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Abstract: This review delves into the processing of tannery solid waste, emphasizing fleshings and
chromium-tanned leather waste. This paper centers on fat recovery, chromium elimination, and
protein preservation, aiming to make them apt for animal consumption. This paper also assesses
the potential of introducing such recycled products to the global market. Drawing on the literature
from the past two decades, sourced comprehensively from Scopus and Web of Science, 36 articles
were selected because of their significant contributions from leather production powerhouses such
as India and Brazil. Fleshings have shown immense potential as animal feed, and the extraction of
tallow and collagen from rawhide trimmings yields up to 98% and 93%, respectively. Fermented
tannery fleshings, notably with Enterococcus faecium HAB01, also demonstrate strong antioxidant
capabilities. The overarching consensus emphasizes the need for rigorous purification when dealing
with chromium-containing wastes, addressing concerns tied to Cr (III) and Cr (VI). Furthermore,
raw tannery fleshings stand out as a sustainable, cost-effective, and globally marketable solution for
animal feed production.

Keywords: leather waste; animal feed; wet blue recycling; global trade

1. Introduction

The animal food industry boasted a remarkable global trade value of USD 40.9 billion
in 2021. Out of 1217 traded products, it secured the 110th spot, meaning that animal food
represents a commanding presence, accounting for the top 9% of all traded commodities.
From 2020 to 2021, the export value of animal food surged by 17.8%, rising from USD
34.7 billion to USD 40.9 billion. Such a significant increase, almost 18% within a year,
underscores a mounting demand for animal food [1]. This surge might be attributed to
factors such as an expansion in animal farming and a global uptick in pet ownership.
In 2021, the top five leading animal food exporters were Germany (USD 4.43 billion),
the Netherlands (USD 3.92 billion), the United States (USD 3.81 billion), France (USD
3.29 billion), and China (USD 2.53 billion). On the import side were countries such as
Germany (USD 3.19 billion), the United States (USD 2.55 billion), France (USD 1.9 billion),
the Netherlands (USD 1.83 billion), and Poland (USD 1.6 billion). Interestingly, there is
a noticeable overlap between top importers and exporters [2]. This overlap hints at the
intricate dynamics of the supply chain in this industry. It is worth noting that the industry
has an accumulated value of USD 35.7 billion. Recognizing the potential, the sector has
innovatively incorporated nutrient-rich waste materials to devise enhanced fattening and
growth formulas [3–6].

While the leading animal exporters dominate discussions due to their significant
contributions, it is essential to recognize the broader spectrum of worldwide production.
In 2019, global layer feed production experienced a 4% growth, with Asia–Pacific leading
at 7%, possibly due to the African swine fever crisis prompting increased egg produc-
tion. In contrast, the Middle East saw an 11% decline, likely influenced by geopolitical
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tensions. Broiler feed production is equivalent to 10 million metric tons from the previous
year. Africa and Asia–Pacific both marked a 6% growth, while other regions registered a
2–3% increase. This upward trajectory is expected to continue, driven by escalating protein
needs [7]. Meanwhile, North America’s ruminant feed production was at 62.3%, and
Europe contributed 21.9%. Asia–Pacific dominates in aquaculture feed, holding 30% of the
global share, with China, Vietnam, and Bangladesh as major contributors. Additionally, pet
feed saw a 4% global growth, especially in regions such as Asia–Pacific, Europe, and Latin
America. Countries such as China, Indonesia, Portugal, Hungary, Ecuador, and Argentina
were at the forefront of this growth [7,8].

The vast scale of the animal feed industry highlights its dependence on large amounts
of both vegetable and animal-derived ingredients [9]. Given the high cost of protein in
feed formulas, there is a pressing need to identify more affordable protein sources. One
promising solution is the controlled use of edible waste, ensuring the continued quality of
animal-derived products [10]. A WWF report about animal feed sources underscores the
potential of alternative animal diets, such as those incorporating grocery and bakery waste,
as well as black soldier fly larva flour. Their study encourages the integration of waste into
animal diets to provide an environmentally friendly alternative to conventional feeds, all
while ensuring the safety and well-being of the animals [11].

