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Abstract: Efficient production planning hinges on reducing costs and maintaining output quality,
with machine degradation management as a key factor. The traditional approaches to control this
degradation face two main challenges: high costs associated with physical modeling and a lack of
physical interpretability in machine learning methods. Addressing these issues, our study presents
an innovative solution focused on controlling the degradation, a common cause of machine failure.
We propose a method that integrates machine degradation as a virtual state within the system
model, utilizing relevance vector machine-based identification designed in a way that offers physical
interpretability. This integration maximizes the machine’s operational lifespan. Our approach
merges a physical machine model with a physically interpretable data-driven degradation model,
effectively tackling the challenges in physical degradation modeling and accessibility to the system
disturbance model. By embedding degradation into the system’s state-space model, we simplify
implementation and address stability issues. The results demonstrate that our method effectively
controls degradation and significantly increases the machine’s mean time to failure. This represents a
significant advancement in production planning, offering a cost-effective and interpretable method
for managing machine degradation.

Keywords: degradation control; fault control; improve production reliability; process-guided learning

1. Introduction

Production planning and control (PPC) plays a crucial role in mitigating disruptions
such as machine failures within manufacturing organizations [1]. Machine failures, par-
ticularly those classified as “soft failures”, often arise due to the gradual and irreversible
damages accrued during operation [2]. An inaccurate model of a machine’s degradation
trajectory can lead not only to erroneous fault predictions but also to eventual machine fail-
ures. Ultimately, unpredicted failures can result in various undesirable expenses, including
the costs of lost production, wasted materials, and products [3].

The field of predictive maintenance has engaged in comprehensive discussions about
fault protection, generally viewing it from two unique perspectives. The first of these per-
spectives takes a macro approach (high-level), focusing on broader policymaking strategies
such as optimizing maintenance through reliability analysis. Typically, this method views
the system and its various subsystems as interconnected, unified entities. In contrast, the
second perspective adopts a micro approach (low-level), concentrating on improving the
field machines’ functionalities. The main aim here is to enhance the availability of field
machinery and to accurately estimate the state of health (SoH) of the machinery involved.

The primary focus of high-level reliability analysis and maintenance optimization is to
avoid system failure by determining the optimal time for maintenance based on different
existing constraints. Most of these approaches employ statistical or mathematical models
to substitute the physical model of deterioration to estimate the reliability of the system [4].
For instance, the authors in [5] proposed a method for the optimization of condition-
based maintenance for systems under random shocks by optimizing the inspection times
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according to the system reliability reduction after each shock. In [6], the maintenance
planning was optimized in accordance with maintenance resource constraints by deploying
non-periodic inspections and minimizing the expected total cost per unit of the failure
or repair. In [7,8], the authors proposed maintenance strategies for the optimization of
different criteria, e.g., the maximization of availability or minimization of the maintenance
cost, for the maintenance systems with constraints on resources and capacity.

Although these methods optimize maintenance based on various constraints, they
have strong assumptions about the degradation models or accessibility of some data,
making their results exclusive to particular problems. Additionally, the use of mathematical
and statistical models replaces the direct relationship between the system’s structure and
its degradation with data-driven statistics, bypassing the need for physically interpretable
data [9–11]. This means that, despite the cost-saving benefits of this simplification by
eliminating physical modeling, which is an expensive task, this method hinders the ability
to reason based on cause-and-effect relationships that physical reasoning provides. This
approach implies that the system’s reliability is influenced by obscure or, at most, partially
understood processes that can only be approximated rather than enhanced or controlled.
In this way, systems cannot actively support high-level decisions, such as delaying or
scheduling failures, by taking optimal actions in the field machines.

On the other hand, with a low-level reliability analysis, the focus is on enhancing the
accuracy of the SoH estimation for a single machine as a physical entity. This is usually
accomplished by modeling the degradation in the system using different methods. For ex-
ample, refs. [12,13] used a knowledge-based method, refs. [14–17] used physical modeling,
and [18–22] used data-driven methods for the SoH estimation or remaining useful life
(RUL) prediction. Additionally, several studies have proposed methods for controlling the
degradation in the machines by either physically modeling the dynamics of the system and
its respective degradation [23–26] or using data-driven methods for estimating the physical
parameters of the machine and its degradation [27–30].

However, to achieve a more comprehensive and flexible PPC, high-level policymaking
methods should incorporate these low-level methods and work as an integrated method.
Nonetheless, two reasons make existing low-level reliability analysis methods exclusive
and only adaptable to some high-level decision making methods. First, these methods
try to fit the system’s degradation into predefined mathematical or physical templates,
which is a strong assumption as degradation patterns may differ across parts of the system
or may not even adhere to any recognizable mathematical form [31,32]. Second, similar
to the high-level methods, by discarding the physical model and using machine learning
methods [33–35], the connection to the physics of the system is not established, and valuable
information regarding the type of degradation and the eventual fault is lost.

Given the gap between high-level decision making methods and low-level machine-
specific actions, the central question is whether it is possible to support high-level decisions
by implementing low-level actions such that machines reach a predetermined maintenance
level at the desired time.

In order to do so, the degradation in the machines must be controlled. This requires
accurate identification of the relationship between degradation and machine, and proper
design of the controller. The authors of [36] showed that degradation in the system can be
observed through the residuals of the system’s mathematical model and its physical model.
The physical relationship between degradation and system dynamics was later established
in [37,38]. Here, the system was considered observable and the damage was considered
an unobservable state. Following this, several researchers proposed different methods to
address controller and actuator degradation under various constraints. A variable structure
controller was designed in [39] to manage different performance challenges and failures.
An integrated fault detection, diagnosis, and reconfigurable control scheme was presented
in [40]. Methods to handle uncertainty and unobservability in degradation control were
introduced in [41] for linear systems and discussed in [42] for non-linear and singular
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systems. Moreover, a method for degradation control of systems with non-linearities and
missing data was suggested in [43].

Examining the evolution path, studies on degradation control generally adopt two pri-
mary approaches. Methods like those presented in [44,45] employ a robust control scheme
to counteract the degradation and inefficiency of actuators. Conversely, methods such as
those in [38,46] leverage the physical model of degradation when designing controllers.
The main challenge for both sets of methods is their stringent assumptions regarding the
degradation model, disturbances, and accessibility.

To address the challenges in degradation control, this paper proposes a method for
controlling degradation by modifying optimal control schemes. Controlling degradation
results in longer mean time to failure (MTTF) and reduced maintenance costs by minimizing
downtimes or rerouting faults from expensive system components to more economical
ones. This study controls degradation by defining it as a new virtual, controllable state of
the system. This approach tackles the challenges associated with assumptions about the
degradation model, encountered in physical modeling of degradation or inaccessibility
to disturbances and the degradation model as faced by robust controllers. These issues
are addressed using the sparse Bayesian learning method, which empirically identifies the
degradation model using the system’s historical data. Furthermore, the mathematics of
machine degradation are studied comprehensively to determine the means of incorporating
degradation behavior into the system dynamics.

The remainder of the paper is organized as follows. Section 2 introduces the methodol-
ogy of the proposed approach. Section 3 explains the procedure used for the simulation of
the method. Section 4 presents the results and validation process, while Section 5 discusses
the advantages and disadvantages of the method. Finally, conclusions are presented in
Section 6.

