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Abstract: In this paper, a POD reduced-order interpolation model for solving the in situ pyrolysis
process of tar-rich coal is employed to predict the flow and heat transfer performance in the porous
media region so as to save computational resources and realize fast calculations. Numerical sim-
ulation using the finite volume method (FVM) is firstly used to obtain sample data, based on the
samples through the primary function and spectral coefficients of the solutions. The physical field
information and parameter distribution under different conditions of inlet temperature, inlet velocity
and permeability are predicted. The results are compared with those of FVM to verify the accuracy of
the calculated results. The relative mean deviation (RME) of the results of the POD prediction of each
parameter for each working condition was synthesized to be no more than 5%. The performance of
in situ pyrolysis of tar-rich coal is then investigated, and the oil and gas production are predicted.
As the inlet velocity increases from 0.3 m/s to 0.9 m/s, the fraction of high-quality oil and gas
production reaches 0.47 and then decreases to 0.38. Increasing the inlet temperature and permeability
has a negative effect on the fraction of high-quality hydrocarbon production, after which the quality
fraction of high-quality oil and gas dropped sharply to about 0.22. Porosity has a positive impact on
the oil and gas production. When the porosity reaches 0.3, the quality fraction of high-quality oil and
gas can reach 0.27.

Keywords: POD; rapid prediction; tar-rich coal; in situ pyrolysis

1. Introduction

Tar-rich coal refers to coal with a dry tar base yield of 7–12%. Its biggest feature is that
coal is rich in hydrogen-rich structure, which can generate oil and gas by pyrolysis, and has
a high tar yield. It is a special coal resource that integrates coal and oil properties [1]. In situ
pyrolysis of tar-rich coal is a new production method of directly heating the original coal
reservoir through heat carriers to promote the underground pyrolysis of tar-rich coal [2].
During the chemical process of pyrolysis, the heat is transferred from the heat carrier
injected through the inlet well to the coal reservoir, and the reaction occurs after the local
temperature of the coal is higher than the pyrolysis temperature. Since the coal reservoir
is porous and there exist massive pores and cracks inside the coal seam, both the heat
carrier such as nitrogen or water vapor and the pyrolysis products such as the gaseous tar,
methane, carbon monoxide, carbon dioxide and hydrogen would diffuse through the pores
and cracks to the production well [3]. Some research has focused on coal seam gas [4–7].
For example, Wang et al. [4,5] studied the influence of negative pressure on the leakage
during the extraction of coalbed methane and found that the active support method using
delayed expansion material can effectively reduce the formation of crack micropores and
reduce stress concentration. The technology of sealing holes with three plugging and two
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filling solid and liquid materials is put forward to realize continuous high-concentration
gas extraction [6]. Zhu et al. [7] developed a simulation model to evaluate the effect of
penetrating fractures on lateral water flow and to study the effect of permeability on gas
storage and production in coal seams. The above literature illustrates the risk of leakage
in coal seam gas extraction. At the same time, the temperature of the coal reservoir varies
with the heating by the heat carriers and the endothermic reaction. Thus, in situ pyrolysis
is a rather complicated multi-physics process including heat and mass transfer as well as
chemical reactions inside the porous media.

Due to the high cost, high risk, harsh conditions and difficult underground measure-
ment of in situ pyrolysis of tar-rich coal, it is difficult to meet the demands of practical
applications. Therefore, it is significant to predict the performance of in situ pyrolysis of
tar-rich coal under unknown working conditions for engineering applications. Numerical
simulation based on the finite volume method (FVM) can obtain the heat and mass trans-
fer characteristic, but it is time-consuming and consumes large computational resources.
Proper orthogonal decomposition (POD) is a fast, efficient and reliable method to predict
unknown working conditions based on known data [8]. It obtains the key features from a
series of samples, which ensures the computational accuracy and saves the computational
resources at the same time. The POD algorithm includes the interpolation and the projec-
tion method. The difference between the two methods is reflected in the different solving
paths of spectral coefficients. POD interpolation relies on the number of variables, while
POD projection relies on the governing equation for solving [9]. For example, the dominant
coherent structure of cavitation flow is studied using the POD and DMD methods by
Liu et al. [10]. Lu et al. [11] applied the POD method to double rotor bearing downscaling
and investigated the frequency characteristics of the deviation response of a double rotor
bearing coupling. Sun et al. [12] predicted the bending shock dominant flow field at the
inlet of a punching machine under different attack angles and free flow Mach number
using the POD method. In addition, the POD method has also been applied to problems
such as fin-tip vortex [13], VCT (vibration correlation technique) [14], rough plate transient
flow [15] and other problems. Then, the POD-Galerkin method was proposed and applied
in some research to improve the calculation accuracy [16–19]. In addition, combining with
other interpolation methods or models, the POD method can improve the model and obtain
more accurate results [20–24].

