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Abstract: Metal cutting is a complex process with strong randomness and nonlinear characteristics in
its dynamic behavior, while tool wear or fractures will have an immediate impact on the product
surface quality and machining precision. A combined prediction method comprising modal decom-
position, multi-channel input, a multi-scale Convolutional neural network (CNN), and a bidirectional
long-short term memory network (BiLSTM) is presented to monitor tool condition and to predict
tool-wear value in real time. This method considers both digital signal features and prediction
network model problems. First, we perform correlation analysis on the gathered sensor signals using
Pearson and Spearman techniques to efficiently reduce the amount of input signals. Second, we use
Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to enhance the
local characteristics of the signal, then boost the neural network’s identification accuracy. In addition,
the deconstructed signal is converted into a multi-channel input matrix, from which multi-scale
spatial characteristics and two-way temporal features are recovered using multi-scale CNN and
BiLSTM, respectively. Finally, this strategy is adopted in simulation verification using real PHM data.
The wear prediction experimental results show that, in the developed model, C1, C4, and C6 have
good prediction performance, with RMSE of 8.2968, 12.8521, 7.6667, and MAE of 6.7914, 9.9263, and
5.9884, respectively, significantly lower than SVR, B-BiLSTM, and 2DCNN models.

Keywords: tool wear prediction; modal decomposition; distributed convolutional neural network;
bidirectional short-long term memory neural network

1. Introduction

Tool wear and fracture can directly impair surface quality and machining precision
throughout the manufacturing process. In severe circumstances, they can potentially lead
to machine tool accidents. Traditional machining procedures rely on manual experience to
identify when to change tools, such as running duration, cutting sound, and tool surface
color, whereas subjective judgment approaches have drawbacks [1]. According to the
results in [2], tool breakage accounts for 7% of machine downtime. Tool monitoring
systems are expected to be a necessary and vital component of manufacturing systems with
the increasing use of flexible manufacturing systems, intelligent manufacturing systems
and computer-integrated manufacturing systems [3].

1.1. Literature Review

Three types of widely used prediction models are empirical, mechanism analysis-
based, and data-driven [4]. Most academics currently use data-driven life monitoring
techniques, since empirical models and mechanism analysis are not universally appli-
cable, and building complicated models is challenging. Machine learning models and
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degradation-based models are the two primary categories of data-driven models. Cutting
tool degradation models have been broken down by researchers into approaches based
on gamma processes [5], Markov processes, and Wiener processes [6]. The accuracy of
tool life prediction will be impacted by the choice of degradation models, since different
types of cutting tools have distinct degradation models. By continually developing the
corresponding relationship between the real-time equipment monitoring data (or extracted
characteristics) and the present wear value, tool wear prediction is accomplished using
machine learning prediction methods. Machine learning-based approaches can solve the
issue of incorrect or ambiguous tool degradation model selection; meanwhile, the input of
the model is not constrained to a particular type of monitoring data.

The cutting force, vibration, and acoustic emission signals are the most commonly
used in tool monitoring studies [7–10]. The cutting force signal rises when the tool is
passivated [11,12]. Acoustic emission signals are created during the machining process
as a result of the cutting tool’s quick interaction with the treated material. Acoustic
emission sensors have also been widely employed due to their high sensitivity, excellent
anti-interference capabilities, and ease of installation [13,14]. Because friction between the
cutting tool and the workpiece can modify the dynamic component of the cutting force,
vibration during the cutting process includes vital information regarding the cutting tool’s
wear condition [15].