An estimated 5 billion livestock are earmarked globally for the meat industry and its
derivatives [12]. In 2014, global statistics suggested an average meat consumption of 43 kg
per person [13]. The meat industry generates large amounts of waste; 46 to 50% of each
bovine is waste [14]. Slaughterhouse by-products, such as hides—which comprise 4 to
11% of live cattle weight—find their way to the tanning industry [15]. As reported by the
FAO, by 2015, out of the 5,924,823,536 kg of processed raw hides worldwide, 506,662,677 kg
were transformed into leather [16]. The tanning industries utilize part of the hides from
slaughterhouses and convert these animal hides into leather, enhancing their utility for
various products [17]. Yet, per Buljan and Ludvik [18], for every 1000 kg of wet salted hides,
only 255 kg emerges as finished leather, turning 75% into waste. The tannery waste includes
fleshings, hair, tails, masks, shavings from splitting, dust from buffing wet blue, and highly
contaminated liquid effluents [19,20]. Among all these wastes, fleshings and shavings, and
the buffing of the wet blue are being recycled to produce animal feed [21] and other valuable
products such as carbon sources for steel production [22], adsorbents [23,24], adhesives [25],
synthetic leather [26], biodiesel, bioplastics [27], fertilizers [28–30], elastin [31], among
others [32].

This review paper aims to delve into the recycling processes of tannery solid waste,
explicitly focusing on transforming fleshings and chromium-tanned leather waste into
safe and nutritious animal feed. The primary objective is to identify and evaluate the
most efficient processing techniques that ensure fat recovery and chromium removal
while preserving the protein content, making the resulting products suitable for animal
consumption. Furthermore, this work seeks to determine the feasibility of introducing
these recycled products into the global market, thereby providing a sustainable solution to
tannery waste management and contributing to the animal feed industry.

2. Methodology

An extensive literature review was conducted to comprehensively examine the poten-
tial use of tannery waste for animal feed production.

2.1. Data Collection

Database and Search Criteria:
Scopus: The initial literature search was conducted on Scopus, targeting the utilization

of tannery wastes as feed sources. The specific keywords employed for this search were
“tannery”, “wastes”, and “feed”.

Web of Science: A supplementary search was carried out on Web of Science using a
combination of keywords “tannery”, “wastes”, “animal”, and “feed”.
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Time Frame: The review spanned the literature from the past two decades, resulting
in a preliminary collection of 149 documents.

Geographical Distribution: Out of these, the major contributors were India (68 pub-
lications), Spain (11 publications), Bangladesh (12 publications), and Brazil (11 publica-
tions). The dominance of these countries can be attributed to their significant leather
production activities.

Publications per year: Scopus database records since 2004 show a consistent annual
publication rate of six to ten papers on tannery waste utilization for animal feed, high-
lighting a lack of research in this area attributed to manufacturers’ dominance in waste
management, limiting broader exploration. Proprietary issues lead to undisclosed con-
version processes, potentially obstructing academic advancement; see Figure 1 for visual
representation.
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Figure 1. Publications about tannery waste used for animal feed in the past 20 years reported
in Scopus.

2.2. Analysis of Literature

Using the Connected Papers software tool, the literature from the past decade was
further dissected into three main topics:

Solid Tannery Waste: The literature focused on solid tannery waste recycling into
animal feed. Keywords “animal feed”, “tannery waste”, and “recycling” yielded 41 articles
(Figure 2A).

Wet Blue Products: The literature that explored products derived from wet blue with
keywords “wet blue” and “recycling”, yielding 38 articles (Figure 2B).

Tannery-Derived Tallow: The literature that investigated the extraction of products
with the terms “beef tallow” and “tanneries”. This search resulted in 41 articles (Figure 2C).

The Boolean operator “AND” was used for all searches to narrow down results. The
Connected Papers tool visualized the search results with each publication represented as a
node; the node’s size correlates with its citation frequency. Furthermore, content-similarity-
based connections were made evident through linking lines.
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Figure 2. Representation of key research articles on solid tannery waste recycling for animal feed
production. The figure visualizes pivotal papers as interconnected nodes, each signifying its relevance
in the field: (A) results from the search terms “tannery waste AND recycling”, (B) derived using “wet
blue AND recycling”, (C) based on the words “beef tallow AND tanneries”. Each node represents an
article, and the interconnections hint at related research or shared citations. Source: connected papers
(accessed on 29 August 2023).

Supplementary Search: Google Scholar was subsequently leveraged to fetch specific
statistical data and additional information related to the topic.



Processes 2023, 11, 2965 5 of 26

2.3. Selection and Filtering Process

After data retrieval, a meticulous selection procedure was initiated. Duplicate entries
identified across the different searches were excluded. After this refinement, 36 articles
with the same focus that our investigation had were selected as foundational references for
this review, as outlined in Table 1, and the rest of the articles were not completely related to
the topic.

Table 1. Classification of research articles based on the investigated topics.