Compared with the POD projection method, the POD interpolation method does not
require the derivation of differential equations. Therefore, the POD interpolation method
has higher applicability and efficiency than the POD projection method. Moreover, the
POD interpolation method has a simpler operation process, and the deviation is acceptable
in most cases. For in situ pyrolysis of tar-rich coal, numerical simulation of the flow heat
transfer process in porous media region is required. The POD method has also been
reported to solve the flow heat transfer problem in the porous media region. For example,
Li et al. [25,26] proposed a new POD-ROM to deal with the flow and heat transfer in the
fractured region. The global order reduction model of steady-state flow of the fractured
region is established by using orthogonal decomposition and the Galerkin projection
method. Selimefendigil et al. [27] studied the convection drying performance of porous
wet objects under channel flow and multi-impact jet structure and reduced the calculation
cost greatly using the POD method.

In this paper, a POD reduced-order interpolation model for solving the in situ pyrolysis
process of tar-rich coal is employed to predict the flow and heat transfer process in the
porous media region so as to save computational resources and realize fast calculations.
Numerical simulation using the finite volume method (FVM) is firstly used to obtain
sample data, based on the samples through the primary function and spectral coefficients
of the solutions. Then the POD prediction data are calculated, and the results are compared
and analyzed to determine the prediction accuracy. The performance of in situ pyrolysis of
tar-rich coal is then investigated, and the oil and gas production are predicted.



Processes 2023, 11, 2994 3 of 17

2. POD Reduced-Order Model

The implementation process of POD reduced-order model [8] is shown in Figure 1.
The first sampling step is to build a sample matrix based on the data obtained from FVM.
Then, the primary function is calculated based on the Snapshot method [28]. The spatial
discrete points are much larger than the temporal discrete points. The spectral coefficients
are then calculated using interpolation. Finally, the approximate solution space is obtained
using linear reconstruction of the principal functions and spectral coefficients.
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where pnumber(tk)
i,j denotes the parameter that specifies a point in space and time, with the

subscript denoting the spatial point at a specific operating condition. The superscript
number indicates the number under particular operating conditions, and the superscript
(tk) denotes a specific point in time. From left to right corresponds to the initial time of the
sample to the final time, followed by arranging the sample data of other conditions. All the
sample data of conditions representing different processes are given in matrix S. Based on
the matrix S, some unknown conditions could also be predicted.

The working conditions and parameters for the two models obtained using FVM
numerical simulations are shown in Tables 1 and 2. The FVM simulation is conducted
according to the previous paper [3] and is not introduced in detail here. According to the
working conditions listed in the tables, the sample data are arranged sequentially in order
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to obtain the sample matrix. Each sample data represents the simulation data under the
working condition corresponding to a specific parameter.

Table 1. Working conditions of fractured zone of in situ pyrolysis.

Number Inlet Flow Velocity Temperature Injection Mode

1 0.1 m/s 973 K Gas injection between cracks
2 0.3 m/s 973 K Gas injection between cracks
3 0.5 m/s 973 K Gas injection between cracks
4 0.7 m/s 973 K Gas injection between cracks
5 0.9 m/s 973 K Gas injection between cracks
6 0.5 m/s 873 K Gas injection between cracks
7 0.5 m/s 923 K Gas injection between cracks
8 0.5 m/s 973 K Gas injection between cracks
9 0.5 m/s 1023 K Gas injection between cracks
10 0.5 m/s 1073 K Gas injection between cracks

Table 2. Working conditions of homogeneous porous region of in situ pyrolysis.

