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Abstract: The identification and prediction of petrofacies plays a crucial role in the study of shale
oil and gas “sweet spots”. However, the petrofacies identified through core and core test data are
not available for all wells. Therefore, it is essential to establish a petrofacies identification model
using conventional well logging data. In this study, we determined the petrofacies of shale oil
reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China, based on scanning electron
microscopy, core porosity and total organic carbon (TOC), and brittleness index calculations from
X-ray diffraction (XRD) experiments conducted on seven members of the formation. Furthermore,
we compared the interpreted logs with the raw well logs data clustered into electrofacies in order
to assess their compliance with the petrofacies, using the Multi-Resolution Graph-Based Clustering
(MRGC) method. Through an analysis of pore structure type, core porosity, TOC, and brittleness
index, we identified four types of lithofacies with varying reservoir quality: PF A > PF B > PF C > PF
D. The compliance of the clustered electrofacies with the petrofacies obtained from the interpreted
logs was found to be 85.42%. However, the compliance between the clustered electrofacies and the
petrofacies obtained from the raw well logs was only 47.92%. Hence, the interpreted logs exhibit
a stronger correlation with petrofacies characterization, and their utilization as input data is more
beneficial in accurately predicting petrofacies through machine learning algorithms.

Keywords: electrofacies; well logs; brittleness index; interpreted logs; raw well logs

1. Introduction

Lake-phase mudstone, shale, and oil shale, along with other fine-grained sedimentary
rocks, are abundant in the Triassic Yanchang Formation of the Ordos Basin, offering signifi-
cant potential for unconventional oil and gas resources such as shale oil and gas and oil
shale [1]. The classification of reservoir petrofacies serves as the foundation and key to oil
and gas exploration, with facies exerting a significant control on the distribution of shale
oil and gas. Therefore, it holds immense importance to accurately characterize and predict
reservoir petrofacies [2,3]. Petrofacies studies typically rely on core data, encompassing
observations of core hand specimens, thin sections, scanning electron microscopy, X-ray
diffraction (XRD), and physical property tests [4–7]. However, the availability of cores is
often limited due to constraints in drilling time and cost [3,8]. Geophysical logging data, on
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the other hand, contain rich petrophysical information, enabling indirect petrofacies classi-
fication. Nevertheless, given the complexity and heterogeneity of the reservoir, there exists
a considerable amount of redundancy among the log curves, necessitating careful selection
of curve attributes and algorithm preferences for accurate petrofacies prediction [5,9–11].

The classification of shale petrofacies typically relies on indicators such as hydrocarbon-
bearing fracturability, organic matter abundance, sedimentary structure, and mineralogical
fractions, which are crucial in assessing their potential for hydrocarbon production [12–14].
Venieri et al. (2021) classified organic-rich shales into five lithofacies categories based on
core observations, X-ray diffraction (XRD) analyses, and log response characterization [15].
Atchley et al. (2021) classified shale reservoirs into six petrofacies based on gamma ray
measurements, density porosity cut-offs, and total organic carbon (TOC) values [14]. Conse-
quently, petrofacies often exhibit distinct characteristics in logging curves, forming the basis
for petrofacies prediction through logging data. Currently, many scholars have achieved sat-
isfactory results in petrofacies identification using machine learning algorithms [11,16,17].
In machine learning, facies prediction is typically accomplished through clustering or
classification algorithms [18,19]. Clustering algorithms are straightforward, as they do not
require prior knowledge regarding the number and attributes of facies, nor do they require
training [9]. Among these clustering algorithms, the Multi-Resolution Graph-Based Cluster-
ing (MRGC) algorithm has proven successful in log curve reconstruction [20], permeability
prediction [21], flow zone unit determination [22], and petrofacies identification [5,23,24].

The shale of the seventh member of the Triassic Yanchang Formation is widely dis-
tributed, and it serves as a significant hydrocarbon source rock with substantial resources.
At the Ordos Basin, the estimated resource amount reaches 33× 108 metric tons [25]. In this
study, the petrofacies type of the shale oil interval was determined through various meth-
ods, including scanning electron microscopy (SEM), core porosity and total organic carbon
(TOC) analysis, and X-ray diffraction (XRD) experiments. Furthermore, we assessed the
consistency between the electrofacies and the petrofacies derived from interpreted logs and
raw well logs, which were clustered and used as input data in conjunction with the MRGC
algorithm. Our findings contribute to the development of petrofacies classification schemes
for shale reservoirs and provide a viable approach for high-precision petrofacies prediction.