Title of the Article Topic

1 Use of tannery wastes in the diet of broiler Feed

2 Protein recovery from tannery fleshings using proteases of chicken intestines for the animal
feed industry Recycling

3 Systems for chromium recirculation in tanneries Recycling
4 Chromium poisoning in rats feeding on tannery residues Toxicity
5 Current trends in solid tannery waste management Recycling

6 Toxicity study in mice fed with corn produced in soil containing tannery sludge vermicompost
and irrigated with domestic wastewater Toxicity

7 Alternative protein sources in sea bass nutrition Feed
8 Chromium contents linked to iron oxide at areas with tannery sludge disposal Recycling
9 Enhanced production of Aspergillus tamarii lipase for recovery of fat from tannery fleshings Animal

10 Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste:
creating value from waste Toxicity

11 Effects of Leather Industry on Health and Recommendations for Improving the Situation
in Pakistan Toxicity

12 Genotoxicity of industrial solid waste leachates in Drosophila metanogaster Toxicity

13 An illustrative application of a prototype approach to evaluation of waste management options
for the leather manufacturing industry Recycling

14 In vitro antioxidant and antibacterial properties of hydrolyzed proteins of delimed tannery
fleshings: comparison of acid hydrolysis and fermentation methods Recycling

15 Trace elements concentration in soil and plant within the vicinity of abandoned tanning sites in
Bangladesh: an integrated chemometric approach for health risk assessment Toxicity

16 An imaginary journey to the collagen molecule for a better understanding of leather
waste treatments Recycling

17 Histopathological changes studied in the liver and kidney of quail due to manifested by the
different levels of chrome shaving replacing animal protein in the feed. Toxicity

18 Production and potential uses of co-products from solid tannery waste Recycling
19 Chromium recycling of tannery waste through microbial fermentation Recycling

20 Hydrolysis of tannery wastes to protein meal for animal feedstuffs: A process and
product evaluation Feed

21 Processing of leather waste: Pilot scale studies on chrome shavings. Isolation of potentially
valuable protein products and chromium Feed

22 Chromium from tannery waste in poultry feed: A potential cradle to transport human food chain Feed
23 Studies on recovery of chromium from tannery wastewater by Reverse Osmosis Recycling

24 Leather solid waste: An eco-benign raw material for leather chemical preparation—A circular
economy example Recycling

25 Mathematical modeling and experimental studies on biochemical conversion of Cr (VI) of
tannery effluent to Cr (III) in a chemostat Feed

26 Microbial sorption studies for removal of trivalent chromium from model tanning bath Recycling

27 Removal of organics and nutrients from tannery effluent by advanced integrated wastewater
pond systems® technology Feed

28 Total control of chromium in tanneries—thermal decomposition of filtration cake from enzymatic
hydrolysis of chrome shavings Recycling

29 Utilization of tannery fleshings: Optimization of conditions for fermenting delimed tannery
fleshings using Enterococcus faecium HAB01 by response surface methodology Feed

30 Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a
non-aerated SBR Recycling
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Table 1. Cont.

Title of the Article Topic

31
Utilization of Solid Wastes from Tanneries as Possible Protein Source for Feed Applications:

Acute and Sub-Acute Toxicological Studies to Assess Safety of Products Prepared from Delimed
Tannery Fleshings

Feed

32 Optimization of organic load for co-digestion of tannery solid waste in semi-continuous mode
of operation Recycling

33 Histopathological changes observed in the heart and gizzard of quail chicks Coturnix Coturnix
japonica administrated by the different levels of chrome shaving Feed

34 Chromium (Cr) Contamination of Poultry from Use of Tannery-Based Cr-Contaminated Feed
Ingredients and Public Health and Environmental Risks Feed

35 Removal of trivalent chromium contaminant from aqueous media using FAU-type
zeolite membranes Recycling

36 Biotransformation of bovine tannery fleshing into utilizable product with multi functionalities Feed

3. Results
3.1. Solid Waste Tannery Residues

The leather production process generates a diverse array of wastes, each with its
unique characteristics and potential environmental ramifications, as detailed in Table 2.
Approximately 80% of these wastes are residues from unutilized hides, encompassing
tanned solid byproducts such as hair, cow tails, raw hides, fleshings, and hide trimmings.
Many of these residues find utility in gelatin factories or are repurposed into distinctive
products such as pet toys, fertilizers, collagen, and keratin [33]. Shavings, although collagen-
rich, are tainted with chrome. Yet, they hold promise in collagen manufacturing, adhesive
production [34,35] and as fillers in composite materials [36].

Liquid wastes pose significant challenges, both in terms of volume—with 50,000 L
required to produce just 1 kg of leather [37], and composition, laden with heavy metals [38],
sulfides [39] and organic matter. The tanning stage introduces tanning liquors, the compo-
sition of which varies with the tanning technique and includes substances such as tannins
and chromium salts [40]. Historically, the focus was on lowering the contaminants in
wastewater before releasing them back into the environment. However, modern indus-
tries recirculate wastewater, aiming to curtail water usage and, finally, decontamination
processes [41].