Number Permeability Porosity Inlet Pressure Temperature

1 0.1 mD 0.26 200 kPa 973 K
2 0.2 mD 0.26 200 kPa 973 K
3 0.5 mD 0.26 200 kPa 973 K
4 2 mD 0.26 200 kPa 973 K
5 5 mD 0.26 200 kPa 973 K

The Snapshot method [29] is used to construct the following inner product matrix C to
obtain the primary function.

C = SST (2)

The eigenvalues λ and corresponding eigenvectors V are obtained by singular value
decomposition as shown in Equation (3). Thus, the primary function can be calculated
from Equation (4).

CV = λV (3)

ϕ =
SV
‖SV‖ (4)

Subsequently, the number of primary functions used in POD is determined by cal-
culating the energy contribution and cumulative energy contribution at different num-
bers of primary functions to achieve higher prediction accuracy while improving compu-
tational efficiency.

The energy contribution rate and cumulative energy contribution rate are shown in
Equations (5) and (6), respectively.

ξi =
λi

∑N
k=1 λk

(5)

ε =
M

∑
i=1

ξi =
∑M

k=1 λk

∑N
k=1 λk

, M ≤ N (6)

where N and M are the number of total primary functions and selected primary functions,
respectively; λk is sorted in descending order; ξi is the energy contribution of the ith
primary function; ε represents the cumulative energy contribution of the POD primary
functions. In practice, when ε is closer to 1, the results are more accurate.

Using the POD interpolation method, the spectral coefficients can be realized. Assume
f (x, y, t, pn) (n = 1, . . . , N) represents the physical field of parameter p and n denotes the
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number of parameters p. A set of primary functions ϕn(x, y) can be obtained by performing
POD prediction on these N samples. The corresponding spectral coefficients under the
design parameters can be obtained from Equation (7).

c(pn) = ( f (x, y, t, pn) ϕn(x, y)) (7)

The spectral coefficients of unknown circumstance can be calculated by Equation (8).

c(p) = c(pn) + [c(pn+1)− c(pn )]
p − pn

pn+1 − pn
(8)

f (x, y, t, pn) =
M

∑
k=1

c(pn)ϕn(x, y) (9)

Finally, any parameter of the demand solution and its distribution can be obtained
through Equation (9).

In this study, N takes the value of 5. The five sampling points include the inlet
temperature, outlet temperature, and three other sampling points. The locations of the
remaining three sampling points are shown in Figure 2, representing the temperature near
the center and edge at the corresponding time of three months, respectively.
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After the POD calculation, the deviation relative to the FVM calculation needs to be
analyzed. The absolute deviation is calculated by comparing the data from POD prediction
and FVM numerical simulation and under the same operating conditions.

E =
∑n

i=1(pPOD − pFVM)

n
(10)

where pPOD and pFVM are the parameter values for POD prediction and FVM simul-
ation, respectively.

Relative Mean Error (RME) can be calculated by Equation (11).

RME =

∣∣∣∣Ep
∣∣∣∣× 100% (11)
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In order to reveal the relation between POD prediction parameters and FVM simula-
tion parameters, Equation (12) was used with reference to Fang et al. [29].

R =
Cov(pPOD, pFVM)√

Var(pPOD)Var(pFVM)
(12)

where Cov(pPOD, pFVM) is the covariance of pPOD and pFVM, Var(pPOD) is the variance of
pPOD, and Var(pFVM) is the variance of pFVM.

3. Results and Discussion

In this section, the POD reduced-order model is defined to solve the in situ pyrolysis
process of tar-rich coal and predict the physical field information and parameter distri-
butions under different working conditions of inlet temperature, inlet flow velocity and
permeability. The results obtained by the POD prediction are compared with the FVM
results, and the accuracy is verified by calculating the correlation coefficient and the average
relative deviation pair to ensure the reliability and accuracy of the POD calculation. Then,
the oil and gas production is predicted based on the POD calculation.

