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Abstract: Disassembly plays a pivotal role in the maintenance of industrial equipment. However, the
intricate nature of industrial machinery and the effects of wear and tear introduce inherent uncertainty
into the disassembly process. The inadequacy in representing this uncertainty within equipment
maintenance disassembly has posed an ongoing challenge in contemporary research. This study
centers on disassembly sequence planning (DSP) in the context of industrial equipment maintenance,
with a primary aim to mitigate the adverse effects of uncertainty. To effectively address this challenge,
we introduce a multi-objective DSP problem and utilize triangular fuzzy numbers from fuzzy logic
to manage uncertainty throughout the disassembly process. Our objectives encompass minimizing
disassembly time, reducing tool changes and directional reversals, and improving responsiveness to
emergency maintenance needs. Recognizing the complexities of this problem, we present an innova-
tive multi-objective enhanced water wave optimization (EWWO) algorithm, integrating propagation,
refraction, and breaking wave operators alongside novel local search strategies. Through rigorous val-
idation with real-world industrial cases, we not only demonstrate the algorithm’s potential in solving
disassembly maintenance challenges but also underscore its exceptional performance in producing
high-quality and efficient solutions. In comparison to other algorithms, EWWO provides significant
advantages in multi-objective evaluation metrics, including Hypervolume (HV), Spread, and CPU
time. Moreover, the application of triangular fuzzy numbers offers a comprehensive evaluation of
solutions, empowering decision makers to make informed choices in diverse scenarios. Our findings
lead to the conclusion that this research provides substantial support for addressing uncertainty
in the field of industrial equipment maintenance, with the potential to significantly enhance the
efficiency and quality of disassembly maintenance processes.

Keywords: disassembly sequence planning; uncertainty handling; multi-objective optimization;
industrial equipment maintenance; enhanced water wave optimization

1. Introduction

Industrial equipment maintenance plays a crucial role in ensuring production conti-
nuity and equipment lifespan [1,2]. In this context, disassembly sequence planning (DSP)
assumes a pivotal role, focusing on the determination of the optimal disassembly sequence
for components [3]. The efficiency of equipment maintenance largely relies on the ratio-
nal planning of DSP, as it is through this process that substantive maintenance work can
commence [4].

In recent years, DSP has garnered significant attention from researchers. However, it
is noteworthy that much of this research has been conducted in the context of deterministic
disassembly information, which presents a gap with real-world industrial operations.
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In practical settings, industrial operations often entail uncertainties such as intelligent
scheduling of power systems [5,6], equipment assembly [7], and job shop scheduling [8].
When extending these uncertainty factors to the equipment maintenance disassembly
problem we propose, the complexities arise from intricate equipment structures, various
maintenance components, differing maintenance conditions, and equipment wear, all
contributing to the dynamic nature of the disassembly task.

While some scholars have begun addressing uncertain DSP problems, it has come to
our attention that many of them primarily employ stochastic simulation methods [9,10],
such as chance-constrained programming or expected constrained programming. These
approaches typically model uncertain factors in disassembly as normal or uniform distribu-
tions, requiring extensive simulations. This approach may lead to a significant increase in
computational resources, and the choice of the number of random simulations introduces
subjectivity. All of these factors compound the complexity of the DSP problem, diminishing
the effectiveness of traditional methods. Therefore, there is an urgent need for a novel
approach to address these uncertainties, enhancing maintenance efficiency and quality.

In this study, we propose an innovative approach to address the multi-objective DSP
problem in uncertain environments. To flexibly handle uncertainty, we employ fuzzy logic,
specifically triangular fuzzy numbers. This approach not only conserves computational
resources but also enables adaptive decision making based on uncertain conditions, com-
prehensively optimizing maintenance. Our primary objective is to reduce disassembly
time, minimize tool direction changes during disassembly, and enhance responsiveness to
emergency maintenance components.

Furthermore, even the simplest allocation problems are NP-hard, and DSP is no
exception [11–13]. As the task scale expands, computational resource requirements exhibit
exponential growth. Consequently, metaheuristic algorithms have become the primary
means to solve DSP problems. Although numerous algorithms have emerged for solving
DSP problems, in light of the “no free lunch” theorem, no universal algorithm can effectively
solve all optimization problems. Hence, this paper proposes an enhanced water wave
optimization (EWWO) algorithm in multi-objective settings, which extensively explores
solutions to the proposed DSP problem by redefining propagation, reflection, and along-
wave operators. Additionally, it incorporates innovative local search strategies to further
improve the quality of the solution set, effectively addressing our proposed problem.

In summary, the significant contributions of this study can be summarized as follows:

• In addressing the complexities of equipment maintenance in an industrial context, we
introduce triangular fuzzy numbers to cope with uncertainty factors. This not only
enhances decision accuracy but also demonstrates unique adaptability when facing
uncertainty in practical operations.

• We integrate multi-objective optimization into industrial equipment maintenance
within an uncertain environment, comprehensively considering complexities such
as reducing disassembly time, minimizing tool and direction change frequency, and
enhancing responsiveness to emergency maintenance components.

• We introduce the innovative EWWO algorithm, which, by redefining propagation,
refraction, and breaking operators, extensively searches for solutions to the DSP
problem, effectively addressing its complexities and NP-hard nature. This algorithm
provides a powerful tool for addressing real-world industrial challenges.

These unique contributions collectively bring new methods and tools to the field
of industrial equipment maintenance, with the potential to improve the efficiency and
quality of maintenance work, thereby creating tangible value for the manufacturing and
industrial sectors.

The remainder of this paper is structured as follows: Section 2 provides a compre-
hensive review of the DSP problem, offering an in-depth understanding of the existing
literature and research. Section 3 outlines our modeling approach, describing the con-
struction process of the mathematical model. Section 4 introduces our innovative EWWO
algorithm. Section 5 shows the applicability of our model in different real-world industrial
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examples. Section 6 demonstrates the superior performance of EWWO. Finally, we con-
clude the research findings, discuss limitations, and propose future research directions in
Section 7.

2. Literature Review

Here, we first analyze the latest research advances in DSP issues (Section 2.1), after
which we summarize them, analyze the shortcomings of the current research, and highlight
the contributions of this paper (Section 2.2).

2.1. Research on DSP

Since the inception of DSP problems, they have garnered significant research attention
and driven progress in related fields [13]. Initially, researchers focused on studying various
graph-based models associated with DSP challenges, including AND/OR graphs, hybrid
disassembly graphs, task prioritization graphs, and component prioritization graphs [13],
aimed at meeting the requirements of diverse DSP problems. Solving DSP problems
typically demands exact solving techniques and heuristic algorithms. However, as the
complexity of product component structures continues to rise, leading to exponential
growth in computation time, this poses significant challenges for both exact- solving
techniques and heuristic algorithms [10–13].

