
Citation: Zhao, J.; Zhang, T.; Tang, S.;

Zhang, J.; Zhu, Y.; Yan, J. Optimal

Scheduling Strategy of Wind Farm

Active Power Based on Distributed

Model Predictive Control. Processes

2023, 11, 3072. https://doi.org/

10.3390/pr11113072

Academic Editors: Qi Liao,

Hsin-Jang Shieh and Yamin Yan

Received: 23 September 2023

Revised: 20 October 2023

Accepted: 23 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Optimal Scheduling Strategy of Wind Farm Active Power Based
on Distributed Model Predictive Control
Jiangyan Zhao 1, Tianyi Zhang 2,*, Siwei Tang 1, Jinhua Zhang 2 , Yuerong Zhu 2 and Jie Yan 3

1 Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China;
zhaojiangyan@whu.edu.cn (J.Z.); tangsiwei66@gmail.com (S.T.)

2 School of Electrical Engineering, North China University of Water Resources and Electric Power,
Zhengzhou 450045, China; zhangjh@ncwu.edu.cn (J.Z.); yuerongzi@126.com (Y.Z.)

3 College of New Energy, North China Electric Power University, Beijing 100096, China; yanjie_freda@163.com
* Correspondence: ztyzhang1128@163.com

Abstract: In recent years, the development and utilization of China’s wind energy resources have
been greatly developed, but the large-scale wind power grid connection has brought threats to the
safe and stable operation of the power grid. In order to ensure the stability of the power grid, it is
necessary to reduce wind power output fluctuation and improve the tracking accuracy of dispatch
instructions. Therefore, based on the distributed model predictive control of wind farm active power
distribution strategy, an ultra-short-term wind power hybrid deep learning predictive model is
proposed. The prediction results of a wind farm in North China show that the hybrid neural network
model can achieve high ultra-short-term wind power prediction accuracy and is suitable for active
power control prediction models. A two-layer distributed model is proposed to predict the active
power control architecture of wind farms by implementing the clustering process with the Crow
Search Algorithm. The distributed model predictive control strategy is proposed in the upper layer,
and the centralized model predictive control algorithm is adopted in the lower control structure and
optimized. The results show that the dual-layer distributed model predictive control strategy can
better track the active power distribution instructions, reduce output fluctuation and scheduling
value changes, and enhance the robustness of active power regulation, which is suitable for active
power online control in wind farms.

Keywords: GCN-LSTM; ultra-short-term wind power prediction; wind farms; distributed model
predictive control; active power control

1. Introduction

Energy is the foundation of human survival and social development. Global climate
change, environmental pollution, and rising energy costs are increasingly becoming urgent
issues that need to be addressed by countries. The twentieth report also pointed out the
need to actively and steadily promote carbon peaking and carbon neutrality, improve the
control of total energy consumption and intensity, and promote the clean, low-carbon, and
efficient utilization of energy [1]. The wind power installed capacity has been increasing
year by year, and the scheduling and control strategies of wind power electricity systems
are leading the development of energy into a new era. It is imperative to design effective
and reliable strategies for controlling the active power of wind power.

The traditional active power control strategies of wind farms often adopt the feedback
correction method and only use the power and load value to carry out active power
control. The control strategies adopted, such as equal proportional distribution, variable
proportional distribution, and sequential cutting machine, are based on a single and poor
active power control precision and have lagged in time, lack flexibility, and effectiveness [2].
The output of the wind turbine always fluctuates randomly and the instructions issued by
the dispatching department are constantly changing. Only a fixed single standard is used to
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classify the units, resulting in a decrease in the coordination degree between active power
scheduling and system instructions. The specific classification index of the cluster has poor
adaptability to the adjustment and change of the dispatching instructions, and cannot meet
the needs of accurate control of active power, and the active power loss is greatly increased.
Therefore, it is necessary to establish a more accurate wind power prediction model, and at
the same time consider the coupling and constraints between different cluster individuals
to implement distributed control. Such an active power control strategy is more targeted,
conducive to improving control accuracy, smoothing wind power fluctuations, and making
full use of wind power consumption space.

Artificial Neural Network (ANN) [3] and support vector machine are representative
machine learning methods. Zhou et al. combined pole symmetric mode decomposition,
extreme learning machine, and particle swarm optimization algorithm to build a short-term
wind power prediction model. The average absolute percentage error in the experiment
was less than 5%, and this method achieved a more accurate prediction effect [4]. Sup-
port vector machine is often combined with the meta-heuristic intelligent optimization
algorithm. Lu et al. used the gray wolf optimization algorithm to optimize the kernel
function parameters of the multi-output support vector machine model, and predicted
the wind power of 15 wind farms, outperforming other benchmark models in terms of
multiple error indicators such as improvement percentage [5]. Li et al. combined the
improved Dragonfly algorithm with a support vector machine, and its model effectiveness
was verified on the real data set of French wind farms, which is suitable for short-term
wind power prediction [6]. In recent years, the traditional machine learning method has
developed slowly in improving the accuracy of wind power prediction. The deep learning
method based on large-scale and multidimensional data has been increasingly applied in
the field of wind power prediction because of its powerful mapping ability. Deep learning
methods widely used in wind power prediction include recurrent neural networks [7,8],
convolutional neural networks, deep belief networks [9,10], and generative adversarial
networks [11,12]. Among them, a convolutional neural network generally does not pre-
dict wind power alone but is often combined with a recurrent neural network or other
intelligent optimization algorithms to build prediction models [13]. Duan et al. used a
variational mode decomposition (VMD) technique to extract the local characteristics of the
original wind power sequence, using long short term memory (LSTM) and a deep belief
network built based on particle swarm optimization sequence prediction model, multiple
child sequence prediction model by the nonlinear weighted combination, the short-term
wind power prediction sequence [14] is obtained. From the above analysis, it can be seen
that the current research on wind power prediction has certain shortcomings, such as
failing to make full use of the spatial characteristics of wind turbines, and not considering
the changes in the non-European spatial layout of wind turbines and environmental fac-
tors [15]. Therefore, finding a suitable method to simultaneously apply spatial state timing
features and wind power series to wind power prediction, improving the utilization of
spatially relevant information, mining spatial-temporal data associations, and referencing
to numerical weather prediction (NWP) data are the keys to improving the accuracy of
wind power prediction.