Gaseous emissions are another concern. Compounds such as VOCs are emitted
throughout the production process, with hydrogen sulfide and ammonia being especially
prominent during beam house operations, also in this industry the odor is a mandatory
concern to address [42].

Furthermore, sludges, the byproducts of wastewater treatment, comprise a mix of
organic and inorganic substances, demanding meticulous disposal to minimize environ-
mental repercussions [37,43]. In summation, the intricate waste landscape of the leather
industry emphasizes the imperative for eco-friendly practices and forward-thinking waste
management approaches.

Table 2. Synopsis of wastes resulting from different processes during leather tanning.

Type of Waste Sources and Possible Uses

Solid Wastes

Raw Skin and Hide Trimmings: Cuts of hides and skins are protein-rich and sometimes used in animal
feeds or for gelatin production [44,45].
Fleshings: These are the fatty tissues removed from the inner side of hides and skins. They are protein-rich
and can be processed to extract oils and proteins [45].
Splitting Waste: Generated during the splitting operation to obtain desired leather thickness, they can be
used for making suede or other lower-grade leather products [46].
Shavings: Generated when uniforming the leather or wet blue thickness, they are rich in collagen
contaminated with chrome, sometimes used in collagen production or as fillers in composite materials [47].
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Table 2. Cont.

Type of Waste Sources and Possible Uses

Liquid Wastes
(Effluents)

Soaking Waters: These contain water-soluble proteins, hair, dirt, and dissolved and suspended solids [47]
Lime Liquors: Generated as residues from the unhairing process, these liquors contain dissolved hair, lime,
and sulfides [20,48,49]
Tanning Liquors: Depending on the tanning process (vegetable, mineral, or synthetic), the waste liquors
contain tannins, chromium salts, or other agents [20,48,49].
Dyeing and Finishing Effluents: These contain residual dyes, pigments, resins, fats, and other finishing
agents [20,48,49].

Chemical Wastes

Chromium Compounds: These are particularly relevant in chrome tanning processes. Chromium can be
toxic, especially Cr (VI) and concentrations [50].
Organic Solvents: Solvents used in dyeing and finishing processes [51,52].
Tannins: These residues can be of vegetable or synthetic origin, used in the tanning process [51,52].
Sulfides: Sulfides are used in the dehairing process and can be harmful if released into the
environment [39,53]

Gaseous Emissions

Volatile Organic Compounds (VOCs): VOCs are emitted during drying, finishing, and thermal
processes [54,55].
Hydrogen Sulfide and Ammonia: Substances released during beam house operations (such as soaking,
liming, and unhairing) [54,55].

Sludges These are by-products of wastewater treatment processes. They contain organic and inorganic materials
and need careful handling and disposal [56,57].

3.2. Products for Animal Feed Obtained from Different Solid Tannery Wastes

In the tannery processes, solid wastes primarily derived from raw or tanned cowhide
are frequently harnessed to produce animal feed. This inclination can be attributed to
their substantial content of fats and proteins, coupled with the ease of procuring materials
readily assimilable into animal dietary formulations, as illustrated in Figure 3.
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3.2.1. Products Derived from the Residual Fleshings of Tanneries

The fleshings, a blend of skin, muscle, and tallow, are mechanically excised from
hides to enhance the permeation of chemicals into the skin during the depilation and
tanning processes [59]. The surplus skin and the portions not utilized in the tannery are
sold to manufacturing units to produce gelatin/collagen [60] and adhesives [61]. Tradi-
tionally, meat remnants with tallow are disposed of in landfills. However, current trends
are exploring recycling strategies for these wastes. These include their use in biodiesel
production [62], hydrogen generation [63], and soap manufacturing [64]. Furthermore,
they undergo processing to yield meals enriched with protein and fat, suitable for animal
feed [65], as detailed below.

The composition of rawhide trimmings varies from 70.4 to 82.6% of moisture, 5.1
to 7% protein, and 7.3 to 7.8% of fat [66,67]. Various methods, including acid, basic and
enzymatic hydrolysis, can extract the proteins in the form of collagen [68]. In the raw
trimmings through innovative acid hydrolysis, using mixes of acids, the collagen extraction
yields 85% using acetic acid and 93% with propionic acid. This yield discrepancy was
further supported by circular dichroism results, which showed that the collagen extracted
with propionic acid solution had a higher ellipticity than collagen extracted with acetic
acid at 222 nm, a feature indicative of a triple helical structure. The circular dichroism
results confirmed that the collagen derived from trimming waste maintained its native
triple helical conformation being a collagen of high quality [69].