2. Geological Background

The Ordos Basin, located in the western part of the North China Platform, is the
second largest sedimentary basin in China. It can be divided into six major tectonic
units: the Yimeng Uplift, Weibei Uplift, Western Overthrust Belt, Tianhuan Depression,
Yishan Slope, and Jinxi Fold-Fault Belt (Figure 1a). This basin originated on the stable
crystalline basement of the Taikonian period and experienced tectonic sedimentary infill
evolution from the Paleozoic to the Cenozoic, resulting in the formation of a cover layer
with an average thickness of 4–5 km [26]. During the Late Triassic, the southern part of the
basin underwent uplift due to the collision between the Yangzi Plate and the North China
Plate, serving as the primary source of material for the southern region of the basin [27].
The North China Plate experienced extrusion from the south by the offset of the Yangzi
Plate and from the north by the Xingmeng Plate, causing subsidence and forming a slope
with angles of 3.5◦ to 5.5◦ in the south and 1.5◦ to 2.5◦ in the north of the Late Triassic
Basin, respectively [26,28]. In the early Late Triassic, the basin’s basement rapidly subsided,
leading to the intrusion of lakes and the transportation and accumulation of sediments
from the Qinling and Liupanshan regions in the south and the Yinshan Mountains in the
north, respectively [26,29].
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within the Ordos Basin [32]. The lake-phase mudstone and shale extend in a northwest–

southeast direction across the region, corresponding to the semi-deep to deep lake zone. 

Figure 1. (a) Major structural units of the Ordos Basin and the location of the study area [30]; (b)
cross-section (A to A′) in (a) of the Ordos Basin, showing the various tectonic units and strata (Triassic
rocks in yellow) [31].

Our study area is located in the southern part of the Ordos Basin (Figure 1a), and
several drilled hydrocarbon wells in the region encounter Triassic formations (Figure 1b).
The Upper Triassic Yanchang Formation is stratigraphically divided into 10 sublayers,
ranging from YC10 to YC1 (Figure 2). The YC7 reservoir is identified as an unconventional
shale reservoir, with a thickness between 100 and 120 m. The lithology is predominantly
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dark black mud shale interbedded with thin layers of silty mudstone and silty siltstone.
During the deposition of the YC7, the lake basin experienced significant tectonic activity
and underwent rapid expansion, ultimately becoming the largest lake in the Mesozoic era
within the Ordos Basin [32]. The lake-phase mudstone and shale extend in a northwest–
southeast direction across the region, corresponding to the semi-deep to deep lake zone. The
thickness of these shale deposits ranges from 10 to 120 m, with some areas exhibiting shale
layers exceeding 10 m in thickness over an extent of up to 3 × 104 square kilometers [33].
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3. Materials and Methods
3.1. Materials and Experiments

Conventional logging data and ECS logging data were collected from two wells in
the study area. The locations of the two wells are displayed in Figure 1. The conventional
logging data comprise CAL (Caliper), SP (Spontaneous Potential), GR (Gamma ray), PE
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(Photoelectric Absorption Cross-Section Index), DT (Compressional Slowness), NPHI (Neu-
tron Porosity), DEN (Bulk Density), RD (Deep Resistivity), and RS (Shallow Resistivity).

A total of 48 depth points were sampled to collect core samples for experimental
analysis. Porosity measurements were conducted using an ULTRAPORE-200A helium core
porosimeter (Core Lab, USA) at a temperature of 25 ◦C and pressure of 1.025 bar. To deter-
mine the total organic carbon (TOC) content in the shale samples, pyrolysis experiments
were performed using the Rock-Eval 6 analyzer. The experimental results for core porosity
and TOC are summarized in Table 1. X-ray diffraction (XRD) experiments were conducted
on the shale samples to analyze the mineral fractions. A MiniFlex 600 instrument equipped
with Cu-Kα radiation was used, and the experimental samples were 300 mesh powders.
The XRD analysis involved scanning the samples from 5◦ to 90◦ in 0.02◦ increments to
obtain precise and accurate results [35]. The microstructure of the samples was examined
using scanning electron microscopy, and the corresponding results are presented in Table 2.