With the continuous development of wind power generation technology, the installed
capacity of wind power continues to rise, which will put forward higher requirements on
the active power distribution and output curve smoothing of wind farms. Literature [16]
carries out active power control for a wind farm composed of double-fed induction genera-
tors. The central control layer sends power reference signals to each wind turbine separately,
and the local wind turbine control layer ensures that the single machine tracks active power
instructions. Literature [17] classifies wind turbines according to the statistics of the actual
operating conditions of fans and ultra-short-term power prediction results and adjusts the
output of fans according to the ranking table of active power regulation ability. The essence
of the above method is the static optimal scheduling control of multiple moments, and
only the current optimization of the control point is considered. Different from traditional
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open-loop scheduling control methods, model predictive control designs predictive models
for concerned system variables and uses rolling optimization and closed-loop feedback
correction to optimize control in the time domain, which is widely used in the field of new
energy scheduling control [18]. The flexibility and fast dynamic performance of model
predictive control (MPC) make it have obvious advantages in dealing with various practical
complex problems, and formulate corresponding strategies to deal with various problems
in the development process of wind power, so as to achieve multi-dimensional control
goals. In order to reduce the fatigue load of wind turbines and take into account the high
impedance ratio of the wind farm collector, Guo et al. proposed a distributed active power
control strategy based on MPC to achieve optimal control of the pitch angle and generator
torque of wind turbines and track the power reference value delivered by the system [19].
The main control objective of the literature [20] is that MPC controller can minimize the
change of wind turbine axial force while solving the reference power. The effectiveness of
the strategy is verified through a parallel large eddy simulation case study. Based on MPC,
literature [21] designed prediction models in the time domain for optimization at different
time scales, and set decision objectives according to different warning levels of new energy
to ensure sufficient absorption space for wind power and improve the economy of system
operation. Literature [22] proposes the application of finite control set model predictive
control to power electronic devices of wind farms, aiming to improve the dynamic perfor-
mance of static reactive compensators with the shortest execution time. This strategy has
been verified in 10 MW wind farms.

In recent years, many scholars have carried out research on distributed model pre-
dictive control of wind farms. Literature [23] uses the distributed idea to coordinate the
control actions among wind turbines affected by wake interaction and uses the iterative
distributed control method to improve wind power utilization and reduce turbine load.
Literature [24] established a piece-based static model based on input variables and state
variables to represent the nonlinearity of wind turbines. After validity verification, it was
applied to a distributed MPC prediction model to achieve optimal active power control
objectives of scheduling instruction tracking and load minimization. From the above
analysis, it can be seen that the current research on wind power prediction has certain
shortcomings, such as failing to make full use of the spatial characteristics of wind turbines,
and not considering the changes in the non-European spatial layout of wind turbines and
environmental factors [15].

In previous studies, most researchers focused on the construction of state-space models,
which largely relied on the linearization of nonlinear models and were not suitable for
wind power changes with high noise and strong uncertainty. In addition, the above control
methods do not directly consider the dynamic characteristics of wind power. Although
the tracking accuracy of active power instructions has improved to a certain extent, the
static control structure and method are not flexible and lag compared with the scheduling
instructions of changes, and the power distribution lacks rationality and balance. When
dispatching instructions are issued, the working state of the wind turbine should be
considered first. The dynamic power characteristic parameters are used to cluster the fans
and then carry out distributed active power control, which can adapt to different changes
in dispatching instructions, improve the wind power absorption rate, and smooth the
output curve.

2. Ultra-Short Term Wind Power Prediction Based on Graph Convolutional
Networks-Long Short Term Memory (GCN-LSTM) Deep Neural Network

In order to improve the accuracy of ultra-short-term wind power forecasts, a neural
network model has become a common method in recent years. Both short-term and
long-term memory networks for time series prediction effect are good. The convolutional
neural networks (CNN) are often combined with the LSTM model and are used to make
up for the large amount of network computing and the defects of slow convergence
speed. However, CNN can only process the data of the European space, which makes the
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topological information such as the location information of the wind farm not utilized. To
make full use of the time-series data of wind farm and space information, improve the
wind power prediction accuracy, fine regulation of wind turbines, first of all, use map
CNN processing, coupling information fusion associated with topological structure of
the fan, then multi-dimensional local spatial features of wind turbines are extracted, and
deep-seated representations are sent into LSTM network for power prediction. An ultra-
short-term wind power prediction method based on GCN-LSTM deep neural network is
proposed. Finally, a domestic wind farm is taken as an example for simulation verification.

2.1. Construction of Hybrid Deep Learning Prediction Model

At present, the deep learning prediction model of wind power mostly adopts a single
time series analysis method, which only considers the power value and the change of
NWP data in the time dimension. Whether it is the management of wind turbines or the
prediction of wind power, it is often carried out in the basic unit of the station, rather
than for a single wind turbine, and the biggest influencing factor of wind power—wind
speed—always acts on all wind turbines in a space.