2. Materials and Methods

In the proposed method, machine degradation is controlled through a four-step pro-
cess. Initially, the degradation is detected, followed by the identification of the dynamics of
degradation via process-controlled learning, which maps the degradation into the system’s
states and inputs. Subsequently, these dynamics are incorporated into the model of the
system. Finally, control is exerted over the degradation while simultaneously maintaining
the quality of the output.

2.1. State-Space Mode and Degradation

The state-space mode (SSM) can be written as follows:
ẋ = Ax + Bu + Nω1

z = Mx
y = Cx + ω2

, (1)

where x includes the system state(s), u is system input(s), A and B represent the physical
system parameters (considered constant in time-invariant systems), C is the relationship
between the output(s) and state(s) of the system, z is the controlled output, M configures
the states to be controlled, ω1 is the process noise, and ω2 is the measurement noise.

Also, degradation is defined as a trend in the recorded signal(s) or signal feature(s) of
the system [47]. According to the SSM, degradation either affects the output

ẋ(t) = f (t, x(t), u(t)), (2a)

yD(t) = g(x(t), u(t), D(t)), (2b)
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or the input and output at the same time:

ẋD(t) = f (t, xD(t), u(t), D(t)), (3a)

yD(t) = g(xD(t), u(t), D(t)), (3b)

where t is time, x is the system state, xD is the degraded state, u is the input, yD is the
system’s output affected by the degradation, and D(t) is the degradation as a function of
time [31].

According to (2) and (3), degradation is reflected in changes in the y value. These
changes arise from alterations in the system parameters (A, B, or C from (1)) due to system
deterioration. Conversely, controllers are engineered with the purpose of sustaining a
desired output. This is under the presumption that system parameters are constant over
time, which is not accurate in the face of degradation. As a result, the controller persistently
seeks to match the real output with the desired output by manipulating system states
through system inputs and compensating for undesired changes in system output. Over
time, since the controller’s design relies on the nominal values of the system parameters, the
actual controlled output begins to diverge from the desired output. Once this discrepancy
surpasses a set limit, or, in other words, the system output is outside the desired tolerance
range, the system is deemed to have failed and requires maintenance. Figure 1 illustrates
the process of degradation and its impact on the closed-loop system, ultimately leading to
system failure.

Figure 1. How degradation affects the dynamics of a closed-loop system.

2.2. Optimal Control

A linear quadratic regulator (LQR) is an optimal controller designed based on the
SSM [48]. The quadratic criterion that the LQR minimizes is provided as follows:

J =‖ e ‖2
Q1

+ ‖ u ‖2
Q2

, (4)

where e = z − r, r is the reference signal, z is the controlled output, e is the error, u is
the control input, and Q1 and Q2 are penalty matrices for the error and input signal,
respectively. The optimal control signal for this controller can be written as follows:

u = −Lx, (5)

ẋ = Ax + Bu. (6)
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where the optimal feedback gain, L, is then calculated by solving

L = Q−1
2 BTS, (7)

subjected to a Riccati equation:

0 = ATS + SA + MTQ1M− SBQ−1
2 BTS. (8)

The LQR optimizes the control problem for the infinite horizon, which means that the
optimal feedback gain stays the same regardless of the inputs and outputs throughout the
system’s lifetime.

On the other hand, a model predictive controller (MPC) finds the optimal solution that
will minimize a cost function at every single point in time within a set future timeframe. In
other words, unlike the Riccati equation that optimizes the solution for the infinite horizon
in LQR design, the MPC performs the optimization in the finite horizon. The cost function
for the MPC can be expressed as follows:

J(t) =
Np−1

∑
i=1
‖ ê(t + i|t) ‖2

Q1 +
Nc

∑
j=0
‖ ∆û(t + j|t) ‖2

Q2, (9)

where ê(t + i|t) = ẑ(t + i|t)− r(t + i|t), ẑ is the predicted controlled output, r is the desired
output, ê is the predicted error, Np is the prediction horizon, Nc is the control horizon, ∆û
is the predicted control increment, and Q1 and Q2 are penalty matrices.

Both the LQR and MPC control strategies are built upon the system’s original model,
using nominal parameter values. However, degradation induces a gradual shift in the nominal
parameter values, moving them away from the original values that were used for designing
the controller. This drift is more than just a minor concern; it directly compromises the
controller’s performance and its ability to maintain the desired level of control quality. As this
drift accumulates, the gap between the system’s intended and actual outputs begins to widen.
When this gap crosses a certain threshold, it signals impending system failure.

2.3. Virtual Health State

In order to have the degradation as a distinct controllable state, the system’s state
space must be extended. However, since the health state is not a physical state of the
machine, it should be considered a virtual state dependent on the physical states and inputs
of the machine. This extended state space of the system for degradation control can be
written as follows:

[
Ẋ
Ḋ

]
=

[
An×n 0
Wx 0

][
Xn×1

D

]
+

[
Bn×`
Wu

]
u`×1 +

[
N
0

]
ω1,

z =

[
M 0

01×n 1

][
X
D

]
,

y =

[
C 0

01×n 1

][
X
D

]
+

[
In×n

01×n

]
ω2,

(10)

where n is the number of outputs, and ` is the number of inputs, and let Wx and Wu
denote the vectors of coefficients that map system outputs and inputs to the derivative of
degradation (Ḋ).

Evidently, to be able to generate (10) to control the degradation, Ḋ should follow the
specific format of

Ḋ = Wx· x + Wu· u, (11)
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and Wx and Wu should be estimated according to the machine-specific degradation, which
is influenced by machine-exclusive working conditions.

2.4. Identification of Ḋ

To compute the Wx and Wu values as outlined in (11), the initial step involves calculat-
ing Ḋc as a target value for degradation. This calculation should align with the system’s
degradation trend, which primarily falls into two categories: linear and exponential. The
focus here is solely on the rate at which the system parameters are drifting, rather than the
specific form of the degradation pattern. Therefore, even if the degradation follows a differ-
ent curve—say, a sinusoidal pattern—the key concern is the rate at which its amplitude
increases or decreases.

In order to determine the target value for degradation, it is essential to identify the
degradation trend and calculate its likelihood of being either linear or exponential simulta-
neously. Considering the noise, the trend of the degradation in the machine will follow

yss(c) = N (yss(c− 1) + µD, V), (12)

or

yss(c) = N (yss(c− 1) + exp(µD ∗ c), V), (13)

where yss(c) is the steady state of controlled output at cycle c, µD is the drift of the degra-
dation, and V is the variance of the degradation.