To address this crucial obstacle, researchers turned their attention to metaheuristic
algorithms, which have become indispensable tools for achieving optimal or near-optimal
solutions in DSP scenarios. For instance, Zhang et al. [12] employed a social engineering
optimizer to address a cost-centric single-objective DSP problem, applying their proposed
method and model to a case involving a turbine gearbox. They demonstrated the con-
vergence and accuracy of their algorithm [12]. Simultaneously, Ren et al. [13] designed a
discrete multi-objective artificial bee colony algorithm to tackle a collaborative DSP chal-
lenge, aiming to minimize disassembly time and maximize profit. Their contribution lies
not only in the proposed algorithm but also in improving the disassembly tree and introduc-
ing new graph theory matrices to represent collaboration relationships [13]. Furthermore,
Wu et al. [14] introduced a simplified gravitational search algorithm to minimize DSP costs
and time constraints. While it is important to note that their research was conducted under
deterministic conditions, this approach offers a more efficient and cost-effective solution
for DSP challenges related to maintenance, especially in applications where tasks need to
be completed within a finite time [14].

Mahmoudi et al. [15] focused on a selective DSP problem related to building selection,
aiming to reduce disassembly time, costs, and environmental impact. They utilized a non-
dominated sorting genetic algorithm II (NSGA-II) to optimize these objectives, showcasing
their algorithm’s outstanding performance. This work provides a promising approach
to optimizing DSP in complex environments [15]. Yu et al. [16] introduced an enhanced
whale optimization algorithm for solving an energy-centric single-objective DSP problem.
Their study offers a new and effective choice for addressing DSP problems, particularly
in optimizing energy consumption for sustainability and energy efficiency [16]. Chen
et al. [17] concentrated on an end of life (EoL) smartphone DSP problem and developed a
Q-learning approach. Experimental results demonstrate the effectiveness of this method
in intelligently planning the target component sequence for EoL smartphone disassembly,
offering an intelligent solution for sustainable electronic waste processing and reducing
waste and resource consumption [17]. Sun et al. [18] proposed an asynchronous parallel
operation selective DSP problem, aiming to minimize disassembly time and maximize
disassembly profit. Their multi-objective evolutionary algorithm based on improved multi-
neighborhood search strategy provides a powerful tool for solving complex DSP problems,
which is crucial for enhancing production efficiency and profitability [18].

Additionally, Qiu et al. [19] addressed a selective DSP problem but introduced an im-
proved NSGA-II algorithm to tackle these issues. Their optimization objectives include total
disassembly time, disassembly direction change frequency, and disassembly tool change
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frequency, offering new directions for multi-objective optimization of DSP problems [19]. Ji
et al. [20] enhanced the immune optimization algorithm, providing new tools for rapidly
finding optimal or near-optimal disassembly sequences to solve DSP problems, which are
essential for accelerating the DSP process and improving production efficiency, providing
strong support for the manufacturing industry [20].

The above-mentioned literature provides valuable insights and support for DSP prob-
lem research. However, these studies were conducted under deterministic information,
while uncertainty is prevalent in DSP scenarios. Therefore, it is necessary to consider and
analyze these uncertain factors [21–23]. This prompted researchers to consider and analyze
these uncertain factors. For example, Fu et al. [21] introduced a hybrid algorithm that
combines probabilistic constraint programming with multi-objective multi-universe opti-
mization to simultaneously consider uncertainty related to operational failures during the
disassembly process. Their method balances energy maximization and disassembly profit
minimization, providing an effective approach to optimizing DSP problems in uncertain
situations [21]. Similarly, Liang et al. [22] addressed a stochastic DSP challenge affected by
noise pollution and energy uncertainty. They employed a probabilistic constraint approach
to handle this model, demonstrating the feasibility of optimizing DSP problems in uncertain
environments [22]. Tian et al. [23] introduced a novel stochastic DSP approach, considering
uncertain component quality and variable disassembly operation costs. They applied an
improved artificial bee colony algorithm [23]. Kim et al. [24] focused on DSP challenges
with stochastic operation time characteristics. They proposed a solution algorithm based on
sample mean approximation to reduce costs. They also explored a DSP problem involving
stochastic multi-product scenarios [24]. Additionally, Yeh et al. [25] employed a simplified
swarm intelligence algorithm to address a DSP scenario with stochastic operation frequency
features [25]. Furthermore, Zhang et al. proposed an improved social engineering opti-
mizer to address an energy-driven end-of-battery disassembly planning problem, utilizing
expected constraint programming as a solution method [26]. Guo et al. [26] considered task
failure risks and introduced a profit-oriented stochastic disassembly planning problem,
using a hybrid metaheuristic approach to enhance solution performance. These meth-
ods offer promising research directions and solutions for addressing uncertainty in DSP
problems [27].

2.2. Research Gap and Contribution

In spite of significant advancements in DSP challenge research, there remain several
critical shortcomings that require focused attention:

(1) Gap in Equipment Maintenance Research: Presently, a conspicuous gap exists
in the realm of DSP research concerning disassembly issues associated with uncertain
equipment maintenance. Equipment maintenance stands as a pivotal pillar for numerous
industries, yet it grapples with diverse challenges, one of which revolves around the
efficient disassembly of equipment for repair or the replacement of crucial components in
uncertain and challenging environments. It is regrettable that this pivotal aspect remains
scarcely addressed within the current landscape of DSP research.

(2) Underutilization of Fuzzy Logic: At present, most of the methods used in uncertain
DSP problems are stochastic programming. Fuzzy logic, renowned for its remarkable flexi-
bility and adaptability in managing situations characterized by fuzziness and uncertainty,
holds particular significance within the maintenance and dismantling domain. Regrettably,
its current application in this specific context falls short of realizing its full potential.

(3) Enhancements Needed for Metaheuristic Algorithms: While metaheuristic algo-
rithms have showcased their effectiveness in tackling DSP challenges, it is essential to
acknowledge the “no free lunch” theorem, which underscores the need for continuous
improvements. This encompasses bolstering the efficiency of algorithms to expedite the
dismantling process and fortifying their applicability to diverse equipment and scenar-
ios. Innovations in metaheuristic algorithms hold the key to significantly enhancing the
efficiency and precision of disassembly processes.
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Hence, the primary objective of this study is to introduce a pioneering fuzzy multi-
objective DSP disassembly model, meticulously crafted to address the aforementioned
deficiencies. The core design of this model is geared towards achieving multiple pivotal
objectives, which encompass the reduction of disassembly time, minimization of tool and
direction change frequency, and enhancement of response time concerning critical mainte-
nance components. To adeptly confront the inherent uncertainty linked with component
usage, we embrace the utilization of triangular fuzzy numbers. This strategic choice pro-
vides a more adaptable framework for managing uncertainty effectively. Furthermore, we
undertake the development of an efficient metaheuristic algorithm expressly tailored to
tackle this formidable challenge.

3. Proposed Model

In this section, we first introduce the graph-theoretic approach used (Section 3.1),
followed by describing the fuzzy logic used (Section 3.2), and finally constructing the
mathematical model of our proposed multi-objective DSP (Section 3.3).

3.1. Disassembly Hybrid Graph

To provide a reasonable and accurate representation of disassembly information, we
need to select an appropriate modeling method. Among the various modeling meth-
ods available, researchers commonly choose the classic approach of disassembly hybrid
graphs [28]. This method enjoys widespread usage in a substantial body of literature and
demonstrates notable simplicity and efficiency [12,26,28]. Therefore, we similarly chose the
disassembly hybrid graph.