3.2. The Multi-Resolution Graph-Based Clustering (MRGC) Algorithms

The MRGC algorithm is an unsupervised clustering algorithm that combines the
advantages of the KNN (K-Nearest Neighbors) algorithm and graph theory algorithm [36].
Two important parameters in this algorithm are the neighbor index (NI) and the kernel
representative index (KRI). In the context of considering the sample set as an attraction set
with an attraction relationship, the NI represents the ability of a sample point to attract all
other sample points within the attraction set. A higher NI value indicates that the point is
closer to the core of a class [20]. On the other hand, the KRI reflects the ability of the current
attraction set to act as a kernel for fusing other attraction sets. A higher KRI value signifies
that the attraction set has a greater dominance in the fusion process [37].

Table 1. The petrophysical features of the four types of petrofacies. Porosity and TOC results
were obtained from core experiments, and brittleness index calculation results were obtained from
XRD experiments.

NO. POR
(%)

TOC
(%)

BIbm
(%) PF NO. POR

(%)
TOC
(%)

BIbm
(%) PF

1 1.25 1.44 36.28 PF D 25 1.86 3.59 29.43 PF D
2 1.77 3.21 36.67 PF D 26 2.33 3.16 29.87 PF D
3 0.68 3.45 28.81 PF D 27 1.79 3.87 24.82 PF D
4 0.70 2.84 29.29 PF D 28 1.40 2.68 24.33 PF D
5 0.96 1.48 43.85 PF D 29 0.39 2.12 20.89 PF D
6 2.03 3.75 26.75 PF B 30 1.15 0.88 50.67 PF D
7 1.47 4.12 24.21 PF B 31 1.15 0.88 32.503 PF C
8 1.87 4.77 25.21 PF D 32 1.40 4.89 33.917 PF C
9 2.08 4.43 34.12 PF B 33 1.80 6.11 26.619 PF C

10 2.58 2.89 34.38 PF B 34 1.10 5.22 22.703 PF B
11 1.61 4.93 27.19 PF C 35 1.70 5.16 30.889 PF B
12 2.12 4.55 25.73 PF B 36 1.90 7.26 24.224 PF C
13 1.61 4.18 32.19 PF B 37 0.90 7.93 21.579 PF B
14 1.05 3.34 30.78 PF D 38 1.90 3.11 38.167 PF D
15 2.24 2.9 25.77 PF A 39 1.40 6.19 10.254 PF C
16 1.82 3.23 30.66 PF A 40 3.70 9.19 38.946 PF B
17 1.91 4.49 27.82 PF A 41 1.40 7.87 23.333 PF B
18 1.56 5.61 31.22 PF B 42 2.10 6.38 28.549 PF B
19 2.12 5.19 27.84 PF C 43 1.50 5.2 29.125 PF D
20 1.87 3.74 25.5 PF C 44 2.00 6.7 22.759 PF C
21 2.19 4.92 21.33 PF C 45 1.60 6.62 17.123 PF B
22 1.48 5.38 28.31 PF B 46 2.60 7.03 26.764 PF B
23 1.56 5.97 37.2 PF C 47 1.50 6.13 33.026 PF D
24 1.95 2.29 36.84 PF C 48 1.70 3.2 26.964 PF D
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Table 2. Characterization of petrofacies types for the shale oil reservoirs from the 7 members of the
Upper Triassic Yanchang Formation, Ordos Basin, China.

Petrofacies Characterization SEM XRD

PF A

High porosity, high TOC, and high
brittleness index; clay mineral

interlayer pores and fractures, and
interparticle pores.
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13 1.61 4.18 32.19 PF B 37 0.90 7.93 21.579 PF B 

14 1.05 3.34 30.78 PF D 38 1.90 3.11 38.167 PF D 

15 2.24 2.9 25.77 PF A 39 1.40 6.19 10.254 PF C 

16 1.82 3.23 30.66 PF A 40 3.70 9.19 38.946 PF B 

17 1.91 4.49 27.82 PF A 41 1.40 7.87 23.333 PF B 

18 1.56 5.61 31.22 PF B 42 2.10 6.38 28.549 PF B 

19 2.12 5.19 27.84 PF C 43 1.50 5.2 29.125 PF D 

20 1.87 3.74 25.5 PF C 44 2.00 6.7 22.759 PF C 

21 2.19 4.92 21.33 PF C 45 1.60 6.62 17.123 PF B 

22 1.48 5.38 28.31 PF B 46 2.60 7.03 26.764 PF B 

23 1.56 5.97 37.2 PF C 47 1.50 6.13 33.026 PF D 

24 1.95 2.29 36.84 PF C 48 1.70 3.2 26.964 PF D 

Table 2. Characterization of petrofacies types for the shale oil reservoirs from the 7 members of the 

Upper Triassic Yanchang Formation, Ordos Basin, China. 