Knowing the structure of the drifting degradation, it is possible to calculate the
likelihood of observing yss(c) given that the degradation follows a linear or exponential
model. The likelihood of the degradation generated by model one can be calculated by

L1(yss(c)|yss(c− 1)) =
1√

2πV
exp(− (yss(c)− (yss(c− 1) + µD))

2

2V
), (14)

and the likelihood of the degradation generated by model two can be calculated by

L2(yss(c)|yss(c− 1)) =
1√

2πV
exp(− (yss(c)− (yss(c− 1) + exp(µD · c)))2

2V
). (15)

Then, the probability of yss(c) generated using both models can be expressed as

p1(c) =
L1(c) · p1(c− 1)

L1(c) · p1(c− 1) + L2(c) · p2(c− 1)
, (16)

and

p1(c) =
L2(c) · p2(c− 1)

L1(c) · p1(c− 1) + L2(c) · p2(c− 1)
, (17)

where Li(c) = Li(yss(c)|yss(c− 1)) for i ∈ {1, 2}.
Knowing these probabilities, after each cycle, it is possible to find the target value of

D. If p1(c) ≥ p2(c):

D(c) = ac, (18)

if p1(c) < p2(c):

D(c) = aec. (19)

where a is an optional constant based on the limitations on desired calculation accuracy.
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As the subject of interest in Equation (11) is Ḋ (the derivative of the degradation),
the mapping should aim to correlate the system’s recorded features with ˙̂D = dD̂

dc . This
derivation can be obtained as follows:

∀c ∈ [2, CT ],
dD̂(c)

dc
=

D̂(c)− D̂(c− 1)
1
2 (Tc + Tc−1)

, (20)

where Tc is the length of a cycle c and Tc−1 is the length of the cycle c− 1.
Knowing Ḋ, and having access to the records of the system states and inputs over

time, it is possible to identify Wx and Wu in (11).

2.5. Identification of Wx and Wu

Because the degradation rate changes much more slowly than the system inputs and
outputs, the features extracted offer sufficient insights into the rate of degradation. Thus,
the vector of features for each cycle can be generated using

f y
i (c) = f eature(Yi), i = 1 : n, (21a)

f u
j (c) = f eature(Uj), j = 1 : `, (21b)

f (c) =
[

f y
1 (c) . . . f y

n (c) f u
1 (c) . . . f u

` (c)
]
, (22)

where f y
i (c) is the feature of the ith output recorded during cycle c (e.g., maximum, mean,

etc.), f u
j (c) is the feature of the jth input recorded during cycle c, Yi and Uj are the sets

including all recorded samples from outputs i and input j, respectively, from t0 to tend
(beginning and end time of cycle c), and the chosen feature type may differ, provided it
demonstrates monotonicity. This process is shown in Figure 2. Finally, Wx and Wu can be
calculated using the following process:

min
W

(FW T − Ḋ), (23a)

W =
[
Wx Wu

]
, (23b)

F =
[

f (1) . . . f (CT)
]T , (23c)

Ḋ =
[ ˙D(1) . . . ˙D(c− 1)

]T
. (23d)

Figure 2. Generation of the feature vector.

2.6. Relevance Vector Machine

Optimization mentioned in (23) can be solved using different optimization techniques.
However, there are two main points that need to be considered when choosing a method.
Firstly, as the number of states in the system may increase, using parsimonious or sparse
regression becomes more suitable. This approach ensures that only parameters with high
confidence will have coefficients with non-zero amplitude, thereby minimizing complexity
in terms of controllability and observability when a virtual state is added to the system
Secondly, the method must be fast as it will be used in online control systems.
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RVM was first introduced in [49] as a sparse Bayesian learning method. RVM calcu-
lation for linear kernels is as fast as the least squares method and provides parsimonious
results due to its sparse nature. This makes it a superior choice for this optimization. The
RVM structure is very similar to the SVM, which is provided as follows:

ŷ(x) =
Ns

∑
n=1

wnk(x, xn) + b, (24)

where Ns is the number of samples; wn is a coefficient in W , which is the vector of coef-
ficients; k(·, ·) is the kernel function; and b is the bias parameter. The RVM defines the
conditional distribution for the target value y given the vector of covariates x, prediction
outcome ŷ, regression coefficients W , and a precision parameter ψ as

p(yn |xn, w, ψ) = N (yn |ŷ(xn), ψ−1), (25)

ŷ = Φ(X)w, (26)

Φ(X) = [φ(x1), φ(x2), . . . , φ(xNs)]
T , (27)

φ(xn) = [1, k(xn, x1), k(xn, x2), . . . , k(xn, xNs)]. (28)

The likelihood function for y can be written as

p(y|X, w, ψ) =
Ns

∏
n=1

p(tn|xn, w, ψ−1). (29)

The RVM introduces a prior distribution for each w in W as a hyperparameter α:

p(w|α) =
NM

∏
i=1
N (wi| 0, α−1

i ), (30)

where NM is the number of covariates (including bias). The hyperparameter α measures the
precision of each wi. Following Bayesian inference, the distribution of the weights becomes
Gaussian and takes the following form:

p(W |y, X, α, ψ) = N (W | µ, Σ), (31)

in which
µ = ψΣΦTy, (32)

Σ = (diag(αi) + ψΦTΦ)−1. (33)

2.7. Algorithm

The flowchart of the proposed method is shown in Figure 3.
The pseudo-code outlining the algorithm’s functionality is also presented in Algorithm 1.
Following each cycle during which the system’s inputs and outputs are recorded, the

parameters can be updated. This allows for the recalculation of Equation (10) with the
new parameters. Subsequently, a new optimal feedback is computed, capable of not only
regulating the system but also managing its degradation.
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Figure 3. Proposed method flowchart.

Algorithm 1 Iterative Degradation State Parameters Identification

1: Initialize:
2: p1 ← 0.5, p2 ← 0.5 . Initial model probabilities
3: µ1 ← 0, µ2 ← 0 . Initial mean estimates
4: V1 ← 1, V2 ← 1 . Initial variance estimates
5: α← initialize, β← initialize . Learning rates
6: for each new data point yc+1 do
7: Calculate Likelihoods:
8: L1 ← 1√

2πV1
exp

(
− (yc+1−(yc+µ1))

2

2V1

)
9: L2 ← 1√

2πV2
exp

(
− (yc+1−(yc+exp(µ2c)))2

2V2

)
10: Update Probabilities:
11: p1(c)← L1×p1(c−1)

L1×p1(c−1)+L2×p2(c−1)

12: p2(c)← L2×p2(c−1)
L1×p1(c−1)+L2×p2(c−1)

13: p1(c)← p1(c + 1), p2(c)← p2(c + 1)
14: Update Parameter Estimates:
15: µ1,new ← α× µ1 + (1− α)× (yc+1 − yc)
16: V1,new ← β×V1 + (1− β)× (yc+1 − yc − µ1,new)

2

17: µ2,new ← α× µ2 + (1− α)× (yc+1 − yc)
18: V2,new ← β×V2 + (1− β)× (yc+1 − yc − exp(µ2,newc))2

19: µ1 ← µ1,new, V1 ← V1,new
20: µ2 ← µ2,new, V2 ← V2,new
21: if p1(c) ≥ p2(c), D(c) = ac
22: if p1(c) < p2(c), D(c) = aec

23: Calculate Ḋ according to (20)
24: min

W
(FW T − Ḋ)

25: end for
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3. Simulation

To evaluate the proposed method, recorded signals from the machine are necessary.
However, since the required signals are not available from publicly accessible datasets, a
detailed simulation model of a hydraulic rolling mill is employed. This particular rolling
mill is selected as the simulation model because synchronization of degradation is crucial
in rolling mills that operate in a series. Typically, machines in the production line degrade
at different rates due to varying disturbances based on their position in the line. The result
of this asynchronous degradation is an increase in downtime.

3.1. Dynamical Model of the Rolling Stand

The machine used for this simulation is the electrohydraulic rolling mill, comprising a
hydraulic valve, hydraulic cylinder, and rolling stand. Figure 4 shows the system schematic.

Figure 4. Schematic of the rolling stand [50].