A typical disassembly hybrid graph, as shown in Figure 1, comprises two types of
relationships: precedence constraints and direct contact relationships. If there is a directed
edge connecting component 1 and component 2, it signifies that component 1 must be
disassembled before component 2, indicating a precedence constraint relationship between
these two components. Conversely, if components 2 and 4 are connected by an undirected
edge, it signifies a direct contact relationship between components 2 and 4.
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Based on these relationships, researchers can represent them as a precedence constraint
matrix P and a direct contact matrix C. In the precedence constraint matrix P, assuming two
components are denoted as i and j, with i as the row and j as the column, if component i
must be disassembled before component j, then Pij = 1. The direct contact matrix C follows
a similar logic. Figure 2 shows the two matrices evolved from Figure 1.
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3.2. Triangular Fuzzy Numbers

Due to the complexity of equipment structures and factors such as wear and tear,
which can introduce disassembly uncertainty, we employ triangular fuzzy numbers as a
representation.

Compared to other uncertainty handling methods such as probability distributions,
interval analysis, and stochastic processes, triangular fuzzy numbers exhibit several distinct
advantages. These advantages include the following [29–31]:

(1) Flexibility in fuzziness representation: Triangular fuzzy numbers offer a more
flexible way to express fuzziness compared to some methods like probability distributions.
They allow the representation of fuzziness within a numerical range, not confined to a
single-point estimate. This proves highly useful in capturing the diversity and complexity
of uncertainty, particularly in addressing the ambiguity and uncertainty present in the
domain of equipment disassembly and maintenance.

(2) Intuitiveness and interpretability: The graphical representation of triangular fuzzy
numbers is relatively intuitive, making it easy to understand and explain, especially for
non-specialists. This aids in conveying uncertain information during the decision-making
process and facilitates effective communication with relevant stakeholders.

(3) Applicability to multi-dimensional uncertainty: Triangular fuzzy numbers can
be employed to represent uncertainty across multiple dimensions, not limited to a sin-
gle dimension. This is crucial for addressing problems that involve the comprehensive
consideration of multiple factors.

(4) Wide applicability: Triangular fuzzy numbers find extensive application in engi-
neering and technology fields. Moreover, they are widely used in various domains such
as decision analysis, control systems, and fuzzy logic. This versatility positions them as a
universal uncertainty modeling tool suitable for diverse applications, showcasing potential
in disassembly problem scenarios.

Triangular fuzzy numbers typically consist of three key values: the minimum value,
the maximum value, and the peak value. These values collectively define the potential
range of the random variable, with the peak value representing the most probable value,
while the minimum and maximum values establish the boundaries of the possible value
range [29]. The shape of a triangular fuzzy number resembles a triangle, with the peak
value at its apex. This representation is further explained by the membership function
presented in Equation (1).

µã(x) = {

0, x ≤ aL,
x−aL

aM−aL , aL ≤ x ≤ aM,
x−aU

aM−aU , aM ≤ x ≤ aU ,
0, x ≥ aU ,

(1)

The following is the general representation of a triangular fuzzy number:

A = (a, b, c) (2)

where a represents the minimum value of the triangular fuzzy number; b represents
the maximum value of the triangular fuzzy number; c represents the peak value of the
triangular fuzzy number, which is the most likely value.

Triangular fuzzy numbers come with defined arithmetic rules and scoring functions,
which we utilize for computations in the model.

Next, we need to introduce some operational definitions of triangular fuzzy num-
bers, including the definition of operational rules and scoring functions. We utilize these
definitions for computations within the model [29].



Processes 2023, 11, 3057 7 of 24

Assume two triangular fuzzy numbers A = (a1, b1, c1) and B = (a2, b2, c2). Their
operational rules are defined as shown in Equations (3)–(7) [29].

A⊕ B = (a1 + a2, b1 + b2, c1 + c2) (3)

A	 B = (a1− d2, b1− c2, c1− b2) (4)

A
⊗

B = (a1a2, b1b2, c1c2) (5)

λA = (λa1, λb1, λc1) (6)

Aq = (a1q, b1q, c1q) (7)

In order to compare triangular fuzzy numbers, we need to convert them into scoring
functions. By comparing the magnitude of their scoring functions, we can determine the
ordering between two triangular fuzzy numbers.

S(A) =
a + 2b + c

4
(8)

3.3. Proposed Model

After that, we build a mathematical model of the proposed problem, and the notations
used in the model are shown below:

Indices:
m: Index denoting the disassembly component, m ∈ {1, 2,. . ., M}
Parameters:
M: Total count of disassembly components
t̃m Fuzzy disassembly time associated with component m
sm Level of complexity for the removal of component m
t̃t Fuzzy time required for tool change
t̃d Fuzzy time required for direction change
Im Position of component m in the disassembly sequence
dn Number of direction changes in the disassembly sequence
tn Number of tool changes in the disassembly sequence
Decision variables:

hm
Priority indicator for component m, where hm = 1 if component m has
priority; otherwise, hm = 0.

Our model comprises three distinct objective functions. Equation (9) serves as the
primary optimization direction, as it is minimized to guide the overall optimization process,
∼ is used to represent the fuzzy information in the model.

min F =
[

f̃1, f2, f3

]
(9)

Afterward, the detailed descriptions of each objective are as follows:

(1) Reducing disassembly time

Equipment maintenance often needs to be completed rapidly to minimize production
interruptions and reduce costs. Therefore, setting the reduction of disassembly time as an
objective is reasonable as it contributes to improving equipment availability, shortening
maintenance cycles, reducing downtime losses, and enhancing production efficiency.

f̃1 =
M

∑
m=1

(1 + sm)t̃m + t̃ttn + t̃ddn (10)
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(2) Enhancing responsiveness to urgent maintenance components

In emergency situations, responding quickly to maintenance demands is crucial. By
improving the responsiveness to urgent maintenance components, it ensures the rapid
availability of necessary parts and tools when needed, thereby reducing downtime and
enhancing equipment reliability.

f2 =
M

∑
m=1

Imhm (11)

(3) Reducing tool and direction change frequency

In uncertain environments, frequent tool and direction changes can introduce addi-
tional complexity and the possibility of errors. By minimizing these changes, it is possible
to improve the continuity of work, reduce the likelihood of errors, and decrease mainte-
nance time. This helps ensure more effective execution of equipment maintenance tasks in
uncertain environments.

f3 = tn + dn (12)

Therefore, integrating these three objectives into our multi-objective optimization
method makes our approach more aligned with practical operations. It allows for effective
balancing of key factors such as production efficiency, maintenance efficiency, and respon-
siveness in emergency situations. This contributes to achieving more sustainable industrial
equipment maintenance and upkeep, ultimately enhancing overall production efficiency.

Subsequently, Equations (7)–(12) are subject to the following constraints:

M

∑
j=1

cjm ≤ 1 (13)

M

∑
j=1

pjm = 0 (14)

hm ∈ {0, 1} (15)

Equations (13) and (14) outline prerequisites for disassembling a component. These
prerequisites demand that there be no interference from higher-priority components and a
limit on the number of components in contact with the target component. These conditions
play a significant role in ensuring a smooth disassembly process. Finally, Equation (15)
introduces binary variables into the model, providing further definition to decision-making
processes and constraint conditions.