2.1.1. Graph Structure and Predictive Model Input Data

From the perspective of space, the geographical location, which is also one of the
characteristics of wind turbines, represents the spatial correlation and dependence of each
wind turbine [25], which plays a certain importance in wind power prediction. Based on
this idea, the non-European spatial layout of the wind farm enables it to be constructed as
a graph structure suitable for graph convolutional networks (GCN).

Using the wind turbine coordinates of the wind farm and the actual line connection,
the diagram structure as shown in Figure 1 is generated. Each wind turbine is a node, and
the connection line between two wind turbines is the edge. The characteristics of each wind
turbine node include four dimensions, namely power, wind speed, wind direction, and
temperature. The last three dimensions can be obtained from the NWP data of the wind
farm. Thus, the structure, type, and scale of the graph are determined, and the basic input
parameter matrix required by the GCN network is obtained.
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2.1.2. Construction of Wind Power Prediction Model in GCN-LSTM Network

NWP data and historical wind power data are used as the input of the GCN-LSTM
prediction model, and the predicted wind power value is used as the output.

As the number of network layers increases, the receptive field becomes larger and
larger, that is, the characteristics of the wind turbine node integrate the historical data
of the local machine and more units. All the information in the graph is aggregated by
graph convolution, and the first-order embedded representation of each wind turbine
node is obtained after updating. The intuitive convolution diagram of the graph is shown
in Figure 2. Multi-order neighbor information is obtained after multi-layer GCN. After
obtaining the feature matrix H(i) of each node after multi-layer GCN, it is taken as the
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final node representation and fed into the downstream LSTM network. Finally, the parallel
LSTM unit of GCN-LSTM obtains the time dependence from each node and obtains the
prediction result sequence.
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At present, GCN is more suitable for shallow network structures. Due to the simple
structure of a one-layer GCN network, the feature extraction power of the wind power
data set is insufficient, while gradient disappearance and overfitting problems are easy to
occur in a three-layer convolutional network structure, so two-layer GCN is used in the
experiment.

GCN and LSTM are used to jointly build deep-learning models. The constructed
prediction model consists of two layers of GCN, three layers of LSTM, one layer of Dropout,
and one layer of fully connected layer. The ultra-short-term wind power prediction model
based on GCN-LSTM is shown in Figure 3.
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The operation process of the GCN-LSTM deep learning ultra-short-term wind power
prediction model is described as follows:

(1) The input layer data set uniformly passes the input data to the next layer of the
neural network.

(2) Excavation and dimensionality reduction in deep features by two GCN layers.
(3) The first LSTM layer learns the autocorrelation between the NWP data and the deep

information of the spatial dimension of the wind turbine and the wind power in time
and passes it to the next layer.

(4) The operation performed by the Dropout layer is to randomly delete a portion of
hidden neurons, preventing deep learning from overfitting.
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(5) The second and third LSTM layers further conduct neural network self-learning on
the information coming from the front to improve the accuracy of nonlinear fitting of
the power prediction model.

(6) The network outputs wind power sequence through the final fully connected layer,
rolling prediction for each cycle.

2.2. Analysis of Experiments and Examples

The data used to establish the study came from the measured data of a wind farm
in North China in 2021, and the data used included four-time series of wind speed, wind
direction, temperature, and wind power. The learning samples of the power prediction
model may contain unreasonable data, and there are often missing data or data anomalies.
The data anomaly of the learning sample weakens the correlation between the data and
the wind power and affects the convergence speed and accuracy of the training algorithm.
Therefore, in order to obtain accurate prediction results, it is necessary to preprocess
the data.

2.2.1. Data Preprocessing and Experimental Design

The historical data of each sample of wind turbines include several dimensional charac-
teristics of wind speed, wind direction, and temperature. The max-minimum normalization
of the data of the characteristic dimension of each sample of wind turbines is carried out,
respectively, as shown in Formula (1), and the original data is converted into a unified
order of magnitude.

x̃i =
xi − xmin

xmax − xmin
, i = 1, 2, . . . , n (1)

where: xi is the original meteorological data of samples such as measured wind speed
and temperature, x̃i is the normalized data, xmax and xmin represents the maximum and
minimum values of the data set, respectively, and n is the number of samples.

In order to obtain the best LSTM parameter values, a model optimization algorithm is
designed. The results show that the RMS error of the model is the smallest when the LSTM
of three layers and the number of neurons in each layer are 32, 64, and 32, respectively.
Therefore, the number of hidden layers of LSTM is finally selected as 3, and the number of
neurons in each layer is 32, 64, 32. The GCN-LSTM prediction model can obtain the best
prediction effect when the time sliding window size is 7 and the batch size is 16.

Finally, the experimental parameter settings of GCN-LSTM wind power prediction
are obtained, which are described as follows. The weight matrix of GCN is randomly
initialized in [0, 1], and the adjacency matrix size of GCN is 3 × 3, which is equivalent
to the convolution kernel size of traditional convolutional neural networks. To achieve a
single-step prediction of wind power, each read starts from the next row next to each other.
The LSTM network time step is 7. The training parameter Settings of the LSTM network are
shown in Table 1. lr is the learning rate, which controls the rate of weight updating; shuffle
is true, and its representation randomly sorts the training data set before each training.

Table 1. LSTM network training parameter Settings.

Parameter Name Parameter Value

Number of iterations 100
Batch_size 16

Learning rate 0.001
Dropout Layer weight 0.1

Activation function sigmoid

Root mean square error (RMSE) and mean absolute error (RMSE) are selected as
statistical indicators of wind power prediction error. MAE, mean absolute percentage error
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(MAPE) [26,27]. The specific expressions of RMSE, MAE, and MAPE are as follows: (2)
to (4):

RMSE =

√√√√ 1
N

N

∑
i=1

(x′(i)− x(i))2 (2)

MAE =
1
N

N

∑
i=1

∣∣x′(i)− x(i)
∣∣ (3)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ x′(i)− x(i)
x(i)

∣∣∣∣× 100% (4)

where: x(i) is the actual value, x’(i) is the predicted value, and N is the number.