Petrofacies Characterization SEM XRD 

PF A 

High porosity, high 

TOC, and high brittle-

ness index; clay min-

eral interlayer pores 

and fractures, and in-

terparticle pores. 
  

PF B 

Median porosity, me-

dian TOC, and high 

brittleness index; in-

terparticle pores and 

intraparticle pores. 

  

PF C

Low porosity, median TOC, and low
brittleness index; clay mineral

interlayer pores and fractures, and
sparsely developed interparticle and

intraparticle pores.
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where α represents the smoothing factor greater than zero [23]. For each sample point in 
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The neighbor index of a sample point x is determined by the normalized value of the 
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��(�) =
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���� − ����

 (3)

Among them, 

���� = ���{�(��)}�=1,2,…,� (4)
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PF D
Ultra-low porosity, low TOC, and

high brittleness index; clay mineral
interlayer pores and fractures.

Processes 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

PF C 

Low porosity, median 

TOC, and low brittle-

ness index; clay min-

eral interlayer pores 

and fractures, and 

sparsely developed 

interparticle and in-

traparticle pores.   

PF D 

Ultra-low porosity, 

low TOC, and high 

brittleness index; clay 

mineral interlayer 

pores and fractures. 

  

3.2. The Multi-Resolution Graph-Based Clustering (MRGC) Algorithms 

The MRGC algorithm is an unsupervised clustering algorithm that combines the ad-

vantages of the KNN (K-Nearest Neighbors) algorithm and graph theory algorithm [36]. 

Two important parameters in this algorithm are the neighbor index (NI) and the kernel 

representative index (KRI). In the context of considering the sample set as an attraction 

set with an attraction relationship, the NI represents the ability of a sample point to attract 

all other sample points within the attraction set. A higher NI value indicates that the point 

is closer to the core of a class [20]. On the other hand, the KRI reflects the ability of the 

current attraction set to act as a kernel for fusing other attraction sets. A higher KRI value 

signifies that the attraction set has a greater dominance in the fusion process [37]. 

Let’s assume that there are N sample points in the sample set S to be classified, de-

noted as S = {�1, �2, …, �i, …, �N}. Each sample point � in the sample set S is represented 

as a vector with multiple attributes, and y represents the nth closest sample point to � in 

the sample set S, where n ≤ N − 1. In order to determine the point at which no further 

attraction exists between sample points, a threshold K is set, indicating the Kth nearest 

neighbor. The attractiveness of a sample point x towards its nth sample point can be math-

ematically expressed as follows: 

��(�) = � �−
�
� , � �� �ℎ� ��ℎ ������� ����ℎ��� ������ ����� �� �，� ≤ � 

  0 , � ���� ��� ������ �� �ℎ� ��� �� � ������� ����ℎ���� �� �
 (1)

where α represents the smoothing factor greater than zero [23]. For each sample point in 

the set, the following calculations are performed: 

�(�) = � ��(�)

���

���

 (2)

The neighbor index of a sample point x is determined by the normalized value of the 

�(�) function and can be mathematically expressed as follows: 

��(�) =
�(�) − ����

���� − ����

 (3)

Among them, 

���� = ���{�(��)}�=1,2,…,� (4)

Processes 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

PF C 

Low porosity, median 

TOC, and low brittle-

ness index; clay min-

eral interlayer pores 

and fractures, and 

sparsely developed 

interparticle and in-

traparticle pores.   

PF D 

Ultra-low porosity, 

low TOC, and high 

brittleness index; clay 

mineral interlayer 

pores and fractures. 

  

3.2. The Multi-Resolution Graph-Based Clustering (MRGC) Algorithms 

The MRGC algorithm is an unsupervised clustering algorithm that combines the ad-

vantages of the KNN (K-Nearest Neighbors) algorithm and graph theory algorithm [36]. 