3.1. Comparative Analysis of Inlet Velocity Prediction Results

The POD prediction is performed at the inlet flow velocity of 0.5 m/s and the inlet
temperature of 973 K (corresponding to Case 3 in Table 1). The initial temperature and
pressure of the coal seam are 293 K and 0 Pa, respectively. In the following sections, the
same initial state is kept. Firstly, the effect of primary function is investigated, and the
results are shown in Figure 3. The cumulative energy contribution gradually improves
from 10.70% to 100% as the number of selected primary functions increases. The energy
contribution reaches 98.77% using four primary functions for which the calculation accuracy
and calculation efficiency are both acceptable. Thus, four primary functions are adopted in
the following cases.
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The temperature distribution comparison between the POD and the FVM results are
shown in Figure 4. From the figure, we can see that the temperature distribution obtained
from the POD prediction is approximately the same as that from the FVM. At the junction
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of the high-temperature and low-temperature zones, where the temperature changes are
the most drastic, there is a small difference between the calculation results of POD and
FVM, which is due to the intense heat transfer, the fast rate of pyrolysis reaction and
the large temperature change over time in this region, and the interpolation difference
generated by the POD as well as the interpolation errors in the process of the subsequent
cloud mapping leads to the calculation difference in this place. The distribution of the
POD results is relatively uniform and can save computational resources while reflecting
the trend of temperature change with small deviation, which is of practical significance.
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The temperature profiles at y = 5 m and x = 5 m calculated by POD and FVM are
further compared at 3 months, as shown in Figure 5. The results show that at y = 5 m,
the temperature trends calculated by POD and FVM are basically the same, but due to
the temperature change in the middle section of y = 5 m and the high chemical reaction
rate, the difference in the results obtained by POD prediction is relatively large, and the
average relative deviation of the overall temperature is 3.46%, which is a small deviation;
while at x = 5 m, it is known from its temperature field that the central region is close to the
inlet temperature 973 K, while the nitrogen passing through the edge is relatively less, the
heat transfer and reaction are weaker, and the temperature is lower. Thus, the difference
between the POD calculation results and the FVM calculation results becomes larger, and
the average relative deviation of the overall temperature is 0.53%, which is smaller than
that for y = 5 m. The average relative deviation is 3.46%.



Processes 2023, 11, 2994 8 of 17

Processes 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

  
(a) Temperature distribution at y = 5 m (b) Temperature distribution at x = 5 m 

Figure 5. Comparison of temperature distribution at y = 5 m and x = 5 m. 

The cumulative energy contribution at different number of primary functions for the 
oil and gas mass fraction is shown in Figure 6. Four primary functions are used, with the 
cumulative energy contribution being 97.88%. 

 
Figure 6. Energy contribution rate and cumulative energy contribution of oil and gas mass fraction 
when the inlet flow velocity is 0.5 m/s. 

The distribution of oil and gas mass fraction obtained by FVM and POD at the inlet 
velocity of 0.5 m/s is shown in Figure 7. Due to the fast diffusion of gas and the influence 
of other factors such as reaction and other perturbations, there are some differences be-
tween the POD prediction results and the FVM calculation results. At 3 months, the region 
near the inlet has been fully reacted, the main reaction area is distributed on the two sides 
above and below the outlet, and the reaction is relatively mild, thus, the difference be-
tween the POD results and the FVM results is smaller. The overall mass fraction distribu-
tion is similar, and the accuracy of POD prediction is acceptable in these cases. 

Figure 5. Comparison of temperature distribution at y = 5 m and x = 5 m.

The cumulative energy contribution at different number of primary functions for the
oil and gas mass fraction is shown in Figure 6. Four primary functions are used, with the
cumulative energy contribution being 97.88%.
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when the inlet flow velocity is 0.5 m/s.