2.2.2. Analysis of Example Results

After the pre-processing of abnormal and missing data, the wind power sequence of
12 wind turbines in the wind farm is shown in Figure 4.
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LSTM model, CNN-LSTM model, and GCN-LSTM model are used to compare and
analyze the actual power curves and predicted power values of different wind turbines,
as shown in Figure 5a,c. These show that the power predicted by the LSTM model with
small fluctuations in a short time always tends to change linearly with time. It is because
the ReLU function adopted by the LSTM layer is a piecewise linear function, and the filling
of missing test data is also linear, resulting in an approximately horizontal line. However,
the phenomenon that the forecast trend of LSTM is completely opposite to the actual value
at some points is because LSTM focuses on the analysis of historical wind power, and can
not make good use of the relationship between data when the power fluctuation is small.

The average prediction error and prediction time of different models are shown in
Table 2. The prediction errors of the GCN-LSTM network for different wind turbine sizes
are shown in Table 3, and the evaluation indexes of prediction errors for different wind
turbine sizes are shown in Figure 6. The RMSE value of the GCN-LSTM network model
is the smallest. Compared with GCN-LSTM, the CNN-LSTM model is slightly slower,
because the training process of CNN takes a long time. After the sample is fused and
dimensionality reduction through the GCN network, the total prediction time is shortened
by the LSTM layer.
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As can be seen from Table 3, the three error evaluation indexes of wind farms are
smaller than those corresponding to most wind turbine clusters, which indicates that the
larger the wind turbine scale, the smaller the fluctuation of wind power value, and the
smaller the prediction error of wind power by the proposed GCN-LSTM model. The
GCN-LSTM deep learning model has achieved a more ideal effect for the power prediction
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of multiple wind turbines. The proposed model is not only suitable for the ultra-short-term
wind power prediction of a single wind turbine but also suitable for the ultra-short-term
wind power prediction of wind turbine groups and the whole field.

3. Cluster Strategy for Wind Turbines Based on Improved K-Means Clustering Algorithm

When optimizing active power control of wind farms, a centralized strategy or single-
machine fine modeling strategy can be selected. However, the active power generation
capacity of each fan is different, and the centralized strategy often reduces the reliability
of the control, and cannot ensure that the control signal is calculated within a fixed time
interval. However, the single-machine refined strategy requires solving multiple parame-
ters in the wind farm during the simulation process, which leads to the increase in data
storage and the excessive calculation burden of the controller, which greatly improves the
simulation performance. On the other hand, wind turbines frequently track scheduling
instructions and significantly change output, which is not conducive to reducing the climb
rate and mechanical losses of fans. In order to take into account the fine control of the active
power of the wind farm, optimize the computational efficiency of the control model, smooth
the output of the wind farm, and solve the problem that the K-means clustering results
are sensitive to the initial centroid, a K-means clustering method based on Crow Search
Algorithm is proposed in the optimal scheduling of the active power of the wind farm by
adopting the distributed control strategy of machine cluster division. It mainly studies the
fan clustering method that is friendly to wind farm scheduling, designs four clustering
indexes that can characterize the active power characteristics of fans from multiple angles,
optimizes the optimal initial clustering center through the Crow Search Algorithm, and
finally groups fans based on the K-means clustering method.

3.1. K-Means Clustering Algorithm Principle

K-means cluster analysis is a cluster analysis algorithm for iteratively solving sample
objects, which is widely used in many fields. The important steps of complete cluster
analysis include choosing the distance function, running the clustering algorithm, and
evaluating clustering validity. The K-means clustering algorithm divides the feature matrix
X of a group of N samples into K clusters without intersection and considers that the data
in a cluster belong to the same class. Clustering is the result of clustering. The mean of
all the data in a cluster is often called the Centroids of the cluster. In a two-dimensional
plane, the horizontal coordinate of the center of mass of a data sample is the mean of the
horizontal coordinate of the data cluster, and the vertical coordinate of the center of mass
is the mean of the vertical coordinate of the data cluster. The same can be generalized to
higher dimensions. The implementation of the clustering algorithm is described below.
First, input N P-dimensional sample vectors, specify the maximum number of iterations as
tmax and the number of clusters as K, and then randomly select K samples as the initial
centroid. For each of the remaining sample points, the Euclidean distance or some other
distance function from K centroids is traversed and assigned to the cluster with the smallest
centroid distance. Based on the total sample data assigned to each previous centroid, the
mean of all objects in each cluster is recalculated to obtain the new centroid. Repeat the
steps to calculate the distance and determine the cluster where the center of mass is located.
The difference between the old centroid and the new centroid is calculated. When the
difference is less than the threshold value, the centroid does not move significantly, the
samples in the cluster do not change, or the maximum number of iterations is reached, and
the clustering results are divided.

3.2. Wind Turbine Cluster Index Design

Based on the wind speed and power characteristics of wind turbines, the smooth coef-
ficient, active power trend index, generation potential coefficient, and anomaly coefficient
are proposed as clustering indexes of wind turbines.
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In order to quantify and distinguish the difference of active power output in the
volatility of the time dimension, the index smoothness coefficient reflects the smoothness
of the power curve of each wind turbine [28], and the fluctuation degree of active power of
the wind turbine becomes one of the clustering considerations.