The traditional machine learning approaches for predicting tool wear status primar-
ily use multi-layer perceptron (MLP) [16,17], radial basis function (RBF) [18,19], extreme
learning machines (ELMS) [20,21], and support vector machines (SVM) [22,23]. However,
as sensor technology is rapidly developed in the big data, cloud computing age, industrial
systems can now receive an increasing amount of monitoring data. It is challenging to
automatically grasp and evaluate large amounts of monitoring data using traditional neural
network techniques. With its potent feature extraction capabilities, deep learning, a new
technique derived from neural networks, offers a new prediction strategy for training
huge amounts of data. Convolutional neural networks (CNN) [24,25] and recurrent neural
networks (RNN) [26,27] are the two primary types of prediction algorithms in use today.
Additionally, deep learning prediction has been effectively used in several technical disci-
plines, including the prediction of natural gas and oil extraction [28,29], industrial system
faults [30,31], and others.

A brief synopsis of the literature under study is given in Table 1. Specific material
physical models, neural networks, support vector machines, deep learning models, and
other machine learning techniques have demonstrated great performance in the research of
tool wear prediction while processing sizable volumes of nonlinear data. To disclose the
intrinsic properties of the sensor signal in the cutting process and increase prediction accu-
racy, researchers employ methods including attention mechanisms, principal component
analysis, and multi-channel fusion. Monitoring the wear status of cutting tools by collect-
ing sensor signals, metal cutting is still a challenging process with highly unpredictable
and nonlinear dynamic behavior. It is required to separate out characteristics from a vast
number of non-stationary data gathered by sensors to anticipate tool wear effectively and
dependably. In addition to information on tool wear, sensor signals also contain a variety
of interference signals, such as noise. In order to anticipate the wear state, it is therefore
important to analyze the original signal suitably and extract signal elements linked to the
tool state along with a better neural network prediction model [32].

Table 1. Literature review summary.

Ref. Method Advantage Deficiency

Li [33] SVR Analyzing the characteristics of specific
tools resulted in high prediction accuracy

The time required for analysis is long, and
the model lacks universality

Ren [34] GRU Multi sensor feature fusion The network is simple, but its performance is
poor when dealing with big data
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Table 1. Cont.

Ref. Method Advantage Deficiency

Li [35] SVR EMD decomposition of signals to amplify
signal features

The network is simple, but its performance is
poor when dealing with big data

Wang [36] Physical model Integrating data-driven models to
improve universality

The network is simple, but its performance is
poor when dealing with big data

Huang [8] DCNN Multi sensor feature fusion Manually extracting features while ignoring
hidden features of the data itself

Xu [37] CNN Built a more powerful neural network The original signal has noise, which affects
the prediction speed and accuracy

Liang [38] SVM Integration with data-driven models,
mining more features The model has no universality

He [39] BPNN
Designed a new SSAE model to learn more
valuable and deeper features from the
original signal

Only one monitoring signal was used,
without considering predictive stability

Duan [40] SVR Integrating MS-SPCANet for autonomous
feature extraction

Principal component analysis, difficult to
mine hidden features in data

Li [41] Physical model
Integrating the parameters of empirical
equations to improve the interpretability
of modeling

The time required for analysis is long, and
the resulting model is not
universally applicable

1.2. Research Gaps and Contributions

Following the introduction above, the main contributions of this study are summarized
as follows:

(1) To reduce the signal amount of the input deep learning model, amplify local signal
features, and increase the identification accuracy of the prediction model for tool wear
status, correlation analysis and signal modal decomposition algorithms are introduced in
the signal processing of the collected tool wear sensor.

(2) To increase the predictability of tool wear status, the tool wear prediction model
employs a combination prediction technique, paired with residual structure, employing
MCNN to extract multi-scale spatial features and BiLSTM to extract bidirectional tempo-
ral features.

The remainder of this paper is organized as follows. The monitoring framework and
data processing algorithm design for tool wear status in this study are covered in the second
part; Section 3 demonstrates the design of the Deep Learning Network; Section 4, Experi-
mental validation and analysis using real data, compares and analyzes the experimental
results of the proposed technique with Support Vector Regression (SVR), Gated Recurrent
Unit Neural Network (GRU), Bayesian optimization LSTM and BiLSTM, One-Dimensional
Convolutional Neural Network (1DCNN) and LSTM combination prediction algorithm
and two-dimensional Convolutional Neural Network (2DCNN).