The modeling of the system with non-linearities is completed in [51]. For less com-
plexity, the hydraulic mill is assumed to operate in only one direction (i.e., the rollers in the
bottom of the machine are fixed, but the top rollers move). Also, to focus on studying the
degradation controller functionality, the system is considered linear in its working point.
The derived SSM is provided as follows:


ḣ
ḧ
Ṗ1
Ṗ2
ẋv

 =



0 1 0 0 0
0 − Fc

ml

A1
ml

− A2
ml

0

0 − βA1
V1 − β(Ci+Ce)

V1
βCi
V1

βPs
ClV1

0 βA2
V2

βCi
V2 − β(Ci+Ce)

V2
2βPs
ClV2

0 0 0 0 − 1
τv




h
ḣ
P1
P2
xv

+


0 0
−1
ml

0
0 0
0 0
0 kv

τv


[

FL
uv

]
+


0
1
0
0
0

ω1, (34a)

z = [1 0 0 0 0]x, (34b)

y = Ix + Iω2. (34c)

where h is the piston displacement; ḣ is the piston velocity; Ps is the supply pressure to the
valve; P1 and P2 are the pressures at the primary and secondary side of the hydraulic cylinder,
respectively; xv is the hydraulic valve spool displacement; Fc is the viscous force; FL is the
input force; ml is the load mass; A1 and A2 are the areas of the primary or secondary side of
the hydraulic cylinder, respectively; V1 and V2 are the volumes of the primary or secondary
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side of the hydraulic cylinder, respectively; βe is the effective bulk modulus; Ci is the internal
oil leakage; Ce is the external oil leakage; Cl is the linearization constant; τv is the hydraulic
valve time constant kv is the gain of the hydraulic valve; and uv is the input voltage to the
valve. The parameters used for this simulation can be seen in Table 1.

In the closed-loop system in which, according to (34b), the control state is the piston
position (h), the controller manipulates the voltage to the valve and the input force as the in-
ternal signals to maintain the position of the piston. The desired piston position is achieved
by generating a pressure difference between the two sides of the hydraulic cylinder, which
moves the piston. These motion properties, which impact system degradation, are related
to the penalty matrices and control scheme.

Table 1. Parameters used for the simulation.

Parameter Value Unit

A1, A2 0.1 m2

V1 0.5 m3

V2 0.65 m3

Ps 107 Pa

Fc 10 N

M 100 Kg

Fc 10 N

βe 2× 105 Pa

ρ 900 Kg
m3

τv 0.001 s

Ci 10−6 -

Ce 10−5 -

kv 1 -

3.2. Degradations Models

For the degradation simulation in the closed-loop system, three different degradation
models are defined:

1. Hydraulic oil degradation.
2. Hydraulic oil degradation with external leakage and continuous oil level compensation.
3. Hydraulic oil degradation with external leakage and continuous oil level compensa-

tion with a change in friction force.

The mathematical models for these degradation models are as follows, where ρ is
oil density.

ρt+1 = ρt − ai,

Ct+1
e = Ct

e + bi,

Ft+1
c = Ft

c + ci,

βt+1 = βt − di.

(35)

For the first degradation model, hydraulic oil degrades over time, and its bulk modulus
changes according to the change in the oil properties (in Table 2, the drift of the bulk
modulus, di, has a mean of ai). In the second degradation model, the oil degradation
occurs at the same time as the external leakage of the hydraulic oil. In addition, the oil
level compensation system accounts for the leaked oil and injects the system with new oil.
Consequently, the new oil compensates for a part of the degradation of the bulk modulus
(in Table 2, the drift of the bulk modulus, di, has a mean of ai − bi). Finally, in the third
degradation model, friction force increases, affecting the bulk modulus in addition to all
other degradation models.
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Table 2. Degradation models’ parameters

Parameter Model 1 Model 2 Model 3

ai N (0.1, 0.05) N (0.1, 0.05) N (0.1, 0.05)
bi 0 N (10−3, 10−4) N (10−3, 10−4)
ci 0 0 N (10−3, 10−4)
di N (ai , 1) N (ai − bi , 1) N (ai − bi + ci , 1)

3.3. Failing Criterion and Penalty Matrices

As mentioned, the failure criterion F is when the difference between the desired output
yd and the actual output y crosses a threshold Th:

F(t) =

{
False |y(t)− yd(t)|< Th

True |y(t)− yd(t)|≥ Th
. (36)

The failing threshold is defined as follows:

Th = 10−2, (37)

Additionally, the maintenance criteria are defined for the machines if the failure
criterion mentioned in (36) is not met while the oil quality drops below its maintenance
thresholds because of degradation:

Rt
ρ =

{
False if ρt ≥ 300
True if ρt < 300

, (38)

where Rt
ρ is the maintenance needs at time t according to the degradation of oil.

In (36), the failure only depends on the deviation from the desired value; however, the
precision of the output can be controlled using the penalty matrices. This means that this
deviation in the output is controllable to some level by increasing the penalty value. To
analyze the controller behavior, the effect of the penalty values should be removed. This will
be accomplished by simulating the system for the entire range of possible penalty values.

4. Results

This section first discusses the closed-loop system responses for both LQR and MPC.
Next, results from the degradation simulation in the closed-loop system and the effect of
penalty matrices on the system’s lifetime without a degradation controller are presented.
The third part explains the calculated degradation coefficients. Then, the results from the
degradation controller are detailed, followed by an explanation of why the degradation
control is not a function of the penalty matrices. Finally, the output quality of regular
controllers and degradation controllers is compared.

4.1. Closed-Loop Responses

Figure 5A illustrates the system’s behavior when controlled by an LQR for different
penalty values. The first plot of Figure 5A specifically focuses on the piston position. Systems
with higher penalty values for Q1 achieve the target position more quickly at the cost of
increased input force. In the steady state, it is notable that systems with higher penalty values
continue to exert greater force, resulting in higher pressures within the cylinder.

Figure 5B depicts the closed-loop performance of the system under MPC, also consid-
ering varying penalty values. Although all three systems yield the same output, systems
with higher penalty values require more force and, consequently, higher pressures on both
sides of the cylinder in the steady state, similar to the LQR-controlled systems.

In summary, based on the behaviors observed with both the LQR and MPC control
methods, higher penalty values generally result in increased energy consumption. This is to
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account for uncertainties about future disturbances, but it also leads to greater degradation
of the system.

(A) (B)
Figure 5. Step response of the closed-loop system (two bottom plots in both figures are in log scale).
(A) Closed-loop LQR response. (B) Closed-loop MPC response.

4.2. Effect of Penalties

After designing the degradation controller, one state (degradation) is added to the
system states, changing the SSM of the system. As a result, another configurable penalty
value is added to Q1.

Thus, the causality of the old and new penalty values on the final result should be
removed to study the effect of the degradation controller separately.

For this reason, the system is simulated for the entire spectrum of possible penalty
values. Figure 6 shows the lifespan of the machine as a function of penalty value. The
Monte Carlo simulation is performed 100 times for each penalty value. Zero lifetime for
some penalty values means the controller cannot keep the output within the thresholds
using that penalty value. The longest lifespan is achieved using Q1 = 10 for all three
degradation models under the LQR control scheme. The MPC behavior is similar for all
degradation cases when Q1 ranges from 6 to 10. As a result, the Q1 is chosen to be 10 as the
penalty value that yields the longest lifespan for all simulations.