The distribution of oil and gas mass fraction obtained by FVM and POD at the inlet
velocity of 0.5 m/s is shown in Figure 7. Due to the fast diffusion of gas and the influence of
other factors such as reaction and other perturbations, there are some differences between
the POD prediction results and the FVM calculation results. At 3 months, the region near
the inlet has been fully reacted, the main reaction area is distributed on the two sides above
and below the outlet, and the reaction is relatively mild, thus, the difference between the
POD results and the FVM results is smaller. The overall mass fraction distribution is similar,
and the accuracy of POD prediction is acceptable in these cases.
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3.2. Comparative Analysis of Inlet Temperature Prediction Results

The results comparison at the inlet temperature of 973 K and the inlet flow velocity
of 0.5 m/s (corresponding to Case 8 in Table 1) are shown in Figure 8. It can be seen that
the temperature field distributions of POD and FVM turn out to be approximately the
same. The POD calculation can reflect the temperature change trend, and the deviation is
small when compared with the FVM calculation. At the junction of the high-temperature
zone and low-temperature zone, the temperature change is the most violent, which is
due to the violent heat transfer in this region, the fast rate of pyrolysis reaction and the
large temperature change over time. There is a difference between the calculation results
of POD and FVM, which is caused by the interpolation errors generated by POD and
cloud mapping.
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Similarly, the distribution results of oil and gas mass fraction can be calculated by
building sample matrices based on the data at different inlet temperatures. The differences
between the POD prediction results and the FVM results are also small. The distribution
results have the same trend over time calculated by the two methods. When three POD
primary functions are selected, the cumulative energy contribution reaches 98.50% as
shown in Figure 9, and the computational accuracy and computational efficiency are high.
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As shown in Figure 10, the results for oil and gas mass fraction at the inlet temperature
of 973 K by two methods are basically the same, and the deviation of the results is very
small with a maximum deviation of 0.01%. At this time, only two primary functions need
to be selected, corresponding to the cumulative energy contribution having reached 94%,
with high computational accuracy and computational efficiency, as shown in Figure 11.
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3.3. Comparative Analysis of Permeability Prediction Results

When the inlet pressure is 200 kPa, the inlet temperature is 973 K, the permeability
is 0.5 mD and the porosity is 0.26 (corresponding to Case 3 in Table 2), POD prediction
calculations are performed and compared with the FVM calculations.

From Figure 12, we can see that the temperature distribution results of the two methods
are similar, and the POD prediction accuracy is higher. At the junction of the high- and low-
temperature zones where the temperature change is drastic, the deviation of the calculation
is also higher.
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The comparison of POD and FVM results at the permeability of 0.5 mD is shown in
Figure 13. The results show that the trends are basically the same with a small deviation.
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From the above cases, we can obtain that the average computation time of in situ
pyrolysis of tar-rich coal for POD is about 5.25 s, while the average computation time for
FVM is estimated to be 54 h. In terms of computation time, POD computation leads to
an increase in computational efficiency by a factor of about 3.88 × 104. The field data
of unknown conditions can be obtained quickly by the POD method. According to the
existing data of simulation, the data of the whole field can be given by the POD algorithm
quickly with high accuracy, such as the exit steam mass fraction, average temperature, etc.

3.4. Deviation Analysis

The correlation coefficients and mean relative deviations of the temperature calculated
by FVM and POD at an inlet velocity of 0.5 m/s, temperature of 973 K and permeability
of 0.5 mD are shown in Figure 14a. The results show that the POD predicted temperature
has a strong correlation with the FVM simulation under this working condition, and
the correlation coefficient is greater than 0.75 in 1–5 months. As shown in Figure 14b,
the average relative deviation stays around 4.73% during 1–5 months, the correlation
coefficient is greater than 0.88 within 1–5 months under this condition and the prediction
of temperature by POD is strongly correlated with the FVM calculation. The maximum
average relative deviation is less than 2.2% in the first 5 months, indicating better accuracy
and reliability of the POD prediction. In Figure 14c, the correlation coefficient is greater
than 0.97 during the period of 1–5 months; the relative mean deviation is maintained at
about 4.70% during the period of 1–5 months; the relative mean deviation (RME) of the
POD prediction for each parameter of each working condition is no more than 5%.
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deviation of temperature when the inlet temperature is 973 K; (c) correlation coefficient and relative
mean deviation of temperature when the permeability is 0.5 mD.
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3.5. POD Prediction of Oil and Gas Quality in the Production