2. Problem Description

The quality of feature extraction limits the accuracy of the “feature extraction + ma-
chine learning model” in its conventional sense. There may be some information loss
when converting signals to frequency or time-frequency domains for analysis. In addition
to being adept at watching and finding, researchers also need to have a certain set of
abilities and expertise in order to extract characteristics that are highly associated with
tool wear state [42]. Additionally, the retrieved characteristics have poor universality and
interpretability, and it is possible that more delicate traits were left out. For the self-coding
network, if the number of network layers is too great, the model may not succeed owing
to the lack of global optimization of the entire model. The model built by a convolutional
neural network relies on the extraction of high-dimensional features by a convolution
operation, but a small number of convolution operations cannot accurately predict the
tool wear. The method proposed in this article aims to accurately predict the wear value
changes of cutting tools during machining by collecting multidimensional sensor signals,
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as shown in Figure 1. The accuracy of prediction methods is crucial for the operation and
efficiency of enterprise production and machine tool processing.
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Figure 1. Description of the tool wear prediction problem.

3. Predicting Tool Wear Based on MCNN BiLSTM
3.1. Tool Wear Prediction Framework

Force, vibration, and acoustic emission sensors are employed during the cutting
process to gather indications pertaining to tool wear. The sensor installation is displayed.
A three-dimensional force measurement device is installed between the workstation and
the object to be machined in order to gauge the cutting forces in the X, Y, and Z axes; a
piezoelectric accelerometer is installed on the workpiece to track the X, Y, and Z vibration
signals as the tool is being processed; and for the purpose of measuring the high-frequency
stress waves produced during the cutting process, an acoustic emission sensor is mounted
on the workpiece. Consequently, the data’s final dimension is seven. A structural charge
amplifier boosts the sensor signal, which is then recorded by a data gathering system. A
microscope is used to assess the tool’s back face offline wear state after the tool’s end face
has been milled. A deep learning network is used to process and import the signal for
training, creating an entire tool mode monitoring and prediction system. Data processing
is used to enhance signal features [43], deep learning networks are used to process and
import signals for training, and the entire tool pattern monitoring and prediction system is
created, as shown in Figure 2.
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3.2. Data Processing
3.2.1. Multivariate Correlation Analysis

A prominent technique for data correlation analysis is Pearson and Spearman corre-
lation analysis [44]. It may be applied to determine the linear correlation, or relationship
between two variables. The related formulae are shown by Equations (1) and (2),

Pxy =
∑n

i=1 (xi − x̄)(yi − ȳ)√
∑n

i=1 (xi − x̄)2∑n
i=1(yi − ȳ)2

(1)

Sxy = 1 − 6∑n
i=1(R(xi)−R(yi))

2

n(n2−1)
(2)

where Pxy, Sxy are Pearson correlation coefficients and Spearman correlation coefficients,
respectively; xi and yi are the signals for each cutting, respectively; x̄ and ȳ are the mean
values of two n-dimensional signals, respectively; and R(xi) and R(yi) are the sorting in
their respective signals.

3.2.2. Empirical Mode Decomposition

Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
is an improved empirical mode decomposition (EMD) method that can better handle
nonlinear and non-stationary signals [45]. CEEMDAN obtains multiple sets of Intrinsic
Mode Function (IMF) components by randomly perturbing and decomposing the signal
multiple times and averages them to obtain the final IMF component. Let Ei(.) represent
the ith subsequence obtained by EMD decomposition. Ci(t) represents the ith subsequence
obtained by CEEMDAN decomposition, vj represents the Gaussian white noise signal
satisfying the standard normal distribution, j = 1, 2, N represents the number of additions
of white noise, d represents the standard white noise table, and y(t) represents the signal to
be decomposed. The specific steps of the CEEMDAN method are illustrated as follows [46].