(A) (B)
Figure 6. Cont.
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(C) (D)

(E) (F)
Figure 6. Lifespan vs. penalty value. (A) 1st model—LQR. (B) 2nd model—LQR. (C) 3rd
model—LQR. (D) 1st model—MPC. (E) 2nd model—MPC. (F) 3rd model—MPC.

4.3. Degradation Simulation

After designing the controller, the closed-loop system is simulated for several cycles.
The controller is designed according to the primary model (model with initial parame-
ter values before degradation). However, after each running cycle, the chosen physical
parameters are updated in the system model (A, B, or C mentioned in (1)) according to
degradation models and the output recorded for each cycle. This process continues until
the output exceeds the acceptable tolerance. The evolutions of the system’s parameters
over time under different degradation models result in different MTTFs of the machines.

Figure 7 shows the effect of three degradation models explained in (35) on the output.
The maximum MTTF with the LQR occurs in the first degradation model, as shown in
Figure 7A, and it takes more than 800 cycles for the machine to fail. Meanwhile, the
maximum MTTF with the MPC occurs in the second degradation model, as shown in
Figure 7B, and it takes more than 100 cycles for the machine to fail.

(A) Cont.
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(B)
Figure 7. Degradation in the closed-loop system using different controllers, Q1 = 10. (A) Degrada-
tions in a closed-loop system using LQR. (B) Degradations in a closed-loop system using MPC.

4.4. Identification of the Dynamics of Degradation

Table 3 presents the final degradation coefficients calculated using RVM on simulated
data [52].

Table 3. Degradation coefficients calculated using RVM.

Par.

Effect on Degradation

LQR MPC

Deg. 1 Deg. 2 Deg. 3 Deg. 1 Deg. 2 Deg. 3

h 0 0 0 0 0 0

ḣ 0 0 0 0 0 0

P1 0.04 −0.28 0.40 0 0 0

P2 0.06 −0.69 0.55 0 0 0

xv 0 0 0 3.73 3.12 7.39

FL 0.01 −1.29 0.12 0.29 0.21 0.53

uv 0 0 0 2.29 1.99 4.20

Evidently, in the system using LQR, the pressures inside the cylinder and the input
force affect machine degradation in all three models. Also, the coefficients are consider-
ably smaller for the first degradation model compared to the other two models, which
corroborates the longer machine lifetime with this model.

Meanwhile, the coefficients are negative in the second model, indicating that greater
pressure and force cause less degradation. In this case, higher force and pressure mean
more fresh oil and consequently less degradation; this can be observed in Table 2, where
the higher external leakage (Ce) compensates more for the oil degradation (bi reduces the
mean value of the degradation of di). As the secondary side of the cylinder is larger, higher
pressure on the secondary side means more leakage, and this is why its coefficient is larger
than the coefficient of the other side. This also explains the negative coefficients with a
larger amplitude of the secondary side pressure. Furthermore, degradation affects the
system faster in the third degradation model using LQR. These large positive coefficients
corroborate the shorter lifetime of the machine degrading with the third model. In the
machine with MPC, the analysis is not as simple and may not be possible; the reason is
discussed in the next section.

Figure 8 shows the online calculation of the degradation coefficient of the input force
for both controllers using the proposed algorithm. In order to show the effectiveness of the
method, a continuously working mill is assumed to be affected by different degradation
models. The cycle when the degradation model affecting the machine has changed is
depicted by the red line. Comparing these graphs shows that, in the systems with a
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time-invariant feedback loop (LQR), the detection of the degradation trend, and, thus,
the identification of the degradation dynamics, can be accomplished faster because of the
Bayesian nature of the RVM. This achieved speed is because the noise is the only parameter
affecting this identification. However, in the systems with a time-varying feedback loop, the
identification of the degradation dynamics takes more time because the dynamic feedback
loop behaves as noise for Bayesian learning.

(A)

(B)
Figure 8. Online calculation of the degradation coefficient for input force. (A) Degradation effect of
P1, P2, and FL with LQR. (B) Degradation effect of xv, FL, and uv with MPC.

For the next step, the system state space is updated using the calculated coefficients
and according to the extended state space mentioned in (10). Then, the controllers are
designed based on the new SSM, which now includes the degradation state.
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4.5. Degradation Control

Figure 9 shows the trend of output recorded at the steady state of each cycle after the
controller is updated. According to the degradation models, if the system output stays
within the desired limits (i.e., condition F in (36) is not met), the oil degradation (Rρ, as
defined in (38)) will make maintenance necessary.

As the degradations are defined as time-dependent, the longest possible MTTF (reach-
ing the point when hydraulic oil needs changing), considering the disturbances, will be
around 1400 cycles. The plots in Figure 9 show the output affected by the new control
policies in compensating for the degradation. The adverse effects of degradation models
are successfully compensated, the system’s output is kept within desired limits, and the
system has reached its maximum possible MTTF.

Figure 10 shows the system’s step response with and without degradation control.
Unlike the normal controller that maintains pressure and input force throughout the process
(Figure 10A), degradation controllers bring these three states to zero (or near zero) and keep
them at their lowest point after the output settles at their desired position (Figure 10B,C).

Figure 10B shows the system’s step response using the controller designed for the first
degradation model. According to Table 3, the leading causes of the degradation are the
pressures on both sides of the cylinder and input force. To control this degradation model,
the peak pressure is reduced considerably compared to Figure 10A, and the three states are
settled at the lowest possible values throughout the process.

(A)
(B)

(C)
(D)

(E)
(F)

Figure 9. Degradation-controlled system output. (A) LQR response to 1st degradation model.
(B) MPC response to 1st degradation model. (C) LQR response to 2nd degradation model. (D) MPC
response to 2nd degradation model. (E) LQR response to 3rd degradation model. (F) MPC response
to 3rd degradation model.

Figure 10C shows the control of the second degradation model. According to its
coefficients from Table 3, the pressure on each side of the cylinder has a reverse effect
on the degradation. This is because, as previously explained, the system is assumed to
compensate for the leaked oil with new oil. As a result, this new oil compensates for the oil
degradation. Additionally, the force coefficient is negative because more force means more
leakage, resulting in further compensation for the degradation. To reduce the degradation,
the controller increases the peak pressure (compared to the previous degradation model in
Figure 10B) and maintains it for a longer time. These actions lead to more leakage, more
fresh oil injection, and, as a result, less degradation.
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As mentioned above, unlike the coefficients in the LQR, understanding the physics
behind the calculated coefficients of the degradation state for the system using MPC may
be challenging. The effect of the parameters can be seen in the control method, and the
degradation control is successful (Figure 9). However, the exact physical reason may be
unknown due to various reasons. First, each control strategy may degrade system parts
differently. Second, this method only works based on the information from the system
states. Therefore, all information about the degradation is received through systems states.
Thus, if not impossible, this is a complex task to find the exact physical reason based on
these records. Third, and most important, the optimization methods used in controllers
vary; e.g., the optimization for the LQR is only performed once during the design stage,
maintaining the same controller behavior in all conditions. However, the MPC optimization
is performed at each cycle, making it a complex task to analyze and physically interpret
the result. The shift in the optimal point is readily apparent in Figure 8. In this figure,
the LQR controller maintains constant coefficients throughout the process, whereas the
coefficients for the MPC controller exhibit variations during the same period. It is worth
noting that the physical interpretation of its dynamics is not a matter of concern. Only the
physical relation of the dynamics of the degradation to the system’s states is required for
degradation control.