Two important parameters in this algorithm are the neighbor index (NI) and the kernel 

representative index (KRI). In the context of considering the sample set as an attraction 

set with an attraction relationship, the NI represents the ability of a sample point to attract 

all other sample points within the attraction set. A higher NI value indicates that the point 

is closer to the core of a class [20]. On the other hand, the KRI reflects the ability of the 

current attraction set to act as a kernel for fusing other attraction sets. A higher KRI value 

signifies that the attraction set has a greater dominance in the fusion process [37]. 

Let’s assume that there are N sample points in the sample set S to be classified, de-

noted as S = {�1, �2, …, �i, …, �N}. Each sample point � in the sample set S is represented 

as a vector with multiple attributes, and y represents the nth closest sample point to � in 

the sample set S, where n ≤ N − 1. In order to determine the point at which no further 

attraction exists between sample points, a threshold K is set, indicating the Kth nearest 

neighbor. The attractiveness of a sample point x towards its nth sample point can be math-

ematically expressed as follows: 

��(�) = � �−
�
� , � �� �ℎ� ��ℎ ������� ����ℎ��� ������ ����� �� �，� ≤ � 

  0 , � ���� ��� ������ �� �ℎ� ��� �� � ������� ����ℎ���� �� �
 (1)

where α represents the smoothing factor greater than zero [23]. For each sample point in 

the set, the following calculations are performed: 

�(�) = � ��(�)

���

���

 (2)

The neighbor index of a sample point x is determined by the normalized value of the 

�(�) function and can be mathematically expressed as follows: 

��(�) =
�(�) − ����

���� − ����
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Let’s assume that there are N sample points in the sample set S to be classified, denoted
as S = {x1, x2, . . ., xi, . . ., xN}. Each sample point x in the sample set S is represented as
a vector with multiple attributes, and y represents the nth closest sample point to x in
the sample set S, where n ≤ N − 1. In order to determine the point at which no further
attraction exists between sample points, a threshold K is set, indicating the Kth nearest
neighbor. The attractiveness of a sample point x towards its nth sample point can be
mathematically expressed as follows:

δn(x) =
{

e−
m
α , x is the mth nearest neighbor sample point o f y, m ≤ K

0 , x does not belong to the set o f K nearest neighbors o f y
(1)

where α represents the smoothing factor greater than zero [23]. For each sample point in
the set, the following calculations are performed:

S(x) =
N−1

∑
i=1

δn(x) (2)
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The neighbor index of a sample point x is determined by the normalized value of the
S(x) function and can be mathematically expressed as follows:

NI(x) =
S(x)− Smin
Smax − Smin

(3)

Among them,
Smin = Min{S(xi)}i=1,2,...,N (4)

Smax = Max{S(xi)}i=1,2,...,N (5)

Smin and Smax are the minimum and maximum values of the S(x) function, respec-
tively; NI(x) lies between 0 and 1.

The values Smin and Smax represent the minimum and maximum values of the S(x)
function, respectively. The neighbor index NI(x) is a normalized value that falls within the
range of 0 and 1.

The neighbor index (NI) is a localized index derived from the kernel representative
index (KRI) that incorporates both the neighbor index of the current sample point and
the neighboring relationships and spatial distances of the sample points. The KRI can be
mathematically expressed as follows:

KRI(x) = M(x, z)× NI(x)× D(x, z) (6)

where z represents the nearest neighbor sample points to the sample point x based on the
proximity index. M(x, z) denotes the neighborhood number of the sample point x relative
to the sample z. D(x, z) represents the distance function, commonly calculated using the
Euclidean distance formula.

The kernel representative index (KRI) is sorted in descending order to create a curve,
which exhibits multiple inflection points that mark the transition from one smooth segment
to another. Each inflection point indicates a change in the classification level, representing
different levels of clustering results [24]. Based on specific facies analysis requirements,
users have the flexibility to set parameters such as the maximum number of clusters, the
minimum number of clusters, and the maximum number of optimal clustering schemes.
Through analysis and calculation, the MRGC algorithm can automatically identify and
compare several optimal clustering schemes, enabling users to efficiently delineate electro-
facies [5,23].