The adjacent active power points are fitted linearly by the least square method. The
slope of the obtained line represents the trend of active power change of the unit, and the
fitting slope is defined as the active power trend index.

In order to make full use of the available power of the wind farm and ensure the safety
of the transmission channel, the proper dispatching command is sent to the less-than-full
load unit, and the generation potential of the wind turbine is quantified and characterized.

Using the anomaly data identification method in literature [29], scattered points with
substandard tightness are identified as anomalies. In this paper, the anomaly coefficient is
used to characterize the numerical characteristics of abnormal data points.

3.3. Improved K-Means Clustering Algorithm for Wind Turbine Clustering

To solve the problem that the classical K-means clustering algorithm cannot achieve
the global optimal clustering result because of its strong dependence on the initial clustering
center, the Crow Search Algorithm is used to improve the clustering accuracy and clustering
stability, so that several wind turbines with multidimensional similarity are clustered into a
cluster to achieve the best clustering effect.

The change of the measured wind speed and power of the wind turbine and the
predicted value of the active power limit the search space of the crow within a certain range,
so the feasibility of the new position should be judged after each update of the position. As
the result of CSA optimization is the clustering center of the K-means algorithm, the final
value should be within the upper and lower limits of the characteristic indicators calculated
by each wind turbine. The mathematical model to check the feasibility of crow position is
expressed as the following Formula (5):

Xi,iter+1 =

{
Xi,iter+1, min([rs ra rp rP−V ]) ≤ Xi,iter+1 ≤ max([rs ra rp rP−V ])
Xi,iter, o.w.

(5)

where: For the D-dimensional search space, the position vector of the ith crow at the iter iteration
is Xi,iter = [xi,iter

1 , xi,iter
2 , . . . , xi,iter

d ], where, iter = 1, 2, . . . , iter_max, i, j = 1, 2, . . . , Nc.

4. Active Power Control Strategy of Wind Farm Based on Distributed MPC

While the global wind power installed capacity continues to increase, the amount of
abandoned wind is still high, and the active power regulation ability of wind farms still
needs to be improved. The traditional centralized control method has high requirements
on the central controller and poor parallel computing ability. In order to optimize the
utilization of wind energy resources and fine-tune the on-site wind turbines, it is necessary
to study how to actively control the active power output of the wind farm effectively, and
how to coordinate the changes of wind power and superior scheduling instructions, so
that the issued scheduling instructions can maintain the local optimal within each control
time and adapt to the uncertain environment. Therefore, a two-layer active power control
method for wind farms is proposed, which is divided into different scales in time and space
to control the active power of wind farms.

4.1. Hierarchical Active Power Scheduling Strategy for Wind Farms

The static scheme adopted by the traditional active dispatching control has high effi-
ciency but a relatively simple structure, which does not consider the objective factors such
as the difference in wind conditions and power generation status of each fan, ignores the
uncertainty of wind power generation, and has a low degree of intelligence. In order to
achieve the safe and stable operation of the system we must improve the active power
control accuracy of wind farms, improve the tracking accuracy of wind farm active power
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dispatching instructions, carry out active adjustments according to the deep power char-
acteristics of wind turbines, smooth wind power output curve and make full use of wind
power consumption space, etc., create an operation control scheme from the perspective
of multi-time scale active control management strategy of wind farm, and formulate a
double-layer distributed active power dispatching.

4.1.1. Multi-Time Scale Active Power Control Management Strategy

In order to smooth the wind power output curve and improve the wind power
consumption rate, active power control strategies are developed for different time scales.
Based on the idea of “multi-level coordination and step-by-step refinement”, a multi-time
scale active power control management strategy is constructed based on the time scale of
intra-day rolling scheduling and real-time online rolling scheduling plans, as shown in
Figure 7. Based on the measured active power output value, the deviation of the daily plan
is corrected in real-time to reduce the unbalance of power caused by uncertainty. With the
shortening of the time scale, the precision of the active power control plan increases, and
the active power tracking becomes more accurate.
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4.1.2. Hierarchical Control Framework for Active Power of Wind Farm

The hierarchical control strategy for the active power of wind farms based on dis-
tributed MPC can be expressed in the following Figure 8. In this paper, GCN-LSTM deep
neural network model is used to forecast ultra-short-term wind power. Four clustering
criteria are formulated by combining the measured power values, predicted power values,
and dynamic temporal correlation of power over a period of time. The improved K-means
clustering algorithm proposed based on CSA aggregates wind turbines into several clusters,
and makes effectiveness evaluation according to evaluation indicators.

4.2. Design and Solution of Dual-Layer Distributed Active Power Prediction Controller for
Wind Farms

The key to a two-layer distributed active predictive control strategy for wind farms
lies in the realization of distributed model predictive control.

The wind farm is divided into multiple wind turbine clusters by using the improved K-
means clustering algorithm. The DMPC controller corresponding to each cluster calculates
the optimal active power command sequence according to the measured value of the
past state, the predicted value of the future state, and information shared by the neighbor
subsystem. The first of these values is sent to the MPC controller in the lower wind
turbine balancing layer. The DMPC of each subsystem shares information through the
communication network. In addition, the DMPC controller needs to take into account the
synergies and constraints between the various clusters. The DMPC controller is optimized
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to realize the optimal control and stable operation of wind power active power. The design
and solving methods of each layer model predictive controller are introduced below.
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4.2.1. Design of Upper Layer DMPC Controller Based on Scheduling Coordination
Dynamic Index Optimization Method