4. Proposed Solution Method

Nowadays, there are numerous methods available for solving optimization prob-
lems, including exact solution techniques [23], data-driven approaches [32], heuristic
algorithms [28], metaheuristic algorithms [28], and linear programming techniques based
on metaheuristic algorithms [33]. As mentioned earlier, given the NP-hard, fuzzy nature
and discrete nature of the problem under consideration, it is imperative to customize a
metaheuristic algorithm to obtain viable solutions. Among the array of metaheuristic
algorithms available, the WWO algorithm stands out due to its unique attributes. Firstly, it
operates in multi-dimensional spaces, making it versatile and adaptable to a wide spectrum
of optimization problems such as home healthcare decision problems [33]. Moreover, this
algorithm boasts a notable advantage in terms of faster convergence and higher precision,
enabling it to yield near-optimal solutions within relatively short timeframes [34]. Notably,
the WWO algorithm demonstrates remarkable robustness, effectively managing uncertain-
ties and noise inherent in the problem. Its versatility extends to diverse domains, such
as engineering, where it finds utility in tasks like structural design and parameter tuning.
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In economics, it is a valuable tool for challenges like portfolio optimization and resource
allocation [34]. Beyond these applications, the WWO algorithm finds its place in fields like
image processing, machine learning, and data mining, underscoring its potential to address
DSP problems effectively [34].

Before introducing EWWO, let us first explain some terminology related to EWWO. In
traditional WWO, each water wave represents a solution, and multiple water waves form a
population to solve a problem. In traditional WWO, there are three forms of searching the
solution space: 1. propagation, 2. refraction, and 3. breaking waves. Propagation is when
water waves spread outwards, refraction changes the direction of propagation when the
wave height approaches zero, and breaking waves occur when the wave height is relatively
high, causing the wave to break into foam. By combining these three search methods with
specific rules for accepting solutions, the WWO algorithm achieves its superior exploration
capabilities [34].

With the WWO algorithm chosen as our primary solution approach, we proceed to
tailor it to the unique characteristics of the problem at hand. This customization involves
several key components, each contributing to the algorithm’s effectiveness. We begin by
elucidating the multi-objective handling approach employed in this study (Section 4.1),
followed by an in-depth description of the population initialization method (Section 4.2).
Subsequently, we delve into the specialized propagation operator (Section 4.3), refraction
operator (Section 4.4), breaking operator (Section 4.5), and the incorporation of a local search
strategy (Section 4.6). To provide a comprehensive overview, we conclude by presenting
the overall framework of the EWWO algorithm in Section 4.7.

4.1. Multi-Objective Handling Techniques

We utilize Pareto dominance and the crowding distance calculation to balance be-
tween three objectives, which are commonly used concepts in multi-objective optimization
problems for comparing and selecting solutions.

(1) Pareto dominance [35,36]:
Pareto dominance is a method used to compare different solutions in multi-objective

optimization problems. In multi-objective problems, there are typically multiple conflicting
objectives, so there is no single best solution but rather a set of possible optimal solutions
known as the Pareto front. Solution A is said to Pareto dominate Solution B if Solution A
is at least as good as Solution B in at least one objective and strictly better in at least one
objective.

The conditions for Pareto dominance are as follows:

• Solution A is at least as good as Solution B in at least one objective.
• Solution A is strictly better than Solution B in at least one objective.
• If both of the above conditions are met, then Solution A Pareto dominates Solution B.

(2) Crowding distance calculation [35,36]:
The crowding distance calculation is one of the methods used in multi-objective

optimization to select solutions on the Pareto front. It helps determine which solutions are
more worth keeping to maintain diversity on the front. Crowding distance represents how
crowded a solution is within the Pareto front, which is essentially the distance between a
solution and its nearest neighbors on the front.

The steps for the crowding distance calculation are as follows:

• Sort the solutions on the Pareto front for each objective based on their values.
• Calculate the distances of each solution on each objective.
• Sum the distances on each objective to obtain the crowding distance for each solution.
• A larger crowding distance indicates a lower crowding level of a solution on the front

and is typically more worth retaining. This helps maintain diversity on the front while
selecting solutions with higher performance.
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Pareto dominance and crowding distance calculation are important concepts and
methods in multi-objective optimization that aid in selecting suitable solutions in multi-
objective problems.

4.2. Population Initialization

Population initialization stands as the pivotal initial step in any algorithm, as em-
phasized in reference [35]. In the context of our DSP problem, the task revolves around
determining the disassembly order for components. However, the WWO algorithm pri-
marily operates in a continuous fashion. To align it with our problem’s discrete nature, we
must discretize its search space and represent the disassembly sequence as strings.

To achieve this, we employ integer encoding to discretize the search space and effec-
tively represent the disassembly sequence as strings. This process begins with the genera-
tion of the initial population, which is intricately tied to the disassembly mixed graph.

First, we transform the disassembly mixed graph into two matrices, designated as P
and C. Subsequently, we identify all rows in matrix P that are entirely composed of zeros
and satisfy the condition of being less than or equal to 1 in matrix C. Among these rows,
one is randomly selected to serve as the starting point for a component in the disassembly
sequence. Following this selection, the chosen row is removed, and the above steps are
iterated until all components have been assigned their positions within the disassembly
sequence.

By employing this meticulous approach, we effectively initialize the population. This
enables the EWWO algorithm to embark on its search within the solution space, ultimately
pursuing the optimal disassembly sequence.

4.3. Propagation Operator

Here, we design a new propagation operator and employ it within the traditional
WWO update rules. Specifically, we randomly select three points from the current individ-
ual (water wave) and exchange their positions, as illustrated in Figure 3.
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Next, we calculate the sum of the scoring functions for the updated solution, de-
noted as S(X), where the scoring functions for individual x are computed as shown in
Equation (16).

S(X) = S( f 1) + S( f 2) + S( f 3) (16)

If the score of the new solution is less than that of the original solution, i.e., S(xnew) <
S(xold), we update the solution, setting h = hmax, otherwise, we calculate Equation (17).

λ′ = min
(

λα−(S(xold)−S(xnew))/S(xold), 1
)

(17)

where λ′ is a parameter, u is a uniformly random number between 0 and 1.
If λ′ < u, we update the solution, setting h = hmax. Otherwise, we retain the

original solution and decrement h by 1. In addition, here, hmax represents the maximum
propagation count for the current water wave. When all solutions have been updated or no
improvement is achieved, meaning h becomes 0, the propagation operation in this iteration
concludes, and we proceed to the refraction operation.

4.4. Refraction Operator

If a solution has not improved after multiple searches, i.e., the solution’s corresponding
value of h is 0, we perform a refraction operation on it.
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We identify the solution with the minimum crowding distance in the first level of
the current Pareto front, and refract part of its solution into the solution that needs to be
updated. For the remaining positions in the current solution that have not been refracted,
we reverse their order, as shown in Figure 4.
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4.5. Breaking Operator

If an individual, after undergoing a propagation operation, produces a better individ-
ual than the current best individual, we then subject the new individual to the breaking
wave operation. We randomly select two points from it and swap them, continuing this
process up to a preset maximum number of times, kmax. If the score of the new solution is
less than that of the old one, i.e., S(xnew) < S(xold), the solution is updated. Otherwise, if
min(βS(xnew)/S(xold), 1) < u, the solution is also updated.