Tannery fleshings also serve as a collagen source through mechanical defatting and
enzymatic hydrolysis using a trio of enzymes such as (A) an alkaline proteolytic en-
zyme with exo-activity, (B) alkaline proteolytic enzyme with endo activity, both show-
ing activity of 40,000 LV g−1 and (C) another an alkaline triacylglycerol lipase enzyme
with 50,000 TBU g−1 activity. The process demonstrates efficiency, versatility with up to
85% protein recovery from greaves and significantly reduced water and chemical consump-
tion. The resulting hydrolyzed collagen, suitable as a retaining agent and biostimulant, was
successfully used in retaining wet blue leathers. Still, as it did not contain chromium, this
collagen is helpful for animal feed formulations [70].

Another study explored using tannery fleshings as an alternative to fishmeal in aqua-
culture. Fermented fleshings replaced varying percentages of fishmeal in the rohu fish
(Labeo rohita) diet. The most successful results were observed when fishmeal was replaced
by 75% fermented tannery fleshing flour, showing superior growth and nutritional indices
in the fish. One of the studies listed in Table 3 concluded that recycling bovine tannery
fleshings mitigates environmental issues associated with its disposal and offers a potential
solution to reduce production costs in aquafeed processing [71]. Even after these promising
results, potential toxicity remains a concern.

Addressing this, D’Agaro embarked on an 88-day seabass (Dicentrarchus labrax) growth
experiment, encompassing eight isoproteic and isolipidic distinct diets. The diets included
a C1 control diet based on fishmeal; diets containing tannery wastes S1 and S2 with 100
and 200 g kg−1, respectively; AV1 and AV2 based on poultry meal; M1 and M2 with alfalfa
concentrate; and A1 containing Haematococcus fluvialis meal. Results indicated that diets S2
and AV2, which partially replaced fishmeal with alternative protein sources by up to 40%,
significantly reduced fish growth rates and exhibited poor fish conversion ratio values.
Furthermore, introducing fleshing wastes to the seabass diet appeared promising but not
economically viable [72]. There was no evidence of toxicity or contamination of fishes with
diets S1 and S2 containing tannery wastes, which gives hope in using these residues, but
more experiments are still necessary to discard future issues.
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Table 3. Overview of research on utilizing nontanned fleshing wastes from tannery in animal feed formulations.

Authors Date Type of Study Main Findings Results in Animals Cite

Thazeem, B.; Preethi, K.;
Umesh, M.; Radhakrishnan, S.
2018

The study type is experimental research where
wet limed fleshings from bovine hides were
treated and fermented, followed by the
formulation of isonitrogenous diets for Labeo
rohita, with varying replacement levels of
fishmeal by fermented tannery fleshing flour.
The ideal diet was then analyzed for
multi-mycotoxins.

The study found that the fermented tannery
fleshing flour (FTF) contained ten essential and
six nonessential amino acids. Fish fed with a
diet that replaced fishmeal with 75% FTF (diet
FTF3) showed the best growth performance,
nutritional metrics, and body composition.
Additionally, a multi-mycotoxin analysis of
FTF3 confirmed the absence of harmful feed
toxins in the diet.

FTF3 diet helped to increase the size of fish
from 1.57 to 9.54 cm and achieve an increment
of 2.50 to 17.34 g kg−1 in body weight.
The study did not investigate the flavor,
toxicity, and other variables of interest for the
commercialization of FTF3.
The study suggested that diets based on
tannery wastes can be a cost-effective, efficient,
and safe protein alternative for
aquatic animals.

[71]

D’agaro, E.
2003

The experimental research study, specifically a
controlled growth trial of seabass fed varied
diets, S1 and S2, including tannery fleshings, to
evaluate their impact on growth. Diets
containing tannery wastes S1 and S2 with 100
and 200 g kg−1, respectively.

The primary finding of the study is that up to
40% of fishmeal (FM) in sea bass diets can be
substituted with alfalfa concentrate without
negatively impacting fish performance but not
with tannery by-products.

Fish fed with diets S2 and AV2, which replaced
40% of fishmeal with alternative protein
sources, displayed the lowest specific growth
rate, leading to poorer feed conversion ratio
values. Despite these variations, the overall
body composition of sea bass remained largely
consistent by the experiment’s end.

[72]

Alam, M.J.; Amin, M.R.;
Samad, M.A.; Islam, M.A.;
Wadud, M.A.
2002

The type of study described is an experimental
research study, specifically a controlled feeding
trial. Diet 1 (10% protein concentrate), Diet 2
(5% PC + 5% tannery wastes), and Diet 3
(10% TW) for 144 days old Starbro broiler chicks.