(A) (B)

(C)
Figure 10. Step response using LQR degradation controller. (A) Without degradation control. (B) 1st
degradation model. (C) 2nd degradation model.
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4.6. Effect of Penalties

To ensure the degradation control does not occur because of higher penalty values
and to remove the causality of the penalty values on the final deduction, the penalty effect
is studied without the degradation control and shown in Figure 6.

Figure 11 shows the effect of the penalty value on the degradation controllers. These
figures are generated using the Monte Carlo simulation. For each combination of Q1 and
q6, where q6 is the penalty value for the degradation state, the Monte Carlo simulation is
performed 100 times.

Figure 11 plots the mean MTTF from these simulations. It can be seen that the system
MTTF reaches its maximum for different combinations of Q1 and q6.

A comparison of the MTTFs of the normal machine and the machine with the degra-
dation controller shows that the resilience to degradation is the result of including the
degradation in the SSM as a controllable state, not a function of penalty value. This can be
inferred because, regardless of the penalty value chosen for Q1, the system never reaches
the maximum possible MTTF with the controller designed without the degradation state.

(A)
(B)

(C)
(D)

(E) (F)
Figure 11. Lifespan vs. penalty values. (A) 1st model—LQR. (B) 2nd model—LQR. (C) 3rd
model—LQR. (D) 1st model—MPC. (E) 2nd model—MPC. (F) 3rd model—MPC.
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4.7. Control Quality

To study the quality of the new controller and compare it with that of the normal
controller, both systems are tested with similar disturbances. A first-order disturbance
model was adopted based on empirical data from rolling machines, wherein disturbances
typically stabilize with minimal oscillations. The selected time constant mirrors that of
the machine itself. This selection aligns with the fact that rolling machines often have
adjustable output rates to achieve desired output quality standards. Moreover, the gain
of the disturbance model is determined from the machine’s historical data, ensuring that
disturbances do not exceed 20% of the maximum force. An essential consideration is that
the disturbance data were not used as the prior information in the controller’s design. Thus,
its model impacts all controllers uniformly, allowing for a generalizable outcome. The
transfer function of the disturbance is provided as

GD =
2000

s + 0.05
, (39)

excited with N (0, 1).
Figure 12 shows the result of the normal controller vs. degradation controllers. The

top plot of Figure 12A shows that the normal and degradation controllers have identical
responses to the disturbances. As shown before in Figure 10, this response is achieved with
less force and pressure usage by the degradation controller, and, more importantly, the system
MTTF increases to its maximum possible value. Considering the MPC response depicted in
Figure 12B and results from Figure 9, it can be seen that the MTTF of the machine has reached
its maximum at the same time with improvement in the control quality.

(A)

(B)

Figure 12. Control quality comparison, normal controller vs. degradation controller. (A) LQR
controller quality. (B) MPC controller quality.

From these results, the degradation controller exhibits at worst the same control quality
as the controller without degradation control but with significantly less consumed energy and
degradation imposed on the system. Considering the best scenario, not only have the energy
consumption and imposed degradation decreased but the control quality has also increased.
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5. Discussion

Maintenance management is a task that can be performed at any stage, either in the
design phase or during machine operation. The goal of degradation control is to employ
effective maintenance management in controlling degradation in the machines so that they
reach the maintenance threshold at a desired time. Generally, this degradation control
method is designed to benefit production planning.

Significant research has been dedicated to simulating the degradation in a closed-loop
system in this article. However, in real-world scenarios, machines record data over time;
when sufficient data are collected, the coefficients are calculated, and the degradation
controller can work. This method can be used online during machine operation and offline
during the design stage based on the SSM.

The main advantage of this method is its adaptivity. The machine can start working in
various conditions with different degradation using only a controller without degradation
control. After recording sufficient data, the controller can adapt to the software without
stopping the machine for an extended period.

On the other hand, a primary limitation of the method lies in its sensitivity to noisy
signals. If the recorded signals exhibit noise, the training set size needs to increase to main-
tain accuracy due to the noise vulnerability of the RVM. Another complexity arises when
the system must concurrently offset various degradations (incorporated as distinct states in
the SSM). In such cases (classification of degradation), utilizing historical maintenance data
and understanding how each type impacts the system become essential. This classification
demands more comprehensive information about the system.

The system model utilized for this method is a linear SSM. While the SSM is a feasible
option for demonstrating degradation control, two considerations are significant. Firstly,
real-world scenarios might present limitations in accessing certain system states. However,
as most complex machinery is equipped with control systems, these necessary states for
optimal control are typically attainable, either directly or via state-estimation methods
like Kalman filtering. Secondly, the system or its degradation may display non-linear
characteristics. In such cases, the identification of degradation through the RVM is not
hindered as its focus is on the trend in degradation rather than the degradation model
itself. Moreover, non-linearities within the system model can also be managed using MPC
without alteration of the structure of the method.

Future work entails extending the control of machine degradation by considering
its impact on other machines within the same production line, or on a group of robots
performing a unified task. Leveraging advancements in multi-agent control along with the
insights from this article, it is feasible to assess how the actions of each machine influence
the degradation of others. By taking into account various production costs, such as quality,
delivery time, and maintenance, it becomes possible to optimize the actions and decisions
of each machine based on their cumulative effect on the entire process.

6. Conclusions

This paper introduces a degradation-aware control approach that employs an SSM
as the machine’s physical representation, complemented by process-guided learning for
degradation modeling. Initially, the study puts forth an extended SSM, incorporating
machine degradation as a virtual state variable. Subsequently, machine degradation in
closed-loop systems is investigated. Next, in order to estimate the dynamic model of degra-
dation, RVM, a sparse Bayesian method, is utilized. Optimal controllers, based on both
linear quadratic and model predictive frameworks, are then developed in accordance with
the improved SSM architecture. As a result, the degradation-aware controller effectively
extends the machine’s MTTF by managing its rate of degradation.



Processes 2023, 11, 3229 22 of 24

Author Contributions: Methodology, A.H.D. and N.B.; Validation, N.B.; Formal analysis, A.H.D.;
Investigation, A.H.D.; Writing – original draft, A.H.D.; Writing – review & editing, A.H.D. and
N.B.; Project administration, N.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The research project is financed by the European Commission within the European Regional
Development Fund, Swedish Agency for Economic and Regional Growth, Region of Gävleborg, and
the University of Gävle.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schmidt, M.; Schäfers, P. The Hanoverian Supply Chain Model: Modelling the impact of production planning and control on a

supply chain’s logistic objectives. Prod. Eng. 2017, 11, 487–493. [CrossRef]
2. Prakash, G.; Yuan, X.X.; Hazra, B.; Mizutani, D. Toward a big data-based approach: A review on degradation models for

prognosis of critical infrastructure. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021, 4, 021005. [CrossRef]
3. Ayvaz, S.; Alpay, K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using

IoT data in real-time. Expert Syst. Appl. 2021, 173, 114598. [CrossRef]
4. Teixeira, R.; Nogal, M.; O’Connor, A. Adaptive approaches in metamodel-based reliability analysis: A review. Struct. Saf. 2021,