(1) Perform multiple random perturbations on the original sensor signal y(t) to obtain
multiple sets of disturbance signals: y(t) + (−1)qεvj(t), q = 1, 2; EMD decomposes
the new signal to obtain the first subsequence:

E
(

y(t) + (−1)qεvj(t)
)
= C1(t) + rj (3)

(2) By averaging the created N subsequences, the first subsequence of the CEEMDAN
decomposition is obtained, and the residual of the first subsequence is also calculated
to be removed.

{
C1(t) = 1

N ∑N
j=1 Cj

1(t)
r1(t) = y(t)− C1(t)

(4)

(3) Add a pair of positive and negative white Gaussian noise to r1(t) to obtain a new
signal. Use the new signal as the carrier for EMD decomposition to obtain the first
subsequence D1, from which we can obtain the second subsequence of CEEMDAN
decomposition and the residual after eliminating the second subsequence.

{
C2(t) = 1

N ∑N
j=1 Dj

1(t)
r2(t) = y(t)− C2(t)

(5)

(4) Repeat the above steps until the residual signal obtained is a monotonic function and
cannot be further decomposed. The original signal is reproduced as follows:

y(t) = ∑k
k=1 Ck(t) + rk(t) (6)
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The CEEMDAN method can better handle nonlinear and non-stationary signals; by
multiple random perturbations and decomposition, the pseudo-components and modal
aliasing phenomena of EMD methods can be reduced; the CEEMDAN method does not
require a predetermined number of components in the signal and can adaptively decompose
the signal. Therefore, the CEEMDAN method has been widely applied in the field of signal
processing [47].

3.3. Deep Combination Prediction Model

The MCNN-BiLSTM composite model includes a multi-scale convolution layer, batch
normalization layer, activation function layer, max pooling layer, BiLSTM layer, full connec-
tion layer and dropout layer. The residual block in the input block consists of two branches:
the main path and the branch path. The main path contains convolutional layers, BN
layers, and ReLu activation layers, while the branch path only contains max pooling layers.
According to the input tensor of the residual block, the two tensors are added through
the main and branch paths to form the output of the residual block. Multiple residual
blocks are stacked repeatedly using a multi-layer perceptron method. The output block
uses the sample specification layer, ReLu activation layer, and fully connected layer to
process the output tensor of multiple residual blocks. After passing through the tiling layer,
the BiLSTM module generates the output of the entire model, where the model’s diagram
is shown in Figure 3. The input of the model is filtered multi-channel signal data, with
the corresponding label being the minimum wear label. Extracting features from different
signals using multi-scale convolution with kernel sizes of 3 × 3, 4 × 4 and 5 × 5. The
number of convolutional layers is set to 64, and the number of layers for BiLSTM is set
to 128.
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The multi-scale convolutional layers can be expressed as:

f i
j = σr

(
∑ Wi

j * Xi
j + Bi

j

)
(7)

where Xi
j is the input of the model; Wi

j is the convolution kernel for each layer of convo-

lution; Bi
j is the number of offsets for each layer of convolution; and f i

j feature vectors
extracted for each convolutional block.
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An often-used activation function is ReLu. An activation function in neural networks
is used to alter neurons’ output, making them nonlinear. The output of the ReLU activation
function is zero when the input is negative, while the function is equal to the input when the
input is positive. ReLu’s key benefits are its simplicity, quickness, and effective performance
in real-world applications. It can efficiently lessen the gradient vanishing issue, speed up
neural network training, and improve the accuracy of neural network output. The ReLu
activation function is expressed as follows:

σr(x) =
{

0, x < 0
x, x ≥ 0

(8)

The flatten layer’s primary function is to reduce multidimensional data structures
to one-dimensional ones. This may provide the next fully linked layer or output layer a
flattened data structure. The flatten layer is described by the expression:

f i = f latten
(

f i
j ⊕ Mi

j

)
(9)

where f i
j represents the feature vectors extracted from each convolutional block, and Mi

j
represents the feature vectors after passing through the maximum pooling layer.

