault diagnosis,
and energy consumption analysis. Within this context, continued investigation is warranted
to facilitate the judicious alignment of mine air demand with the operational parameters
of ventilation facilities and equipment. Subsequent development initiatives should orient
towards refining the intelligent control model to accommodate a broader spectrum of
application scenarios, emphasizing the holistic matching of air volume supply and demand
and the concerted linkage control of facilities and equipment throughout the entire mine.
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