Note that kmax is randomly generated between 1 and 10 during each iteration. After
that, Figure 5 shows a schematic of the refraction operator.
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The updated population is merged with the original population. Pareto dominance
and crowding distance calculations are performed on the merged population to update
it. Non-dominated solutions are saved to an external archive for the next rounds of
propagation, refraction, and breaking wave operations.

After completing the main loop of the EWWO algorithm, for the solutions saved in the
external archive, duplicate solutions are removed, and a local search strategy is introduced.

4.6. Local Search

To further enhance the quality of the non-dominated solution set obtained by EWWO,
we introduce a local search strategy. Specifically, we randomly select n points within the
current solution (where 1 < n < M/2) and reposition these n points within the disassembly
sequence. Similar to the process described in Section 4.5, we perform a search kmax times
for each individual scheme. Figure 6 shows a schematic of the local search strategy.
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4.7. EWWO Algorithm General Framework

Combining the aforementioned components, the overall steps of our EWWO algorithm
are as follows:

Step 1: Generate an initial population using the method described in Section 4.2.
Step 2: Perform Pareto dominance and crowding distance calculations on the initial

population to find non-dominated solutions.
Step 3: Execute the propagation operation as described in Section 4.3.
Step 4: Apply the refraction operation to solutions not optimized by the propagation

operation.
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Step 5: Apply the breaking operation to solutions optimized by the propagation
operation.

Step 6: Merge the new population obtained from Steps 3–5 with the original population
to find non-dominated solutions and save them in an external archive.

Step 7: Check if the maximum iteration count (Maxit) has been reached. If it has,
terminate the main EWWO loop and proceed to Step 8; otherwise, continue with Step 3.

Step 8: Remove duplicate solutions from the external archive, and perform a local
search process on them according to the scheme outlined in Section 4.6. Output the final
non-dominated solution set.

The overall flowchart of the EWWO framework, combining the above-mentioned
components and using the maximum iteration count Maxit as the stopping criterion, is
illustrated in Figure 7.
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5. Case Study

Here, we use two real-world industrial cases to verify the effectiveness of the proposed
algorithm and model. We use a disassembly and maintenance process of a coal mill with
21 components to represent a small-scale case (Section 5.1) and a disassembly process of a
generator with 40 components to represent a large-scale case (Section 5.2).

The decision to choose coal mills and generators as subjects for case studies can be
attributed to multiple reasons. Firstly, these two types of equipment play a vital role in
the industrial sector, not only in power generation but also in other industries. There-
fore, studying their performance and maintenance holds significant practical significance.
Secondly, these devices often possess complex mechanical structures involving multiple
components and systems. Thus, selecting them as research subjects aids in delving deeper
into multi-objective optimization and disassembly issues, providing valuable insights
for addressing challenges posed by similar complex mechanical equipment. Addition-
ally, coal mills and generators require frequent maintenance during operation to ensure
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their long-term performance and reliability. This makes the study of their maintenance
processes directly valuable, as it can help companies save on maintenance costs, reduce
downtime, and enhance production efficiency. Furthermore, these case studies provide an
ideal platform for validating the applicability of new algorithms and models in complex
industrial environments. This validation not only aids in improving existing technologies
but also fosters technological innovation, offering better solutions for the maintenance and
optimization of future industrial equipment. In summary, the selection of coal mills and
generators as case study subjects aims to address complex real-world industrial issues, en-
hance equipment performance and reliability, validate the applicability of new technologies,
and promote technological innovation. These reasons collectively drive this decision.

5.1. Case Study A

We first demonstrate its disassembly information (Section 5.1.1), then carry out pa-
rameter calibration of the EMMO algorithm (Section 5.1.2), and finally, solve the case. The
results are then analyzed (Section 5.1.3).

5.1.1. Case Description

Here, we solve a coal mill case with 21 parts. Table 1 shows its disassembly information;
to simplify the presentation, the same tools are represented with the same numerical code,
and Figure 8 shows its disassembly hybrid graph. In Table 1, the first column represents
the component number, the second column contains the component name, and the third
column indicates the tools used for disassembling the corresponding component, with the
same number indicating the use of the same tool. Similarly, the fourth column specifies the
disassembly direction for the corresponding component, with the same number indicating
the same direction. The fifth column shows the fuzzy operation time for disassembling the
corresponding component. The seventh column determines whether the component has
maintenance priority, and the last column represents the difficulty level of disassembling
that component.

Table 1. Disassembly information.

Order Name Tool Direction Disassembly Time/s Priority Difficulty

1 Platen 1 +y 16.83, 17.64, 18.50 0 0.25
2 Electric motor 1 +y 37.35, 40.15, 41.92 0 0.1
3 Coupling 1 +y 22.99, 23.85, 24.07 0 0.0
4 Gearbox 2 +y 41.06, 41.57, 43.20 1 0
5 Machine base 2 −x 28.13, 29.00, 30.01 0 0
6 Slag discharge box 1 −x 10.78, 11.68, 12.22 0 0.2
7 Machine base sealing device 2 −x 21.59, 22.45, 23.53 1 0.2
8 Drive plate and scraper device 3 −x 24.48, 25.39, 25.83 1 0.15
9 Grinding ring and nozzle ring 3 +x 28.08, 28.87, 29.77 1 0

10 Grinding roller assembly 2 +x 11.82, 12.81, 13.95 0 0.1
11 Press frame assembly 3 +x 10.94, 11.66, 12.57 1 0.2
12 Articulated shaft assembly 1 +z 11.78, 12.72, 13.34 0 0.1
13 Machine casing 2 +z 25.65, 26.43, 27.02 0 0.1
14 Rod loading device 2 +z 10.54, 11.26, 12.13 0 0.25
15 Loading oil cylinder 3 +y 27.84, 29.06, 29.41 1 0
16 Separator 3 +y 27.94, 29.06, 29.33 1 0
17 Sealing manifold 3 −x 26.06, 27.08, 28.08 0 0
18 Fire suppression gas piping 1 −x 22.52, 23.54, 24.33 0 0.15

19 High-pressure oil station and
low-pressure oil station 2 −y 37.25, 37.91, 39.25 0 0.1

20 Oil–water piping 2 −y 28.10, 28.70, 30.29 0 0
21 Disc drive device 2 +z 28.08, 28.83, 30.14 1 0
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5.1.2. Parameter Calibration

When applying metaheuristic algorithms, a crucial step is the precise adjustment
and calibration of parameters, a process of paramount importance [35]. This step can
significantly enhance both the quality and efficiency of the algorithm’s solutions. To
achieve this, we initiate the process by conducting parameter calibration. Drawing from
experience, preliminary experiments, and literature analysis [3,6,8,23], we designate three
reference values for each parameter, as illustrated in Table 2.

Table 2. Reference level for parameters’ setting.

Parameters Level 1 Level 2 Level 3

N 30 40 50
Maxit 100 150 200
hmax 3 4 5

λ 1 2 3
α 1.3 1.5 1.8
β 0.01 0.02 0.03

Conducting a full experiment would necessitate a daunting number of trials, given
the exponential nature of the parameter combinations. To streamline this process and
reduce the number of experiments, we employ the Taguchi experimental design method
for parameter calibration.