In this paper, the scheduling coordination dynamic index active power optimization
strategy is applied to the distributed active power predictive control layer, and the relation-
ship between the clustered index and the upper control is established. The ultra-short-term
wind power prediction model of GCN-LSTM based on a deep neural network is adopted
in the upper layer DMPC of a two-layer distributed active power control architecture. The
optimization time domain of the intraday rolling scheduling plan is 2 h, the sampling point
resolution and the prediction time step are both 15 min, and the output power prediction
model can be expressed as the following Formula (6):

P f or
i = [P f or

i (t + ∆t1), P f or
i (t + 2∆t1), . . . , P f or

i (t + T1 · ∆t1)]
i = 1, 2, . . . , Cl

(6)

where: P f or
i is the predicted output power sequence of the i cluster, Cl is the cluster number

of wind turbines, and the prediction time domain T1 = 8.
In order to ensure the maximum number of wind turbines in the wind farm, the

optimal scheduling of the cluster coordination layer takes maximizing wind power output
as the control goal and requires the active power regulation to be as small as possible. The
objective function is expressed as follows (7):

min JWTC =
T1

∑
k=1

Cl

∑
i=1

([
Pdis

i (t + k∆t1)− P f or
i (t + k∆t1)

]2
+
[

Pdis
i (t + k∆t1)− Preal

i (t)
]2
)

(7)
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The constraint conditions mainly include absolute power limit and incremental
limit [30], which should meet the following Equations (8) to (11):

(1) Scheduling plan tracking constraints, as follows (8):

Cl

∑
i=1

Pdis
i (t + ∆t1) = Pdis

sys (8)

(2) The sum of the active power output of the wind farm is less than or equal to the total
installed capacity of the wind farm, as follows (9):

Cl

∑
i=1

Pdis
i (t + ∆t1) ≤ PN

WF (9)

(3) The sum of active power output of each cluster is less than the installed capacity of
the cluster, as follows (10):

0 ≤ Pdis
i (t + ∆t1) ≤ PN

WTCi, i = 1, 2, . . . , Cl (10)

(4) The change rate of active power output of the fleet is within a reasonable range, as
shown in Equation (11):∣∣∣∣∣Pdis

i (t + ∆t1)− Preal
i (t)

Preal
i (t)

∣∣∣∣∣ ≤ CWF, i = 1, 2, . . . , Cl (11)

where: Pdis
i (t + ∆t1) is the scheduling value of the i cluster after 15 min; Preal

i (t) is the
measured power value of the i cluster measurement system at time t; Pdis

sys is the wind farm
intra-day rolling plan scheduling instruction issued by the scheduling department; PN

WF
is the total installed capacity of the wind farm; PN

WTCi is the installed capacity of cluster i;
CWF is the limit of active power climb rate of the wind farm. The intra-day rolling plan
resolution is ∆t1 = 15 min, T1 is the optimization period, and the cluster coordination layer
optimizes the planned value for the next 2 h each time, then the optimized time domain
T1 = 8. The control time domain of the upper DMPC is Tc1 = 4, and the control instructions
of 4 time points are obtained after each solution of the penalty function, and only the first
active command is sent to each wind turbine group.

In the feedback correction link of the upper layer of distributed active power schedul-
ing, the deviation between the actual output power of the wind power cluster and the
control instruction is compared, and the current actual active power value of the wind
power cluster is taken as the initial value of a new round of rolling optimization schedul-
ing. The ultra-short-term wind power prediction error is corrected, so that the output
active power value of the wind power cluster at the next moment is more realistic, and a
closed-loop control is formed. The feedback correction is calculated as follows (12):

Pi,0(t + ∆t1) = Preal
i (t + ∆t1) (12)

where: Pi,0(t + ∆t1) is the initial active power optimization value of wind turbine group i at
time t + ∆t1, and Preal

i (t + ∆t1) is the measured active power output value of wind turbine
group i at time t + ∆t1.
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4.2.2. Lower Layer CMPC Controller Design

The prediction model of the wind turbine in the lower centralized MPC adopts the
linearized state space model established in the literature [31], and the matrix form is
expressed as the following Equation (13):{ .

x̃ = Ax̃ + Bũ + Eṽ
ỹ = Cx̃ + Dũ

(13)

where: x = [ωm ωr θ]T is the state variable, and x̃ is the offset between the state variable and
the nominal system state; y = [ωm Pg]

T is the output variable, ỹ is the offset between the
output and the steady-state value; u = [β Tm]

T is the control variable, ũ is the offset between
the input and the operating point. v is the wind speed, ṽ is the offset value between the
wind speed and the steady state value, and is the uncertainty.

As the actual engineering stroke mechanism is limited by mechanical strength and
safety, the constraint conditions mainly include the upper and lower threshold constraints
of the control variables, which should meet the following Equations (14) to (19):

(1) The sum of the active power change of the wind turbine is equal to the active power
reference change value of the cluster, as follows (14):

mi
∑

j=1

[
Pg,j(t + ∆t2)− Preal

g,j (t)
]
= Pi(t + ∆t1)− Preal

i (t + s · ∆t2)

s = 0, 1, 2
(14)

(2) Generator angular velocity threshold constraints, as shown in Equation (15):

ωm min ≤ ωm,j(t + ∆t2) ≤ ωm rated, j = 1, 2, . . . , mi (15)

(3) Generator torque threshold constraint and change rate constraint, as follows (16):{
Tm min ≤ Tm,j(t + ∆t2) ≤ Tm max

−∆Tm max ≤ Tm,j(t + ∆t2)− Treal
m,j (t) ≤ ∆Tm max

, j = 1, 2, . . . , mi (16)

(4) Wind turbine blade pitch Angle physical structure constraints and change rate security
constraints, as shown in Equation (17):{

βmin ≤ β j(t + ∆t2) ≤ βmax

−∆βmax ≤ β j(t + ∆t2)− βreal
j (t) ≤ ∆βmax

, j = 1, 2, . . . , mi (17)