The expression for BiLSTM monitoring module to achieve prediction is shown in
Equations (10)–(13):

hi = σt

(
W1 f i + W3hi−l

)
(10)

ri = σt

(
W2 f i + W5ri+1

)
(11)

Yi = σt

(
W4hi + W6ri

)
(12)

σt(x) =
ex − e−x

ex + e−x (13)

where W1 and W3 have a weight matrix for feature vectors; W2 and W5 have a weight matrix
that maps the forward and reverse layer calculation times to the current calculation times;
and W4 and W6 have a weight matrix that maps the forward and reverse layer outputs to
the output layers.

4. Validation and Analysis
4.1. Raw Data
4.1.1. Dataset Selection

The performance of the model was assessed in this study using the public dataset
from the 2010 Monitoring Data Challenge [37]. Using the workpiece as a test object, six
tungsten carbide ball end cutting tools (C1–C6) were employed for milling trials. Forward
milling and dry cutting were used. The workpiece was made of stainless steel HRC52.
Accurate cutting standard: feed speed of 1555 mm/min; cutting depths of 0.125 mm in the
Y direction and 0.2 mm in the Z direction; spindle speed of 10,400 rpm. The KISTLER three-
dimensional force measurement device, KISTLER piezoelectric accelerometer, and KISTLER
acoustic emission sensor are the sensor models for gathering signals. The data acquisition
card utilizes NIDAQPC1200, and the charge amplifier is a KISTLER charge amplifier.

Force, vibration, and acoustic emission sensors are utilized to gather electrical signals
on tool wear while cutting, and Figure 4 shows the sensor installation position. A KISTLER
three-dimensional force measurement device was installed between the workstation and
the object to be machined in order to gauge the cutting forces in the X, Y, and Z axes;
a KISTLER piezoelectric accelerometer was installed on the workpiece to track the X, Y,
and Z vibration signals as the tool is being processed; and to track high-frequency stress
waves produced during cutting, a KISTLER acoustic emission sensor was mounted on the
workpiece. A KISTLER charge amplifier is used to increase the sensor’s output signal, and
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the NIDAQPC1200 is used to collect it at a sampling frequency of 50 kHz. The LEICAMZ12
microscope was used to assess the tool rear face’s wear state offline after completing
108 mm of end-face milling in the X direction. The data of 315 cuts of a tool were recorded.
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Given that the dataset only contains wear-value labels for C1, C4, and C6, a cross-
validation approach was utilized to verify the generalizability of the suggested strategy
and assess the effectiveness of the suggested model while making full use of the dataset.
C1 is the prediction set, for instance, if C4 and C6 are the training sets.

4.1.2. Data Filtering

To limit the amount of data input into the model in this study while minimizing the
accuracy of network prediction, the relationship between the gathered seven-dimensional
sensor signals and tool wear was checked mathematically and statistically. Thus, using
Equations (1) and (2), the Pearson and Spearman correlation coefficients between sensor
signals and tool wear values were determined. The results are presented in Table 2.

Table 2. Correlation coefficient between multi-dimensional sensing signal and wear value.

Signal Select or Not Pearson Spearman

Fx yes 0.9716 0.9937
Fy yes 0.9293 0.9541
Fz yes 0.9750 0.9182
Vx no 0.0697 0.0583
Vy no 0.0604 0.0845
Vz no 0.0603 0.1054
AE yes 0.5707 0.4892

According to Table 2, the correlation between force signals and wear values has the
greatest Pearson and Spearman correlation coefficients, but the connection between triaxial
vibration signals and wear values is nearly zero. As a result, the next study will focus on
the signals Fx, Fy, Vy, and AE.