Additionally, we employ the relative percentage deviation (RPD) to assess the algo-
rithm’s performance under different parameter settings, with the calculation formula for
RPD as shown in Equation (18).

RPD =
AlgSol −MinSol

MinSol
(18)

where MinSol is the minimum of the sum of the score functions in all experiments, AlgSol
is the sum of the objective score functions in the current experiment.

Finally, the Taguchi experimental results are presented in Table 3.
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Table 3. Taguchi experimental reference results.

Numbers N Maxit hmax λ α β RPD

1 1 1 1 1 1 1 0.1168
2 1 1 2 2 3 3 0.1340
3 1 2 1 3 3 2 0.1665
4 1 2 3 1 2 3 0.1339
5 1 3 2 3 2 1 0.0526
6 1 3 3 2 1 2 0.1446
7 2 1 1 3 2 3 0.0886
8 2 1 3 1 3 2 0.0809
9 2 2 2 2 2 2 0.1320
10 2 2 3 3 1 1 0.1056
11 2 3 1 2 3 1 0.1201
12 2 3 2 1 1 3 0.0969
13 3 1 2 3 1 2 0.1412
14 3 1 3 2 2 1 0.0558
15 3 2 1 2 1 3 0.0495
16 3 2 2 1 3 1 0.0713
17 3 3 1 1 2 2 0.0025
18 3 3 3 3 3 3 0

After averaging the results across various experiments for each parameter, the final
parameter calibration outcomes are summarized in Table 4.

Table 4. Parameters’ selection results.

Level N Maxit hmax λ α β

1 0.249 0.206 0.181 0.167 0.218 0.174
2 0.208 0.220 0.209 0.212 0.155 0.223
3 0.107 0.139 0.174 0.185 0.191 0.168

5.1.3. Computational Result

After the steps in Section 5.2, we run the program once to obtain the set of non-
dominated solutions shown in Table 5, and Figure 9 illustrates the distribution of their
score functions.

Table 5. Case study A: undominated solution set.

Order Scheme f̃1 f2 f3

1 13, 2, 3, 4, 1, 16, 5, 7, 6, 10, 12, 18, 17, 21, 14, 15, 11, 8, 9, 19, 20 575.6, 600.7, 627.4 102 23
2 13, 2, 3, 1, 16, 19, 10, 4, 12, 18, 17, 21, 14, 11, 15, 8, 9, 5, 7, 20, 6 572.3, 597.1, 623.5 106 23
3 13, 19, 1, 16, 2, 3, 4, 10, 12, 18, 17, 21, 14, 15, 11, 8, 9, 5, 7, 20, 6 573.4, 598.3, 624.8 104 23
4 13, 2, 3, 4, 5, 7, 1, 16, 10, 12, 18, 17, 21, 14, 11, 15, 8, 9, 6, 19, 20 575.7, 600.8, 627.6 97 24
5 13, 1, 16, 2, 3, 4, 19, 20, 5, 7, 10, 12, 18, 17, 21, 14, 15, 11, 9, 8, 6 567.5, 591.9, 617.5 108 19
6 13, 2, 3, 1, 16, 4, 20, 19, 5, 7, 10, 12, 18, 6, 17, 21, 14, 11, 9, 8, 15 562.9, 586.9, 611.9 115 17
7 13, 1, 16, 2, 3, 4, 19, 20, 10, 5, 7, 12, 18, 6, 17, 21, 14, 15, 11, 9, 8 565.2, 589.4, 614.7 114 18
8 13, 1, 16, 2, 3, 4, 5, 7, 19, 20, 10, 6, 12, 18, 17, 21, 14, 11, 9, 8, 15 566.4, 590.7, 616.2 111 19
9 13, 1, 2, 16, 3, 4, 5, 7, 10, 20, 6, 12, 18, 17, 21, 14, 15, 11, 9, 8, 19 569.9, 594.5, 620.5 107 21

10 13, 19, 1, 16, 2, 3, 4, 10, 5, 7, 12, 17, 18, 21, 14, 15, 11, 9, 8, 6, 20 573.3, 598.2, 624.6 105 22
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The data presented in Table 5 and Figure 9 clearly demonstrate conflicts among our 
three primary objectives. Specifically, the fuzzy range for disassembly time falls between 
575.7 and 627.4, while the range for part maintenance priority spans from 97 to 115, and 
the range for tool and direction change time is between 17 and 23. 

For decision makers whose primary goal is to minimize both disassembly time and 
tool/direction change time, Scheme 6 emerges as a viable choice. However, it must be 
acknowledged that, in terms of part maintenance priority, this scheme ranks the lowest. 
Conversely, for decision makers who prioritize the highest-level part maintenance, 
Scheme 4 stands out. However, the cost of this choice is an extended disassembly time. 

It can be seen that representing objective function values with triangular fuzzy num-
bers allows decision makers to conduct a more comprehensive macro-level analysis of 
various disassembly schemes. The application of triangular fuzzy numbers helps decision 
makers gain a more holistic understanding and analysis of various decision options, better 
aligning them with their objectives and needs. 

The solutions generated by the EWWO algorithm provide decision makers with mul-
tiple choices within this complex multi-objective decision space. Ultimately, decisions will 
depend on the specific priorities, constraints, and trade-offs that decision makers are will-
ing to accept in their particular circumstances. This underscores the need for a cautious 
and data-driven decision-making process to select the most appropriate solution. 

5.2. Case Study B 
Here, we first demonstrate its disassembly information (Section 5.2.2), then, solve the 

case. The results are then analyzed (Section 5.2.2). 

5.2.1. Case Description 
The generator contains 40 parts and its disassembly information is shown in Table 6, 

which has the same distribution of information as Table 1, and its disassembly hybrid 
graph can be found in the literature [10]. 

  

f1

Figure 9. Distribution of non-dominated solution sets (Case Study A).

The data presented in Table 5 and Figure 9 clearly demonstrate conflicts among our
three primary objectives. Specifically, the fuzzy range for disassembly time falls between
575.7 and 627.4, while the range for part maintenance priority spans from 97 to 115, and
the range for tool and direction change time is between 17 and 23.

For decision makers whose primary goal is to minimize both disassembly time and
tool/direction change time, Scheme 6 emerges as a viable choice. However, it must be
acknowledged that, in terms of part maintenance priority, this scheme ranks the lowest.
Conversely, for decision makers who prioritize the highest-level part maintenance, Scheme
4 stands out. However, the cost of this choice is an extended disassembly time.

It can be seen that representing objective function values with triangular fuzzy num-
bers allows decision makers to conduct a more comprehensive macro-level analysis of
various disassembly schemes. The application of triangular fuzzy numbers helps decision
makers gain a more holistic understanding and analysis of various decision options, better
aligning them with their objectives and needs.

The solutions generated by the EWWO algorithm provide decision makers with
multiple choices within this complex multi-objective decision space. Ultimately, decisions
will depend on the specific priorities, constraints, and trade-offs that decision makers are
willing to accept in their particular circumstances. This underscores the need for a cautious
and data-driven decision-making process to select the most appropriate solution.

5.2. Case Study B

Here, we first demonstrate its disassembly information (Section 5.2.2), then, solve the
case. The results are then analyzed (Section 5.2.2).