The study indicates that tannery waste can be a
cost-effective alternative in broiler diets. While
feed consumption, live weight, feed conversion
ratio, and survivability remained consistent
across diets, there were significant differences
in production cost and profitability.

Live weight, dressing percentage, neck, breast,
thigh, drumstick, heart, liver, head and blood
weights were almost similar between diets, but
the profitability of Diet 1, Diet 2, and Diet 3 was
0.27, 0.90, and 1.27 USD kg−1, respectively.

[73]

Rai, A.K.; General, T.; Bhaskar,
N.; Suresh, P. V.; Sakhare, P.Z.;
Halami, P.M.; Gowda, L.R.;
Mahendrakar, N.S.
2010

The type of investigation described is an
experimental research study specifically
focused on optimization using response surface
methodology (RSM) to enhance the
fermentation process of tannery fleshings with
a specific lactic acid bacterium (E.
faecium HAB01).

The ideal conditions determined were an
inoculum of 12.5% (v/w), glucose at 17.5%
(w/w), and a fermentation duration of 96 h at a
temperature of 37 ± 1 ◦C to achieve the highest
degree of hydrolysis of 92%.

This study was not applied to feed animals but
showed a good source of protein for animal
food with better antioxidant properties than
commercial animal diets.

[74]
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Allam et al. directly transformed fleshings into flour destined as a dietary supplement
for broiler chicks. First, the fleshings were boiled at 100 ◦C for 4–5 h, then dried and ground.
When comparing the three diets, Diet 1 containing 10% protein concentrate, Diet 2 consist-
ing of 5% protein concentrate and 5% tannery wastes, and Diet 3 incorporating 10% tannery
waste, the findings show that the basic parameters such as feed intake, live weight, and feed
conversion efficiency remain largely unaffected among the groups. Nevertheless, there is a
notable variance in the cost of production and profitability, with diets incorporating tannery
waste demonstrating enhanced profitability. Specifically, Diet 3 yielded a profitability of
USD 0.13 per kilogram of live weight. While most meat yield traits were unaffected by the
different diets, some specific characteristics such as gizzard and shank weight improved
with increased tannery waste. The study concluded that producers can integrate residual
fleshing from tanneries into broiler diets without causing adverse impacts [73].

A fermentation technique for delimed tannery fleshings was established to maximize
protein hydrolysis and antioxidant activity using Enterococcus faecium HAB01 (GenBank
#FJ418568). Under optimized conditions, which consisted of 12.5% (v/w) inoculum, 17.5%
(w/w) glucose, and a fermentation period of 96 h at a temperature of 37 ◦C, maximal hy-
drolysis was achieved. The chemical evaluation of the hydrolysate unveiled an abundance
of essential amino acids, particularly arginine and leucine when compared to a reference
protein. Furthermore, the liquid portion of the hydrolysate exhibited robust antioxidant ac-
tivities, suggesting its promising role as a high-quality feed ingredient [74]. These methods
prove that it is possible to convert fleshing with no chromium content-rich protein sources
for animal feed if considering quality and extraction processes.

3.2.2. Products Derived from the Residual Tallow in the Tanning Process

Due to its large volume, tallow has become a significant waste issue for slaugh-
terhouses and tanneries. Most of it ends in landfills, with only a tiny fraction being
recycled [75]. Freshly sourced beef tallow, coming directly from the animal’s stomach
after slaughter, holds superior quality [76–78]. In 2019, global tallow production reached
6,606,876,775 kg [79], positioning it as an economical source of edible fats. Tallow is abun-
dant in polyunsaturated fatty acids, including linoleic and α-linolenic acids, with a higher
triacylglycerol concentration in adipose tissue and a significant presence of phospholipids
in muscle tissue [80]. Historically, this beef fat was a staple in candle making, lubricants,
and even in the industrial preparation of French fries [81]. However, health concerns
related to its high saturated fat content have diminished its dietary role, leading to its
substitution for unsaturated vegetable oils [81]. Today, tallow is an additive in balanced
animal feed [82,83].

Tannery tallow undergoes recycling via solvent extraction [84] and thermal processes,
where it is cooked until it separates into fat, flesh, and water [85] despite the thermal
methods’ inefficiencies and high energy consumption. One study introduced a more
efficient way of using solid-state fermentation. The researchers produced an enzyme
(lipase) that effectively breaks down and solubilizes the fats, with 92% recovery when
applied to tannery fleshing. This method offers a potential source for biodiesel production
and repurposes the remaining residue as a protein-rich feed for animals [86]. A key
challenge in fat recovery is achieving a high yield. Devaraj et al. designed an industrially
viable process, employing 4% H2SO4 at 120 ◦C for 1.5 h, successfully extracting 98% of fat
from leather fleshing waste. Subsequent analyses indicated that this fat has more potential
utility as a biodiesel feedstock [87]. The extraction processes produce low-quality fats; thus,
further investigation is required to refine these fats for consumption.