4.1.3. Mode Decomposition

This study employs the CEEMDAN to decompose the signal into multiple sub-signals,
each with a distinct frequency range, to avoid the deep learning model not completely
mining the features in the signal. This makes it possible for the neural network to learn
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and interpret information throughout various frequency bands more effectively. In the
circumstances, CEEMDAN can enhance the capacity of signals to extract local features,
hence enhancing the recognition precision of neural networks. The performance of the
neural network may be enhanced by feeding it the signal that CEEMDAN has decomposed
in order to better extract its characteristics.

Therefore, this study first performs max–min normalization on sensor signals Fx, Fy,
Fz, AE with greater correlation between wear values. At the same time, CEEMDAN is
used to decompose the normalized signal. Taking the Fy signal as an example, 16 groups
of decomposed subsequences are obtained, as shown in Figure 5. The decomposed sub-
sequences of Fx, Fy, Fz and AE signals were combined with the corresponding original
signals into a 100 × 17 × 4 multi-channel input matrix, as shown in Figure 6, for the feature
extraction and mining timing rules of the model in this paper.
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4.2. Evaluating Indicator

This research employs root mean square error (RMSE), mean absolute error (MAE) and
coefficient of determination (R2), which are frequently used in workpiece life prediction, as
quantitative indicators to evaluate the influence of the prediction model. A considerable
mistake in the prediction findings is shown by bigger values for Pmae and Prmse; a greater
degree of accuracy is indicated by lower values for Pmae and Prmse.

Pmae =
1
n ∑n

k=1

∣∣∣ypre
k − yk

∣∣∣ (14)

Prmse =

√
1
n∑n

k=1

(
ypre

k − yk

)2
(15)

R2 =
∑
(

ypre
k − yk

)2

∑(yk − ypre)2 (16)

where yk is actual data, ypre
k is predicted data, y is average predicted data, and n is the

number of test samples.

4.3. Experimental Environment

An experimental analysis was conducted on the MATLAB 2021b software platform,
with hardware configuration of Intel I CoITM 7700HQ CPU and 16GB RAM, NDIVIA
GTX1050, GPU; the operating system is Windows 10.

The proposed MCNN-BiLSTM prediction model includes two parts:
MCNN feature extraction and BiLSTM timing prediction. For the feature extraction

part of MCNN, please note that all 2D Convs are used here, and 3D Convs are used for
feature extraction, with Conv sizes of {3 × 3, 4 × 4, 5 × 5} with the 64 hidden layers. After
two residual extractions, the size of Conv in the residual module is 3 × 3. The activation
function of the network is ReLu; for the prediction part of BiLSTM, BiLSTM consists of
a one-layer network with 128 hidden layers. The training parameters of other prediction
models are shown in Table 3.

Table 3. Model parameter setting.

Variable Description Value

Epoch Training rounds 500
Batch size Batch size 24

Learning rate Learning rate 0.001
Step size Interval of learning rate decline 1000
Gamma Adjustment multiple of learning rate 1

Dropout rate Dropout rate 0.3

4.4. Result Analysis
4.4.1. Module Verification

The prediction results of the proposed model under three different test tools are shown
in Figure 7. In machine tool processing, milling is a slow process, and the time required
for CEEMDAN’s data decomposition as well as the prediction of the model is negligible,
so there is not much discussion here. It is clear that the model provides accurate tool
prediction results. To better show the effectiveness of the model, the training and validation
loss of the model are shown in Figure 8.
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Figure 7. Prediction results of the model in this paper on C1, C4, and C6.
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Figure 8. The loss curves during the training process of C6.

Figure 9 shows the prediction results of the original signal directly input into the
proposed model, and it can be seen that the prediction effect is not as good as Figure 7.
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Figure 9. Prediction results from input of the original signal on C1, C4, and C6.