5.2.1. Case Description

The generator contains 40 parts and its disassembly information is shown in Table 6,
which has the same distribution of information as Table 1, and its disassembly hybrid graph
can be found in the literature [10].
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Table 6. Information on the disassembly of a generator.

Order Name Tool Direction Disassembly Time/s Priority Difficulty

1 Oil inlet plug 1 z 3.12, 4.08, 4.99 0 0
2 Rear bearing cover 3 z 5.78, 6.54, 7.17 0 0.25
3 Speed sensors 3 −y 8.70, 8.97, 9.70 0 0.15
4 Transmission cover 2 y 5.97, 6.14, 6.88 0 0
5 Snap Ring 4 y 12.35, 13.21, 13.82 1 0
6 Front bearing cover 1 −y 45.42, 46.64, 47.75 1 0
7 Transmission rear housing 5 y 33.73, 33.93, 34.66 1 0.15
8 Transmission front housing 3 y 10.14, 10.37, 10.97 0 0.25
9 Intermediate shaft 1 −y 18.59, 19.07, 19.31 0 0.1
10 Fork pulling 3 −y 11.65, 12.38, 12.75 0 0.12
11 Input shaft 2 −y 7.62, 8.03, 8.58 1 0
12 Output shaft 3 y 7.54, 8.72, 9.26 0 0
13 Fastener 1 5 −y 15.92, 16.48, 16.79 0 1
14 Fastener 2 5 −y 35.76, 36.62, 38.85 0 0
15 Fastener 3 4 −y 24.80, 25.53, 26.19 0 0.15
16 Fastener 4 4 −y 23.49, 24.10, 25.06 1 0.25
17 Fastener 5 5 y 28.07, 28.60, 29.60 1 0.2
18 Fastener 6 5 −y 32.43, 33.47, 34.30 0 0.1
19 Fastener 7 3 −y 10.34, 10.81, 12.05 0 0.15
20 Fastener 8 2 −y 4.69, 4.98, 5.09 0 1
21 Fastener 9 2 y 3.98, 4.49, 4.68 0 1
22 Fastener 10 5 y 15.68, 16.37, 16.99 1 0
23 Fastener 11 4 −y 5.64, 6.43, 6.51 0 1
24 Fastener 12 4 y 7.73, 8.37, 8.77 0 0.15
25 Fastener 13 5 y 10.74, 11.25, 11.91 0 0.25
26 Fastener 14 3 y 7.05, 7.68, 7.89 0 0
27 Fastener 15 4 −y 19.05, 19.38, 20.34 1 0.1
28 Fastener 16 5 y 23.44, 24.11, 24.68 0 0.1
29 Fastener 17 4 −y 15.22, 15.62, 16.18 0 0.25
30 Fastener 18 4 y 15.29, 15.93, 16.24 0 0.15
31 Fastener 19 3 −y 6.01, 6.39, 6.63 0 1
32 Fastener 20 3 x 4.03, 4.29, 4.52 1 1
33 Fastener 21 3 x 5.38, 5.64, 6.08 0 1
34 Fastener 22 3 x 11.55, 12.08, 12.20 0 0.15
35 Fastener 23 2 −x 7.52, 7.78, 8.20 1 0
36 Fastener 24 4 −x 16.73, 17.02, 17.36 0 0
37 Fastener 25 3 x 9.53, 10.05, 11.55 1 0.15
38 Fastener 26 4 −x 12.62, 12.86, 13.10 0 0.25
39 Fastener 27 3 −x 8.71, 9.88, 10.42 0 0.15
40 Fastener 28 3 −x 10.86, 11.17, 11.34 0 0.25

5.2.2. Computational Result

After applying the parameter calibration method described in Section 5.1.2, for Case
Study B, we set the parameters as follows: N = 50, Maxit = 200, hmax = 3, λ = 2, α = 1.5,
β = 0.03, and keep other parameters the same as in the previous section. Subsequently, the
results after running the program once are shown in Table 7, and the score function Pareto
distribution is depicted in Figure 10.
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Table 7. Case study B undominated solution set.

Order Scheme f̃1 f 2 f 3

1 22, 17, 25, 13, 19, 20, 21, 4, 15, 16, 18, 3, 2, 26, 24, 23, 5, 35, 39, 40, 34, 33, 32,
37, 31, 38, 36, 7, 9, 28, 14, 29, 1, 30, 27, 6, 10, 8, 11, 12 737.8, 771.5, 809.6 234 41

2 20, 21, 17, 25, 22, 14, 19, 3, 15, 16, 18, 13, 4, 1, 2, 26, 24, 23, 5, 36, 32, 37, 34, 35,
38, 40, 39, 31, 33, 7, 9, 28, 30, 27, 29, 6, 10, 8, 12, 11 734.2, 767.6, 805.1 244 38

3 17, 22, 14, 18, 25, 13, 16, 15, 2, 20, 21, 24, 26, 23, 5, 32, 35, 37, 38, 31, 19, 34, 36,
39, 33, 40, 1, 7, 4, 3, 9, 27, 29, 30, 28, 6, 10, 8, 12, 11 752.9, 787.9, 828.1 212 49

4 18, 17, 22, 15, 16, 20, 14, 19, 3, 13, 1, 2, 21, 4, 24, 23, 26, 25, 5, 37, 32, 34, 33, 35,
38, 39, 36, 40, 31, 7, 9, 27, 29, 30, 28, 6, 10, 8, 12, 11 744.4, 778.7, 817.4 231 41

5 13, 16, 15, 18, 17, 22, 25, 20, 2, 21, 24, 26, 23, 5, 32, 35, 37, 38, 31, 3, 14, 34, 36,
19, 33, 40, 39, 7, 1, 4, 9, 27, 29, 30, 28, 6, 10, 8, 11, 12 761.0, 796.7, 838.0 210 53

6 16, 20, 18, 25, 22, 17, 14, 13, 15, 19, 3, 2, 23, 26, 24, 5, 37, 32, 35, 34, 31, 33, 36,
38, 40, 39, 7, 1, 21, 4, 9, 30, 27, 29, 28, 6, 10, 8, 12, 11 740.1, 774.04, 812.4 218 42

7 18, 17, 16, 22, 21, 14, 15, 20, 3, 2, 26, 25, 24, 23, 5, 35, 39, 40, 34, 33, 32, 37, 31,
38, 36, 7, 13, 19, 4, 1, 9, 27, 29, 30, 28, 6, 10, 8, 12, 11 742.4, 776.5, 815.2 217 43

8 16, 22, 18, 17, 3, 19, 15, 13, 20, 2, 26, 25, 24, 23, 5, 35, 39, 40, 34, 33, 32, 37, 31,
38, 36, 7, 14, 1, 21, 4, 9, 27, 29, 28, 30, 6, 10, 8, 11, 12 745.9, 780.3, 819.5 214 45

9 22, 17, 14, 18, 25, 21, 13, 3, 19, 1, 20, 16, 15, 2, 26, 24, 23, 5, 34, 33, 32, 37, 31,
38, 36, 39, 40, 35, 7, 4, 9, 27, 29, 28, 30, 6, 10, 8, 12, 11 736.5, 770.1, 807.9 241 39

10 22, 16, 17, 14, 19, 21, 25, 15, 3, 18, 2, 23, 26, 24, 5, 37, 32, 35, 20, 39, 4, 40, 33,
13, 34, 38, 36, 31, 7, 9, 28, 30, 27, 29, 1, 6, 10, 8, 11, 12 769.2, 805.6, 848.1 209 58
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When considering solutions for a large-scale case, we still need to balance three key
objectives, and it is evident that there are complex and conflicting relationships among
these objectives. Firstly, we focus on time, and the need to complete tasks promptly. Scheme
2 excels in this regard as it minimizes the time required for disassembly and also performs
well in terms of tool and direction change frequency.