(5) The output power of the unit is within a reasonable range, as follows (18):

0 ≤ Pg,j(t + ∆t2) ≤ Pg rated, j = 1, 2, . . . , mi (18)

(6) The wind turbine climb rate is within the permitted range, as follows (19):∣∣∣∣∣Pg,j(t + ∆t2)− Preal
g,j (t)

Preal
g,j (t)

∣∣∣∣∣ ≤ CWTN , j = 1, 2, . . . , mi (19)

where: mi is the number of wind turbines contained in the i-th cluster; Pg,j(t + ∆t2) and
Pg,j(t) are, respectively, the dispatching value of the j wind turbine after 5 min and the
measured power at time t; ωm,j(t + ∆t2) and ωreal

m,j (t) are the generator speed after 5 min

of the j wind turbine and the measured speed at time t, respectively. ωreal
r,j (t + ∆t2) and

ωreal
r,j (t) are, respectively, the wind turbine angular velocity after 5 min of the j wind turbine

and the measured wind turbine angular velocity at time t. ωmmin and ωm rated are the
minimum and rated speed of the generator; ωrmin and ωr rated are the minimum speed and
rated speed of the turbine; Pg rated is rated active power of wind motor; CWTN is the limit
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of single-machine climb rate. T2 represents the optimization period. The wind turbine
balance layer optimizes the active power reference value of the future 15 min each time,
and the intra-day rolling plan resolution ∆t2 = 15 min, then the time domain T2 = 3 is
optimized. The control time domain of the lower CMPC is Tc2 = 3, and the reference value
of single output at 3 time points is obtained after each solution of the penalty function, and
only the first item is sent to each wind turbine. At this point, the two-layer model predicts
that the lower layer of active power control completes an online rolling optimization.

In the feedback correction section of the lower layer of distributed active power control,
the error weighting method is used to correct the output value of the forecast model at
other times in the future. Due to model mismatch, external interference, and uncertainty
factors, the actual output value at time t+∆t2 is different from the predicted output at time
t to time t+∆t2, so for unit j, the prediction error at time t+∆t2 is as follows (20):

∆yj(t + ∆t2) = yj(t + ∆t2| t ) + yreal
j (t + ∆t2) (20)

where: ∆yj(t + ∆t2) is the output variable error of unit j at the t+∆t2 moment;yj(t + ∆t2|t )
is the time-to-time t+∆t2 forecast output of unit j at time t; yreal

j (t + ∆t2) is the measured
output value of unit j at the t+∆t2 moment.

After the error is weighted, the output value of the predicted output sequence of unit j
at other times except time t+∆t2 is corrected, as shown in Equation (21):

Ŷj = Yj + h · ∆yj(t + ∆t2) (21)

where: Yj = [y(t + ∆t2| t ), y(t + 2∆t2| t ), y(t + 3∆t2| t )] is the predicted output of T2
moments in the future of the system under the action of control variables u(t + ∆t2| t )
at time t; Ŷj = [ŷ(t + ∆t2| t ), ŷ(t + 2∆t2| t ), ŷ(t + 3∆t2| t )] is the predicted output value
taking into account the error correction at time t + ∆t2; h = [h1, h2, . . . , hT2 ] is the error
correction vector, and h1 = 1.

4.2.3. Optimal Solution of Active Power Predictive Control Problem

Combined with the proposed scheduling coordination dynamic index optimization
strategy, the paper adopts the sequential method to solve the problem [32].

When MPC is applied to wind power control, the active power control problem of each
time step is transformed into a quadratic optimization solution problem, with the purpose
of finding a control strategy that can satisfy the constraint conditions while minimizing
the penalty function [33]. Firstly, vectorization transformation is performed on the control
objective function of the upper cluster, and the following Equation (22) is obtained:

min JWTC(t) = q
[

Pdis
i (t)− P f or

WF(t)
]2

+
∥∥∥Pdis

i (t + ∆t1)− Preal
i (t)

∥∥∥2

R
(22)

where: P f or
WF(t) is the ultra-short-term wind power predicted value of wind farm at time t; q

is the error weight; control weight matrix R = block− diag[r1, r2, . . . , r8].
Applying the same method, the objective function of the i-th wind turbine group in

the lower layer is expressed in vector form as Equation (23):

min JWTi(t) =
∥∥∥ωm,j(t + ∆t2)−ωreal

m,j (t)
∥∥∥2

G
+
∥∥∥Pg,j(t + ∆t2)− Preal

g,j (t)
∥∥∥2

L

+
∥∥∥Tm,j(t + ∆t2)− Treal

m,j (t)
∥∥∥2

W
+
∥∥∥β j(t + ∆t2)− βreal

j (t)
∥∥∥2

Z

(23)

where G, L, W, and Z are the penalty weighting matrices of generator rotor angular
speed, output power, pitch angle, and motor torque, respectively, and they are all three-
dimensional diagonal matrices. The elements in R, G, L, W, and Z are assigned according
to the principle that the greater the time distance, the smaller the weight.
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In order to save computing time and improve control efficiency, the penalty func-
tion is transformed into a quadratic programming problem (QP). The form of quadratic
programming is as follows (24):

min f (x) =
1
2

xTHx + gTx (24)

Based on the constraints of Equations (8) to (11) and (14) to (19), the quadratic pro-
gramming is solved, and the dual-layer distributed model is obtained to predict the active
power commands of each cluster of active power control daily rolling planning and each
unit of online rolling scheduling. The rationality and precision of active power distribution
of wind farms are improved, so as to achieve multi-objective active power coordination op-
timization.