4. Results
4.1. Petrofacies

The total organic carbon (TOC) content, reservoir properties, and fracturability play
crucial roles in the development of shale oil and gas reservoirs. In this study, a total of
48 core samples were collected to analyze porosity, TOC content, and mineral fractions.
In a related study by Kang et al. (2020), a novel mineralogical brittleness index was
introduced, which considers the presence of brittle minerals in shale formations [38]. The
mineralogical brittleness index can be mathematically defined as a function of the weights
of brittle minerals:

BIbm =
(
WQ + 0.49×WF + 0.51×Wc + 0.44×WD

)
/WT (7)

where WQ, WF, Wc, and WD represent the weights percentage of quartz, feldspar, calcite,
and dolomite, respectively. Additionally, WT denotes the total mineral weight percentage
(=100%). The brittleness index was calculated for the mineral fractions obtained through
experimental analysis. The results of the brittleness index calculations are summarized
in Table 1.



Processes 2023, 11, 3131 8 of 13

The “sweet spot” criteria for a shale reservoir typically involve high porosity, total
organic carbon (TOC) content, and brittleness index [15,39,40]. In this study, we examined
the correlation between core TOC, porosity (POR), and the mineralogical brittleness index
(BIbm). TOC and POR showed a positive correlation based on the distribution of most
points (Figure 3a). TOC and BIbm showed a negative correlation based on the distribution of
most points (Figure 3c). There was little correlation between POR and BIbm (Figure 3b). For
the “sweet spot” of shale oil reservoirs, we prefer reservoirs with high POR, high TOC, and
high brittleness index. Consequently, the petrofacies classification necessitates a trade-off
between BIbm and TOC.
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Based on SEM, core porosity, TOC, and brittleness index, we classified petrofacies into
four types (Table 2).

Petrofacies A: High porosity (1.48–4.70%, average 2.17%), high TOC (2.29–15.19%,
average 6.35%), and high BIbm (25.77–38.95%, average 32.87%). Clay mineral interlayer
pores, fractures, and interparticle pores are developed.

Petrofacies B: Median porosity (1.34–3.90%, average 2.01%), median TOC (2.89–8.03%,
average 5.04%), and high BIbm (23.33–38.17%, average 29.76%). Intraparticle pores and
interparticle pores are developed.

Petrofacies C: Low porosity (0.80–2.62%, average 1.61%), median TOC (3.16–7.26%,
average 5.10%), and low BIbm (10.25–29.87%, average 24.78%). Clay mineral interlayer pores
and fractures are developed; interparticle and intraparticle pores are sparsely developed.

Petrofacies D: Ultra-low porosity (0.50–1.44%, average 1.01%), low TOC (0.48–9.93%,
average 4.17%), and high BIbm (17.12–50.67%, average 30.29%). Clay mineral interlayer
pores and fractures are developed.

4.2. Electrofacies

We performed electrofacies analysis by the MRGC algorithm using two types of
logging data: one with interpreted logs (Model 1) and the other with raw well logs (Model 2).
We compared the predictive effectiveness of both models.

4.2.1. Electrofacies from Interpreted Logs

POR and TOC were interpreted using conventional logging using the method pro-
posed by Yu et al. (2017, 2018) [39,40]. The brittleness index was calculated using ECS
logging, using the method proposed by Kang et al. (2020) [38]. Interpreted logs (POR,
TOC, and BI) were used as input data for clustering to obtain electrofacies via the MRGC
algorithm. Interpreted logs ultimately classify electrofacies into four types (Figure 4). EF A:
high porosity, high TOC, and high brittleness index; EF B: median porosity, median TOC,
and high brittleness index; EF C: median porosity, median TOC, and low brittleness index;
EF D: tight porosity, low TOC, and high brittleness index. The electrofacies types obtained
by clustering have more consistent characteristics with petrofacies types.
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Figure 4. Final classified characterization of interpreted logs for electrofacies model 1, using MRGC
algorithm (The green line is the Gaussian curve of the frequency histogram; the black line is the
cumulative percentage of the frequency histogram).

Electrofacies clustering results for tight oil reservoirs from two wells are presented in
log plots (Figure 5). The 10th track shows petrofacies obtained by core SEM, core porosity,
core TOC, and brittleness index calculated from XRD. The 11th track shows the classification
results of electrofacies from the interpreted logs data using the MRGC algorithm (Model 1).
The core-based petrofacies are in agreement with the model 1 electrofacies. The electrofacies
obtained from model 1 clustering are 85.42% compatible with the core-based petrofacies.
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4.2.2. Electrofacies from Raw Well Logs