A more thorough data comparison, examining the quantitative value of the influence
of signal decomposition on model performance, may be seen in Table 4. It can be clearly
seen that the RMSE and MAE of the signals predicted by tool C1 decreased by 26.54%
and 29.10%, respectively, after CEEMDAN decomposition. The RMSE and MAE of C4
decreased by 29.82% and 29.29%, respectively. The RMSE and MAE of C6 decreased by
11.03% and 11.68%, respectively. In addition, the R2 also increased, which means that using
CEEMDAN results in a higher fit for both the predicted and true values.
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Table 4. Impact of multi-scale signal decomposition on model performance.

Method
C1 C4 C6

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Developed model 11.2946 9.5785 0.95364 18.3126 14.0382 0.77384 8.6167 6.7801 0.92771
Developed model * 8.2968 6.7914 0.96468 12.8521 9.9263 0.88154 7.6667 5.9884 0.95794

Note: * represents the use of CEEMDAN algorithm.

Residual structures were introduced to the model to improve the network’s represen-
tation capabilities. As seen in Figure 10, the deep learning model with residual structures
outperforms the one without the res-module. The residual network can solve the vanishing
gradient problem. The gradient signal will be backpropagated numerous times in the deep
neural network as the network layers expand, resulting in the gradient gradually becoming
less. The residual structure allows the input signal to be directly added to the output
signal, allowing the gradient of the network to be better propagated and avoiding the
vanishing gradient problem. Second, the residual structure enables the network to learn the
residual component, allowing it to adapt to complicated data distributions and nonlinear
transformations more effectively [48]. Furthermore, employing residual structures can
boost the network’s learning efficiency.
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4.4.2. Comparison with Other Models

Numerous tool wear prediction techniques were chosen for quantitative compari-
son in order to confirm the benefits of this suggested methodology. The selected algo-
rithms include: Support Vector Regression (SVR), Gated Recurrent Unit Neural Network
(GRU), Bayesian optimization LSTM and BiLSTM, One-Dimensional Convolutional Neu-
ral Network (1DCNN), LSTM combination prediction algorithm, and Two-Dimensional
Convolutional Neural Network (2DCNN).

For SVR, since SVR cannot handle sequence data, feature extraction must be carried
out first. It is necessary to extract 11 characteristics from seven channel data in the time
domain, including mean, standard deviation, skewness, kurtosis, pulse factor, peak factor,
shape factor, marginal factor, peak-to-peak value, root mean square, and energy. The
frequency domain is used to extract four characteristics, including the sk mean, sk standard
deviation, and sk kurtosis, giving the seven-dimensional signal a total of 105-dimensional
time-frequency features. A 105 × 1 matrix was used to represent each trimmed feature and
was entered into the ensuing regression model. The optimal regularization parameters of
the SVR model are selected from {0.001, 0.01, 0.1, 1,10}, and the kernel uses the Gaussian
basis function (RBF) by default.

For GRU, a layer of GRU, with 64 hidden layers, regularization parameters of 1 × 10−2,
and an initial learning rate of 1 × 10−2 is considered.
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For both LSTM and BiLSTM, model parameter optimization is achieved through
Bayesian parameter estimation. LSTM considers one layer, while BiLSTM considers two
layers. The maximum number of Bayesian parameter estimates is 30, the regularization
range is {1 × 10−10, 1 × 10−2}, and the initial learning rate range is {1 × 10−3, 1}.

For both 1DCNN-BiLSTM and 2DCNN, the seven channels of original data are the
original input for the 1DCNN-BiLSTM prediction model, and the seven channels of signals
from the CEEMDAN are the input for the 2DCNN prediction model after they have
been decomposed. Table 5 displays the comparative outcomes of trials (using tool C6 as
an example).

Table 5. Model Comparison.