5. Control Effect Comparison and Performance Analysis of Dual-Layer Distributed
Active Power Predictive Control Strategy

(1) Control performance of the upper DMPC

As can be seen from Figure 9, the dispatch command of 11:45–12:30 is greater than
the predicted wind power value. On the premise of ensuring the safety of the unit and
the transmission channel, the actual output of the wind farm using the DMPC control
strategy is closer to the active power dispatch command, while the control methods are
relatively conservative for the wind farm dispatch. This indicates that DMPC’s active power
control strategy can improve the utilization rate of wind power and better coordinate the
scheduling index.
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Figures 10–12 show that the dynamic index DMPC cluster active power control strategy
based on scheduling instruction coordination ADAPTS to various scheduling instruction
changes. Specifically, when the active power command rises, the power generation space of
each cluster can be fully utilized. When the active power command drops, it can limit the
change of the scheduling value of adjacent control steps within a certain range, and balance
the output of each group. When the active command is stable, the DMPC reduces the
fluctuation of the group of instructions and reduces the mechanical loss as much as possible.
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(2) Control performance of the lower CMPC

As can be seen from Figures 13 and 14, the output curve of the centralized model
predictive control method is smoother. Since the scheduling instructions of proportional
distribution largely depend on the predicted power value of the wind turbine, the power
prediction sequence is highly volatile, and the feedback link of active power output is
ignored in traditional proportional distribution. Therefore, the scheduling result of the
low-level centralized MPC is superior to the proportional active scheduling strategy.
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For most of the time of fan 11#, the output value of active power control using the
lower centralized MPC is higher than the active power output of proportional scheduling,
and the average active power of the former is 8.61% higher than that of the latter. The
average active power optimization of the centralized MPC for fan 10# is smaller than
that of the proportional scheduling mode. The average active power optimization of the
two strategies is 1099.11 kW and 1108.50 kW, respectively, mainly because the dispatching
output of the centralized MPC for fan 10# is smaller than that of the proportional scheduling
mode during the period of 11:25 to 12:55. The specific reasons are analyzed as follows.
The wind farm received the dispatch instruction from TSO during this period and was in
a stable state and transitioned to a declining state. At 11:25, the output of other units in
the same group as fan 10# was at a higher level, resulting in a smaller dispatch instruction
from the centralized MPC controller to fan 10#. After the subsequent optimization of the
time domain of the fleet division and the update of the online rolling plan, the power of
fan 10# changes steadily and gradually increases.
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6. Conclusions

China’s wind power technology is developing rapidly. In order to help the process of
carbon neutralization and carbon peaking, we must improve the utilization rate of wind
energy and the regulation performance of wind power control systems, and promote the
development and consumption of clean energy. It is urgent to solve the problem that the
randomness of wind energy brings as an impact to the power grid, and it is necessary to
study the wind power prediction and optimization controls. The main research work of
this paper is as follows:

(1) The proposed GCN-LSTM ultra-short-term wind power prediction model is used
to construct a neural network input data set, aggregate neighbor node information
at each sampling moment by using graph convolutional network, and input deep
features into a long and short-term memory neural network for deterministic wind
power prediction after feature fusion and dimensionality reduction. The time-sliding
window size and batch size of the LSTM network can obtain the optimal combination
settings through experiments. The model makes full use of the information fusion
of neighboring nodes and reduces the amount of data input to the LSTM network,
which improves prediction efficiency and accuracy.

(2) An improved K-means clustering method for wind turbines based on a Crow Search
Algorithm is proposed. Based on the smooth degree, changing trend, shape character-
istics, and abnormal data of fan power, four time-varying fan clustering indexes are
designed to reflect wind power characteristics from multiple angles. The Crow Search
Algorithm is used to optimize the initial centroid of K-means clustering. Experimental
results show that the contour values of the proposed clustering method under dif-
ferent clustering indexes are superior to classical K-means clustering. The improved
K-means algorithm based on CSA centroid optimization can achieve accurate and
effective wind turbine clustering, providing solid conditions for active power refining
control of wind farms.

(3) The proposed dual-layer distributed wind farm active power model predictive control
strategy. The simulation results of a wind farm with 12 fans show that the upper-layer
control strategy can make full use of the power generation space of each cluster during
up-up power scheduling, effectively reducing the fluctuation degree of optimization
instructions during balanced power scheduling, and reducing the change of cluster
scheduling values during power reduction scheduling. The lower layer control strat-
egy effectively smooths the wind power output curve, improves the tracking accuracy
of active power to instructions, improves the optimization efficiency, enhances the
robustness and scalability of active power control, and improves the overall active
power control performance compared with other control algorithms.

In this paper, research work has been carried out on ultra-short-term prediction of
wind power and optimal control of active power of wind farms, and some progress has
been made. There are still some problems and shortcomings in this paper, which can be
further improved and discussed in future work:

(1) Considering the efficiency of unit grouping, this paper designs an improved K-means
clustering algorithm and a variety of clustering indicators. For randomly fluctuating
wind turbine power sequences, clustering methods that are more suitable for the
overall time series data, such as feature space transformation clustering method or
multi-resolution analytical clustering method, can be designed to obtain higher quality
cluster analysis results and further improve the refined regulation and control ability
of active power of wind farms.

(2) The distributed model prediction control of dynamic indicators carries out a unit
clustering in each control step, the group results change dynamically according to
the active characteristics, and the group regulated by each distributed controller is
not fixed, so the communication structure requires each distributed controller to
be connected to all fans, which increases the scheduling cost at a certain level. At



Processes 2023, 11, 3072 21 of 22

the same time, on this basis, a more rigorous comparative analysis is required to
determine the location of the distributed controller.
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