Due to the high cost, high risk, harsh conditions and difficult underground measure-
ment of in situ pyrolysis of tar-rich coal, it is difficult to meet the demands of practical
applications. Proper orthogonal decomposition (POD) is a fast, efficient and reliable method
to predict unknown working conditions. Based on this method, the heat and mass transfer
process of pyrolysis can be efficiently predicted. In addition, we also pay attention to the
obtained tar during pyrolysis. The POD method can also predict the quality of oil products
to obtain high-quality oil products.

In this section, POD is employed to predict the performance of pyrolysis for more
unsimulated cases. In order to analyze the effect on in situ pyrolysis of tar-rich coal
comprehensively, the fraction of high-quality oil and gas production is defined to reflect
the quality of oil and gas produced by in situ pyrolysis, as given in Equation (13). The
fraction of high-quality oil and gas production z represents the ratio of total amount of
oil and gas production in the temperature range of 673–873 K to the whole production
during the process. The higher the fraction of high-quality oil and gas production in this
temperature stage, the larger the economic gain obtained.

z =

∫ 873
673

dOtar
dT dT

Otar
(13)

As shown in Figure 15a, with the increase in inlet flow velocity, the fraction of high-
quality oil and gas production fraction reaches 0.47 and then decreases to 0.38. The
increasing inlet flow velocity strengthens the heat transfer at the beginning. Subsequently,
with further increase in inlet flow velocity, the temperature in some areas rises rapidly and
the uniformity of heat transfer becomes worse. Thus, the yield fraction of high-quality
oil and gas is reduced. The maximum fraction of high-quality oil and gas production is
obtained under the condition that the inlet flow velocity is 0.5 m/s. Figure 15b shows the
variation of oil and gas production fraction with different inlet temperature. As the inlet
temperature rises from 873 K to 1073 K, the high-quality oil and gas production fraction
gradually decreases. This is because the heat exchange between nitrogen and coal seam
gets more rapid and intense at higher inlet temperature and the oil and gas output in
the main reaction stage decreases. As shown in Figure 15c, when the porosity reaches
0.30, the high-quality oil and gas production fraction gradually increases to 0.27, and
the diffusion rate of nitrogen increases and the flow and heat transfer are strengthened,
which is conducive to producing more hydrocarbons in the same temperature variation
range. Therefore, the high-quality hydrocarbon production fraction can be obtained. As
for the permeability, it has a negative effect on the improvement of high-quality oil and
gas production fraction. When the permeability changes from 0.1 to 5 mD, the fraction of
high-quality oil and gas production decreases from 0.46 to 0.04, as shown in Figure 15d.
The convective heat transfer is enhanced, and the temperature of the coal reservoir rises
rapidly to the inlet temperature. The percentage of oil production in the temperature range
from 673 K to 873 K also decreases.
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4. Conclusions

On the basis of multi-physics coupled FVM numerical simulation of in situ pyrolysis
of tar-rich coal, the sample matrix is constructed and a POD reduced-order model is
established in this paper to solve the in situ pyrolysis process of tar-rich coal. The physical
field information and parameter distributions corresponding to inlet temperature, inlet
velocity and permeability are predicted. The main conclusions are as follows:

1. The POD calculation can improve the calculation efficiency by about 3.88 × 104 times
with a relative mean deviation (RME) of no more than 5%.

2. When the inlet flow velocity is 0.5 m/s, the high-quality oil and gas production
fraction is the largest, and the oil and gas production efficiency is the highest.

3. The fraction of high-quality hydrocarbon production decreases from 0.62 to 0.21 when
the temperature rises from 873 K to 1073 K and changes from 0.14 to 0.27 with the
porosity increasing from 0.18 to 0.30.

4. The increase in permeability significantly enhances the convective heat transfer and
the temperature of the coal reservoir rises rapidly, which has a negative effect on the
fraction of high-quality oil and gas production.
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