Method RMSE MAE

SVR 31.5 24.9
GRU 36.3615 31.422

B-LSTM 33.859 28.9897
B-BiLSTM 26.4284 21.1652

1DCNN-BiLSTM 12.396 10.9944
2DCNN 15.3604 11.4455

Developed model 7.6667 5.9884

Compared to a Recurrent Neural Network (RNN), the GRU model can process se-
quence data better than the SVR model. SVR, on the other hand, is a variation of the
Support Vector Machine (SVM) that is frequently employed for regression issues but has
poor processing capability for sequential data. SVR, however, outperforms GRU when
the dataset is limited, since GRU needs a bigger dataset to train on and making parameter
adjustments before overfitting is a possibility. On tiny datasets, SVR performance is a little
bit more consistent. In contrast to the GRU model, B-LSTM, and B-BiLSTM, Bayesian opti-
mization establishes a Gaussian process model in the explored parameter space to estimate
the unknown region of the function to be optimized, avoiding the need to search the entire
parameter space, conserving computing resources, and speeding up the evaluation of the
optimal solution. Compared to unidirectional LSTM, BiLSTM utilizes information from
both the front and back directions, enabling a more comprehensive understanding of time
series data and achieving better results.

According to Table 5, when compared to SVR, GRU, B-LSTM, and B-BiLSTM models,
the suggested model in this study dramatically lowers RMSE and MAE. The comparison
results demonstrate that the multi-scale data fusion model derived by this model is more
sensitive to changes in tool wear status than the spatial or temporal correlation features
extracted by conventional deep learning network models. The traditional machine learning
approach also requires manual feature extraction and selection, which depend on the
expertise and wealth of experience of professionals. In addition, feature adaptation and
wear value prediction are carried out separately, and simultaneous optimization of both
parts cannot be achieved. Therefore, the model prediction accuracy can easily achieve the
upper limit.

4.4.3. Exploring the Expandability of Models

In the aforementioned study, cross experiments were conducted on the data sets C1,
C4, and C6 to confirm the model’s efficacy and show its superiority to other models. All of
the data from C1 through C6 will be used in the study to examine its generalizability. The
output is the tool’s remaining use times, and the input is the matrix following CEEMDAN
decomposition and rebuilding. Figure 11 continues the cross-validation using C1,C4,C6,
and in Figure 12, if C1 is the validation set, then C2–C6 is the training set.
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Figure 11. Trained using the original dataset.
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Figure 12. Trained using expanding the dataset.

The prediction results are shown in Figures 11 and 12. The MAE of C1 is 8.1137 and
5.4846, and the RMSE is 11.0498 and 7.3676, respectively. The MAE and RMSE of C4 were
8.1863 and 6.2208, 10.2017 and 8.7289, respectively. The MAE of C6 is 18.7712 and 12.0137,
and the RMSE is 22.0223 and 15.9872, respectively. It can be seen that when the dataset
is enlarged, the MAE predicted by the model shrinks by 30% and the RMSE by 25% on
average. In practical application, with the more data obtained in the actual processing,
the more abundant the data of the training model, the life degradation prediction model
proposed in this paper will have better accuracy.

5. Conclusions

This study provides a combined prediction method based on modal decomposition,
multi-channel input, MCNN and BiLSTM. Using the milling dataset of PHM2010 for
experiments and validation, we draw the following conclusions:

(1) The sensor signals during tool processing may better handle nonlinear and non-
stationary signals after filtering and CEEMDAN, boosting local characteristics.

(2) The developed model will predict tool wear values more accurately because it can
more efficiently mine spatiotemporal properties in cutting signals.

(3) This method’s prediction accuracy outperforms the SVR model, GRU model, B-LSTM
model, B-BiLSTM model, 1DCNN-BiLSTM model, and 2DCNN model.

The research on tool wear prediction provided in this article is based on the machining
circumstances of utilizing the same type of tool in the same working environment due to
the dearth of rich data. Different tools and machining environments still provide difficult
issues in actual machining production. This work presented an approach that will be
utilized for later research to explore the usage of various cutting tools under various
operating circumstances in order to further validate the precision of the forecast and the
generalizability of this strategy.
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