Electrofacies are often clustered using conventional logging data [5,41]. The conven-
tional log data selected for this study include AC, DEN, NPHI, GR, PE, RD, and RS. Raw
well logs were used as input data for clustering to obtain electrofacies via the MRGC
algorithm. Raw well logs ultimately classify electrofacies into four types (Figure 6). EF A:
low AC, low DEN, low NPHI, high GR, high PE, high RD, and high RS; EF B: low AC, low
DEN, high NPHI, high GR, high PE, median RD, and median RS; EF C: low AC, median
DEN, median NPHI, low GR, high PE, low RD, and low RS; EF D: high AC, high DEN,
high NPHI, low GR, low PE, low RD, and low RS. Raw well logs curves indirectly respond
to the properties of the reservoir.
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Electrofacies clustering results for tight oil reservoirs from two wells are presented
in log plots (Figure 5). The 12th track shows the classification results of electrofacies
from the raw well logs data using the MRGC algorithm (Model 2). Electrofacies are
characterized by homogeneity at successive depths and show weak sensitivity to petrofacies
changes. The core-based petrofacies are in poor agreement with the model 2 electrofacies.
The electrofacies obtained from model 2 clustering are 47.92% compatible with the core-
based petrofacies.

5. Discussion

This paper classifies petrofacies of shale oil reservoirs based on SEM, core porosity,
core TOC, and mineralogy of brittleness index calculated from XRD experiments from seven
members of the Upper Triassic Yanchang Formation, Ordos Basin, China. Petrofacies are
initially defined as “intervals of rock with a similar average pore throat radius, thus having
similar fluid flow characteristics” [42,43]. Many authors also define petrography based on
a combination of core analysis characteristics, petrographic features (grain size, sorting,
mineralogy, and pore type), and well logging characteristics [2,44,45]. Our petrofacies
classification scheme focuses on four key criteria of shale reservoirs: porosity and pore types
determine the reservoir’s storage performance and fluid endowment state [46,47], TOC
determines the reservoir’s hydrocarbon potential [48,49], and brittleness index determines
the reservoir’s remodeling ability [50–52]. Venier et al. identified five petrofacies through
core hand specimens, mineralogical composition obtained from XRD experiments, TOC,
and logging responses [15]. We consider the mineralogical brittleness index obtained from
XRD experiments to be a more direct criterion for the classification of petrofacies.

We used interpreted logs and raw well logs as input data to obtain four types of
electrofacies by clustering with the MRGC algorithm and established the mapping re-
lationship with petrofacies. Further comparisons were made between the performance
of the two types of data modeling for petrofacies prediction. MRGC is one of the few
non-parametric methods that is well suited for the learning and clustering of analyzed data
from logs and drilled cores [5]. Many scholars have modeled the identification of facies
using logging data via the MRGC algorithm [5,20,53,54]. The properties of the interpreted
logs are more closely related to the characteristics of the petrofacies, and the raw well
logs contain redundant signals that can only indirectly reflect the characteristics of the
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petrofacies. A limited set of good input datasets is better than a larger set of attribute input
datasets, as it reduces data redundancy and improves clustering efficiency [9]. Analyses of
the available data confirmed this conclusion. The number of interpreted logs is low but
more closely related to petrofacies. Therefore, model 1 based on interpreted logs as the
input has a higher accuracy for the identification of petrofacies compared to model 2 based
on raw well logs as the input (Figure 5).

6. Conclusions

Petrofacies are an important tool that represents different reservoir qualities [2] and can
be modeled for logging identification [9]. In this study, we classified the shale oil reservoir
into four petrofacies based on the shale’s pore structure, porosity, TOC, and brittleness
index through experimental data from the seven members of the Upper Triassic Yanchang
Formation, Ordos Basin, China. PF A is characterized by optimal reservoir properties and
has good reservoir performance, hydrocarbon potential, and fracturability. PF B is inferior
to PF A in terms of reservoir performance and hydrocarbon potential. PF C has a poor
brittleness index, making it unsuitable for fracture modification. PF D cannot be used as an
effective reservoir.

Interpreted logs and raw well logs data were used as input clustering to obtain
electrofacies using the MRGC algorithm. The clustered electrofacies of the raw logging data
showed poor sensitivity to changes in petrofacies. In contrast, the clustered electrofacies
from the interpreted logs matched the petrofacies more closely. Therefore, extracting
interpreted logs related to petrofacies from conventional logs is necessary to improve the
accuracy of petrofacies prediction.
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