Cunha et al. [88] identified the optimal fat extraction conditions at 155 ◦C and 550,000 Pa.
Under these conditions, 100% of the fat could be collected through simple decantation
due to the insolubility between the lipophilic fat phase and the hydrophilic protein-rich
phase. Nevertheless, these conditions yielded fat with a low iodine value, approximately
5 kg I2/kg fat, and a high acid number, 5 mg KOH/g, for limed fleshings. The saponifica-
tion values are also low, likely due to the impurity of the extracted fat. In the case of limed
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fleshings, Ca(OH)2 acts similar to a cement, reducing the effectiveness of thermal treatment
or solvent extraction. Therefore, the process of fat extraction from fleshing presents several
challenges that need to be addressed to improve efficiency and product quality.

In addition to the previously described defatting methods, another innovative process
has been explored. Instead of using traditional solvents, this method exclusively uses
supercritical CO2 in specialized high-pressure view cell equipment to extract fat from
double-face lambskins. By optimizing conditions to 2 × 107 Pa, 80 ◦C temperature, and
a duration of 2 h, the researchers achieved a fat yield of 78.57%. The results suggest
that supercritical fluid CO2 extraction is a highly efficient and environmentally friendly
alternative to fat separation processes [89].

While there is a lack of research on using recycled tallow in animal feed formulas,
tallow has been successfully incorporated into feeds for cattle, equines [90], lambs, poul-
try [91], and other animal species due to its palatability and nutrient content. Okur, N.
investigated the effects of soy oil, poultry fat, and tallow in broiler feed at fixed energy:
protein ratio on field and slaughter parameters; see Table 4. The research evaluated several
parameters; see Table 4. The study was conducted over 41 days with 12,600 Ross 308 broiler
chicks. Ten different diets were used, including soy oil in the starter poultry fat, tallow
in the grower, and various combinations in the finisher. The results indicated that using
tallow instead of Soy oil, especially in grower feed, improved field performance. The study
concluded that animal fat instead of soy oil could be an economical alternative if specific
ratios are maintained [91].

Research performed by Wickramasuriya et al. involved 384 one-day-old Ross 308 broiler
chicks, which were subjected to eight different dietary treatments. These diets were pri-
marily corn–soybean meal-based, with beef tallow as the fat source. The study found
that broiler chickens fed a diet supplemented with Polysorbate-20 and Candida rugosa
lipases (NC + POL + CRL) exhibited improved growth performance, especially during the
grower phase from day 21 to 35. These chickens also showed enhanced gut health, with
increased villi height and a higher villi-to-crypt ratio. Furthermore, the NC + POL + CRL
diet improved fat and energy digestibility compared to the negative control diet. The study
concluded that combining Polysorbate-20 with Candida rugosa lipases can enhance the
growth performance of broiler chickens on a low-energy diet without affecting other health
parameters [92].

In a study by Ahmed et al., a 63-day experiment with 15 lambs evaluated three dietary
treatments: T0 (control without beef tallow), T1 (2% beef tallow), and T2 (4% beef tallow)
with five lambs per group; see Table 4. Notably, the T1 group exhibited a marked rise in
body weight and improved feed conversion ratio. Meat quality and chemical composition
remained consistent across all groups. However, lambs in the T1 group saw an 11.5% surge
in cholesterol levels. The findings suggest that introducing 2% beef tallow into lamb diets
can boost their performance without any detrimental impacts [93].

Lopez et al. highlighted weight gain in younger lambs, contrasting with Ahmed
et al.’s broader approach. Yet, both studies underscored the advantages of adding tallow
to the diet [94]. Considering its use in cattle feed requires careful dosing due to bovine
spongiform encephalopathy (mad cow disease) risk. In the United States, the FDA’s 2018
decree [95] regulates the use of tallow in animal feed, prohibiting the use of tallow with
more than 0.15% insoluble impurities for ruminant meal.

The evidence indicates that incorporating tallow into animal feed is practical and
cost-effective. Furthermore, tallow can be sustainably sourced from tannery waste through
appropriate recycling, recovery, and purification processes.
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Table 4. Overview of research on utilizing tallow in animal feed formulations.