89, 102019. [CrossRef]
5. Cao, Y.; Luo, J.; Dong, W. Optimization of condition-based maintenance for multi-state deterioration systems under random

shock. Appl. Math. Model. 2023, 115, 80–99. [CrossRef]
6. Álvarez, C.; López-Campos, M.; Stegmaier, R.; Mancilla-David, F.; Schurch, R.; Angulo, A. A condition-based maintenance model

including resource constraints on the number of inspections. IEEE Trans. Reliab. 2019, 69, 1165–1176. [CrossRef]
7. Chen, Y.; Liu, Y.; Jiang, T. Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily

distributed maintenance time. Reliab. Eng. Syst. Saf. 2021, 211, 107576. [CrossRef]
8. Yin, M.; Liu, Y.; Liu, S.; Chen, Y.; Yan, Y. Scheduling heterogeneous repair channels in selective maintenance of multi-state systems

with maintenance duration uncertainty. Reliab. Eng. Syst. Saf. 2023, 231, 108977. [CrossRef]
9. Zhang, J.; Xiao, M.; Gao, L. An active learning reliability method combining Kriging constructed with exploration and exploitation

of failure region and subset simulation. Reliab. Eng. Syst. Saf. 2019, 188, 90–102. [CrossRef]
10. Teixeira, R.; O’Connor, A.; Nogal, M. Probabilistic sensitivity analysis of offshore wind turbines using a transformed kullback-

leibler divergence. Struct. Saf. 2019, 81, 101860. [CrossRef]
11. Roy, A.; Manna, R.; Chakraborty, S. Support vector regression based metamodeling for structural reliability analysis. Probabilistic

Eng. Mech. 2019, 55, 78–89. [CrossRef]
12. Boral, S.; Chaturvedi, S.K.; Naikan, V.N.A. A case-based reasoning system for fault detection and isolation: A case study on

complex gearboxes. J. Qual. Maint. Eng. 2019, 25, 213–235. [CrossRef]
13. Tang, X.; Xiao, M.; Liang, Y.; Zhu, H.; Li, J. Online updating belief-rule-base using Bayesian estimation. Knowl.-Based Syst. 2019,

171, 93–105. [CrossRef]
14. Biondini, F.; Frangopol, D.M. Life-cycle performance of deteriorating structural systems under uncertainty. J. Struct. Eng. 2016,

142, F4016001. [CrossRef]
15. Schumann, J.; Kulkarni, C.; Lowry, M.; Bajwa, A.; Teubert, C.; Watkins, J. Prognostics for Autonomous Electric-Propulsion

Aircraft. Int. J. Progn. Health Manag. 2021, 12, 2940. [CrossRef]
16. Longo, N.; Serpi, V.; Jacazio, G.; Sorli, M. Model-based predictive maintenance techniques applied to automotive industry. In

Proceedings of the PHM Society European Conference, Utrecht, The Netherlands, 3–6 July 2018; Volume 4.
17. Jeong, H.; Park, B.; Park, S.; Min, H.; Lee, S. Fault detection and identification method using observer-based residuals. Reliab.

Eng. Syst. Saf. 2019, 184, 27–40. [CrossRef]
18. Vollert, S.; Theissler, A. Challenges of machine learning-based RUL prognosis: A review on NASA’s C-MAPSS data set. In

Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE,
Vasteras, Sweden, 7–10 September 2021; pp. 1–8.

19. Han, H.; Cui, X.; Fan, Y.; Qing, H. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault
indicative features. Appl. Therm. Eng. 2019, 154, 540–547. [CrossRef]

20. Zhu, X.; Xiong, J.; Liang, Q. Fault diagnosis of rotation machinery based on support vector machine optimized by quantum
genetic algorithm. IEEE Access 2018, 6, 33583–33588. [CrossRef]

21. Xiong, J.; Zhang, Q.; Sun, G.; Zhu, X.; Liu, M.; Li, Z. An information fusion fault diagnosis method based on dimensionless
indicators with static discounting factor and KNN. IEEE Sens. J. 2015, 16, 2060–2069. [CrossRef]

22. Madeti, S.R.; Singh, S. Modeling of PV system based on experimental data for fault detection using kNN method. Sol. Energy
2018, 173, 139–151. [CrossRef]

http://doi.org/10.1007/s11740-017-0740-9
http://dx.doi.org/10.1115/1.4048787
http://dx.doi.org/10.1016/j.eswa.2021.114598
http://dx.doi.org/10.1016/j.strusafe.2020.102019
http://dx.doi.org/10.1016/j.apm.2022.10.036
http://dx.doi.org/10.1109/TR.2019.2955558
http://dx.doi.org/10.1016/j.ress.2021.107576
http://dx.doi.org/10.1016/j.ress.2022.108977
http://dx.doi.org/10.1016/j.ress.2019.03.002
http://dx.doi.org/10.1016/j.strusafe.2019.03.007
http://dx.doi.org/10.1016/j.probengmech.2018.11.001
http://dx.doi.org/10.1108/JQME-05-2018-0039
http://dx.doi.org/10.1016/j.knosys.2019.02.007
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001544
http://dx.doi.org/10.36001/ijphm.2021.v12i3.2940
http://dx.doi.org/10.1016/j.ress.2018.02.007
http://dx.doi.org/10.1016/j.applthermaleng.2019.03.111
http://dx.doi.org/10.1109/ACCESS.2018.2789933
http://dx.doi.org/10.1109/JSEN.2015.2497545
http://dx.doi.org/10.1016/j.solener.2018.07.038


Processes 2023, 11, 3229 23 of 24

23. Hosseini, S.M.; Carli, R.; Cavone, G.; Dotoli, M. Distributed control of electric vehicle fleets considering grid congestion and
battery degradation. Internet Technol. Lett. 2020, 3, e161. [CrossRef]

24. Samaranayake, L.; Longo, S. Degradation control for electric vehicle machines using nonlinear model predictive control. IEEE
Trans. Control. Syst. Technol. 2017, 26, 89–101. [CrossRef]

25. Paul, S.; Morales-Menendez, R. Chatter mitigation in milling process using discrete time sliding mode control with type 2-fuzzy
logic system. Appl. Sci. 2019, 9, 4380. [CrossRef]

26. Scarabaggio, P.; Carli, R.; Cavone, G.; Dotoli, M. Smart control strategies for primary frequency regulation through electric
vehicles: A battery degradation perspective. Energies 2020, 13, 4586. [CrossRef]

27. Aivaliotis, P.; Arkouli, Z.; Georgoulias, K.; Makris, S. Degradation curves integration in physics-based models: Towards the
predictive maintenance of industrial robots. Robot. Comput. Integr. Manuf. 2021, 71, 102177. [CrossRef]

28. Cao, Q.; Zanni-Merk, C.; Samet, A.; Reich, C.; de Beuvron, F.D.B.; Beckmann, A.; Giannetti, C. KSPMI: A Knowledge-based
System for Predictive Maintenance in Industry 4.0. Robot. Comput. Integr. Manuf. 2022, 74, 102281. [CrossRef]

29. Traini, E.; Bruno, G.; Lombardi, F. Design of a Physics-Based and Data-Driven Hybrid Model for Predictive Maintenance.
In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Nantes, France, 5–9
September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 536–543.