However, it is not just about time; we also need to consider the responsiveness of
urgent components. Scheme 10 excels in this aspect by maximizing the responsiveness of
urgent components. However, Scheme 10 requires a significant amount of disassembly time
during implementation, which could potentially have a negative impact on overall process
efficiency. Therefore, decision makers must make appropriate trade-offs between time and
responsiveness. The multiple sets of schemes we provide can assist decision makers in
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considering a variety of factors to make choices based on their specific circumstances and
priority objectives.

6. Comparison with Other Algorithms

Here, in order to validate the superiority of the proposed EWWO algorithm, we
conduct a comparative analysis against NSGA-II [15], the multi-objective artificial bee
colony algorithm (MODABC) [37], and the ant colony optimization algorithm (ACO) [38].

MOABC adopts a variable neighborhood depth search strategy to enhance the mining
ability in the stage of honey mining by hiring bees and observation bees, and constructs a
global learning strategy to improve the quality of honey and jump out of the local optimum
in the stage of honey exploration by scouting bees, and adopts the left–right mutation
mechanism to improve the convergence and accuracy of the algorithm.

ACO defines a new pheromone matrix and optimization operator, which ensures that
the algorithm has both randomness and determinism and guarantees the diversity of ants’
optimization paths so that the algorithm does not easily appear as the local optimum.

NSGA-II is an algorithm proposed for the DSP problem, which sets specialized
crossover and mutation operators and also has superior performance.

We perform a comparison of HV, Spread, and CPU time for the four algorithms
as follows:

(1) HV is one of the key metrics used to assess the performance of multi-objective
optimization algorithms. It measures the volume of the set of non-dominated solutions
found by the algorithm in a multi-dimensional objective space. A higher HV value indicates
that the algorithm’s solution set is closer to the ideal Pareto front, indicating better algorithm
performance.

(2) Spread measures the dispersion of solutions in the Pareto front. This metric is
used to assess whether the algorithm can provide a diverse set of non-dominated solutions
rather than concentrating them in a small region. A higher Spread value indicates that
the algorithm can find more dispersed solutions on the Pareto front, demonstrating better
diversity.

(3) CPU time represents the computer processing time required for algorithm execution.
This metric is used to evaluate the computational efficiency of the algorithm. A shorter
CPU time typically indicates that the algorithm can find better solutions within the same
time frame or handle more problem instances in a given amount of time.

These metrics are collectively used to evaluate the performance of multi-objective
optimization algorithms and determine which algorithm performs best on a given problem.
HV and Spread focus on the quality and diversity of the algorithm’s solution set, while
CPU time assesses efficiency. Therefore, considering these metrics together provides a
comprehensive assessment of the algorithm’s overall performance.

To ensure fairness, we initially perform parameter calibration for all these algorithms
using the method described in Section 4. Subsequently, we employ the same encoding
method and utilize the rules of triangular fuzzy number arithmetic. All performance met-
rics are derived from scoring functions, and each metric runs 10 times, with the averages
calculated and presented in Table 8. The best values are indicated in bold for reference. Fur-
thermore, to validate the effectiveness of our results, we include 95% confidence intervals
for each algorithm’s performance metrics, as depicted in Figures 11 and 12.
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Table 8. Performance comparison results of each algorithm.

Case study A

Algorithms HV Spread CPU (based on s)

NSGA-II 0.73 0.79 12.91

MODABC 0.75 0.73 14.61

ACO 0.70 0.77 14.32

EWWO 0.82 0.69 13.15

Case study B

Algorithms HV Spread CPU (based on s)

NSGA-II 0.69 0.82 46.29

MODABC 0.72 0.75 47.58

ACO 0.65 0.80 53.34

EWWO 0.78 0.73 45.57
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Based on the results presented in Table 8, it is evident that our EWWO algorithm
demonstrates excellent performance levels in terms of the HV and Spread metrics when
solving the small-scale case (Case Study A). Additionally, in terms of CPU time, it maintains
a competitive edge, closely following the leading NSGA-II algorithm.

When addressing the large-scale case (Case Study B), it is clear that our EWWO al-
gorithm outperforms the other three algorithms in all three of these metrics. To reinforce
the validity of these findings, we turn to the 95% confidence intervals (Figures 11 and 12),
which consistently support our conclusions. These intervals further underscore the out-
standing performance of the EWWO algorithm and emphasize its significant potential in
effectively solving the DSP problem. These compelling findings highlight the superiority
of the EWWO algorithm when faced with complex and challenging problems, providing a
solid foundation for addressing DSP problems.

7. Conclusions and Future Work

In industrial equipment maintenance, disassembly is a crucial step, as it allows for
efficient maintenance. However, the disassembly process is filled with high dynamics and
uncertainty. To address this challenge, in this paper we employ triangular fuzzy numbers
to effectively represent uncertain information and construct a multi-objective equipment
maintenance disassembly model suitable for uncertain environments. Our model aims to
minimize disassembly time, reduce the number of tool orientation changes, and enhance
the response to emergency components. Furthermore, to tackle this complex problem, we
propose a novel algorithm called EWWO. Through real-world industrial case studies, we
demonstrate the superiority of triangular fuzzy numbers in handling uncertainty. They
provide a more comprehensive assessment of the advantages and disadvantages of various
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disassembly approaches. Our proposed EWWO algorithm successfully addresses the
complexity of the problem and outperforms other methods such as NSGA-II, ACO, and
MOABC in terms of performance. These results highlight the potential of the EWWO
algorithm in solving DSP problems and bringing new successful algorithms to the field of
industrial equipment maintenance.

Our research makes significant breakthroughs in the field of industrial equipment
disassembly and maintenance, offering various potential benefits, including economic
gains, improved efficiency, and increased equipment availability.

Future research directions include exploring collaborative disassembly planning in
multi-agent systems, enhancing efficiency and safety in human–machine collaboration, and
delving deeper into handling uncertainty in dynamic operational environments [39–42]. Addi-
tionally, as automation and human–machine interaction continue to evolve, understanding
the role of human factors in equipment disassembly becomes crucial, encompassing aspects
such as operator training, safety, and ergonomics [43,44]. Finally, our model can consider
additional objectives such as cost and environmental benefits [45,46]. By comprehensively
considering these additional objectives, our model better meets the needs of various stake-
holders, including economic, environmental, safety, and sustainability aspects, ensuring
that equipment maintenance and disassembly processes yield optimal benefits in multiple
dimensions. Therefore, we encourage further research to expand our model to better
address various challenges and opportunities. This range of research directions further
advances the field of industrial equipment maintenance.
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