30. Duncan Imbassahy, D.W.; Costa Marques, H.; Conceição Rocha, G.; Martinetti, A. Empowering Predictive Maintenance: A
Hybrid Method to Diagnose Abnormal Situations. Appl. Sci. 2020, 10, 6929. [CrossRef]

31. Zagorowska, M.; Wu, O.; Ottewill, J.R.; Reble, M.; Thornhill, N.F. A survey of models of degradation for control applications.
Annu. Rev. Control. 2020, 50, 150–173. [CrossRef]

32. Jimenez, J.J.M.; Schwartz, S.; Vingerhoeds, R.; Grabot, B.; Salaün, M. Towards multi-model approaches to predictive maintenance:
A systematic literature survey on diagnostics and prognostics. J. Manuf. Syst. 2020, 56, 539–557. [CrossRef]

33. Thoppil, N.M.; Vasu, V.; Rao, C. Deep learning algorithms for machinery health prognostics using time-series data: A review. J.
Vib. Eng. Technol. 2021, 9, 1123–1145. [CrossRef]

34. Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison,
challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [CrossRef]

35. Derbali, M.; Buhari, S.M.; Tsaramirsis, G.; Stojmenovic, M.; Jerbi, H.; Abdelkrim, M.N.; Al-Beirutty, M.H. Water desalination fault
detection using machine learning approaches: A comparative study. IEEE Access 2017, 5, 23266–23275. [CrossRef]

36. Li, L.; Ding, S.X. Performance supervised fault detection schemes for industrial feedback control systems and their data-driven
implementation. IEEE Trans. Ind. Inform. 2019, 16, 2849–2858. [CrossRef]

37. Prakash, O.; Samantaray, A.K.; Bhattacharyya, R. Adaptive prognosis of hybrid dynamical system for dynamic degradation
patterns. IEEE Trans. Ind. Electron. 2019, 67, 5717–5728. [CrossRef]

38. Si, X.; Ren, Z.; Hu, X.; Hu, C.; Shi, Q. A novel degradation modeling and prognostic framework for closed-loop systems with
degrading actuator. IEEE Trans. Ind. Electron. 2019, 67, 9635–9647. [CrossRef]

39. Bouyahia, O.; Betin, F.; Yazidi, A. Fault tolerant variable structure control of six-phase induction generator for wind turbines.
IEEE Trans. Energy Convers. 2022, 37, 1579–1588. [CrossRef]

40. Marquez, J.; Zafra-Cabeza, A.; Bordons, C.; Ridao, M.A. A fault detection and reconfiguration approach for MPC-based energy
management in an experimental microgrid. Control. Eng. Pract. 2021, 107, 104695. [CrossRef]

41. Xiao, S.; Dong, J. Robust adaptive fault-tolerant tracking control for uncertain linear systems with actuator failures based on the
closed-loop reference model. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3448–3455. [CrossRef]

42. Jerbi, H.; Kchaou, M.; Alshammari, O.; Abassi, R.; Popescu, D. Observer-based feedback control of interval-valued fuzzy singular
system with time-varying delay and stochastic faults. Int. J. Comput. Commun. Control. 2022, 17, 4957. [CrossRef]

43. Kchaou, M.; Jerbi, H.; Stefanoiu, D.; Popescu, D. Quantized Fault-Tolerant Control for Descriptor Systems with Intermittent
Actuator Faults, Randomly Occurring Sensor Non-Linearity, and Missing Data. Mathematics 2022, 10, 1872. [CrossRef]

44. Mashud, A.; Bera, M.K. Control allocation based fault tolerant control of descriptor system with actuator saturation. ISA Trans.
2022, 129, 380–394. [CrossRef] [PubMed]

45. Zhang, D.F.; Zhang, S.P.; Wang, Z.Q.; Lu, B.C. Dynamic control allocation algorithm for a class of distributed control systems. Int.
J. Control. Autom. Syst. 2020, 18, 259–270. [CrossRef]

46. Sun, K.; Liu, L.; Qiu, J.; Feng, G. Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE
Trans. Fuzzy Syst. 2020, 29, 786–796. [CrossRef]

47. Wang, X.; Hu, C.; Si, X.; Pang, Z.; Ren, Z. An adaptive remaining useful life estimation approach for newly developed system
based on nonlinear degradation model. IEEE Access 2019, 7, 82162–82173. [CrossRef]

48. Glad, T.; Ljung, L. Control Theory; CRC Press: Boca Raton, FL, USA, 2018.
49. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
50. Björsell, N.; Dadash, A.H. Finite horizon degradation control of complex interconnected systems. IFAC-PapersOnLine 2021,

54, 319–324. [CrossRef]

http://dx.doi.org/10.1002/itl2.161
http://dx.doi.org/10.1109/TCST.2016.2646322
http://dx.doi.org/10.3390/app9204380
http://dx.doi.org/10.3390/en13174586
http://dx.doi.org/10.1016/j.rcim.2021.102177
http://dx.doi.org/10.1016/j.rcim.2021.102281
http://dx.doi.org/10.3390/app10196929
http://dx.doi.org/10.1016/j.arcontrol.2020.08.002
http://dx.doi.org/10.1016/j.jmsy.2020.07.008
http://dx.doi.org/10.1007/s42417-021-00286-x
http://dx.doi.org/10.1007/s10489-021-03004-y
http://dx.doi.org/10.1109/ACCESS.2017.2716978
http://dx.doi.org/10.1109/TII.2019.2940099
http://dx.doi.org/10.1109/TIE.2019.2931489
http://dx.doi.org/10.1109/TIE.2019.2952828
http://dx.doi.org/10.1109/TEC.2022.3168791
http://dx.doi.org/10.1016/j.conengprac.2020.104695
http://dx.doi.org/10.1109/TSMC.2018.2876125
http://dx.doi.org/10.15837/ijccc.2022.6.4957
http://dx.doi.org/10.3390/math10111872
http://dx.doi.org/10.1016/j.isatra.2021.12.028
http://www.ncbi.nlm.nih.gov/pubmed/35039154
http://dx.doi.org/10.1007/s12555-017-9768-z
http://dx.doi.org/10.1109/TFUZZ.2020.2965890
http://dx.doi.org/10.1109/ACCESS.2019.2924148
http://dx.doi.org/10.1016/j.ifacol.2021.08.036


Processes 2023, 11, 3229 24 of 24

51. Yan, J.; Li, B.; Guo, G.; Zeng, Y.; Zhang, M. Nonlinear modeling and identification of the electro-hydraulic control system of an
excavator arm using BONL model. Chin. J. Mech. Eng. 2013, 26, 1212–1221. [CrossRef]

52. Hosseinzadeh Dadash, A. [Dataset] Degradation control in closed-loop system. Mendeley Data 2022, V1. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3901/CJME.2013.06.1212
http://dx.doi.org/10.17632/r8dxd78xpk.1

	Introduction
	Materials and Methods
	State-Space Mode and Degradation
	Optimal Control
	Virtual Health State
	Identification of 
	Identification of Wx and Wu
	Relevance Vector Machine
	Algorithm

	Simulation
	Dynamical Model of the Rolling Stand
	Degradations Models
	Failing Criterion and Penalty Matrices

	Results
	Closed-Loop Responses
	Effect of Penalties
	Degradation Simulation
	Identification of the Dynamics of Degradation
	Degradation Control
	Effect of Penalties
	Control Quality

	Discussion
	Conclusions
	References