Authors Date Type of Study Main Findings Results in Animals Cite

Okur, N.
2020

This investigation focuses on the effects of
using soy oil (SO), poultry fat (PF), and tallow
(T) in broiler feed at a fixed energy: protein
ratio on field and slaughter parameters. The
research evaluated parameters such as average
live weight (ALW), feed conversion ratio (FCR),
production efficiency factor (PEF), carcass
weight (CW), carcass yield (CY), heart–liver
weight (HLW), heart–liver yield (HLY),
abdominal fat weight (AFW) and abdominal fat
yield (AFY)

The results indicated that animal fat (PF and T)
instead of SO, especially in grower feed,
improved field performance parameters except
for mortality. However, this improvement was
not observed in slaughter performance
parameters except for CW, HLW, and HLY. The
research determined that substituting SO with
animal fat could be cost-effective when
adhering to specific proportions.

Tallow in feeds at fixed energy protein ratio,
during field performance
ALW 2.401
FCR 1.828
PEF 301.54
Mortality 5.88
Tallow in feeds at fixed energy: protein ratio
slaughter performance
CW 1682
CY 67.40
AFW 39
AFY 2.35
HLW 60
HLY 3.57

[91]

Wickramasuriya, S.S.;
Macelline, S.P.; Cho, H.M.;
Hong, J.S.; Park, S.H.; Heo, J.M.
2020

The study aimed to explore the impacts of
dietary emulsifiers and lipase supplementation
on various parameters in broiler chickens, such
as growth performance, blood metabolites,
intestinal organ weight, gut morphology,
nutrient digestibility, carcass measurements,
and meat quality. All diets included the same
quantity of tallow.

The study concluded that combining
Polysorbate-20 with Candida rugosa lipases
can enhance the growth performance of broiler
chickens on a low-energy diet without affecting
other health parameters.

Effect of diet NC + POL + CRL on meat quality
of broiler chickens NC + POL + CRL, lightness
55.21, redness 5.12, yellowness 15.41, cooking
loss 24.17, WHC 79.72%, and pH 6.02
Effect of NC + POL + CRL diet on
carcass measurements
Leg 26.27%, breast 9.10%, abdominal fat 0.9%

[92]

Ahmed, S.; Khatun, J.;
Manirul, M.; Kabirul, M.; Niaz,
S.M.; Abdullah Al Noman, M.;
Zohorul M. 2015

In this experimental study,
three–four-month-old male lambs, averaging
10 kg, were acclimatized for 15 days and
divided into three groups: T0 (no tallow), T1
(2% tallow), and T2 (4% tallow) each with five
lambs. Diets replaced corn and soy with tallow,
maintaining consistent crude protein.

Supplementing lamb diets with 2% beef tallow
(T1 group) resulted in the highest total weight
gain and proved the most cost-effective.
However, the highest dressing percentage was
observed in the T2 group. The beef tallow
treatments did not significantly impact the
proportion of various organs.

The highest total weight gain, 4.68 kg, was
observed in the T1 group, showing higher
growth and superior FCR than the control
group T0.
The T1 group showed the most cost-effective
results, suggesting higher profits when sheep
rations are supplemented with 2% beef tallow.
The highest dressing percentage was found in
the T2 group, 44.05%.

[93]
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Table 4. Cont.

Authors Date Type of Study Main Findings Results in Animals Cite

López-Aguirre, S.;
Pinos-Rodríguez, J.M.; Vicente,
J.G.; Rangel, H.L.; de la Cruz,
A.; Domínguez-Vara, I.A.
2020

The work analyzes beef tallow dietary
variations on lamb growth, rumen activity, and
meat/carcass attributes. Subjects: 21
five-month-old male Rambouillet lambs. Diet:
0, 20, 40 g beef tallow/kg DM with consistent
energy/protein. Duration: 60 days (15 for
adaptation, 45 for evaluation). Metrics: weight,
intake, rumen analysis, carcass weight,
meat quality.

It is possible to conclude that increasing tallow
in the diet:
Increases saturated fatty acid contents, daily
metabolizable energy intake, carcass dressing,
fatness, and intramuscular fat content.
The diets keep similar growth metrics and
ruminal fermentation characteristics.
Carcass attributes, such as classification,
weight, muscle conformation, longissimus
muscle area, and individual fatty acids in meat,
remained unaffected.
Tallow addition did not influence meat
characteristics post mortem.

Diet 40 g kg−1 amount of tallow.
Growth performance
Final gain 15.80 kg
Ruminal fermentation
pH 5.9, acetate 47.6 mol mol−1

Propionate 35 mol mol−1

Butyrate 17.4 mol mol−1

Carcass characteristics
Weight 23 kg
Dressing 51.9%
Length 67.9%
Leg length 43.8 cm
Fatness degree 4.2

[95]
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3.2.3. Recycling of Wet Blue Waste and Its Potential Alternatives for Animal Nutrition

After undergoing the chromium tanning process, the leather is termed wet blue. The
skin’s thickness is harmonized during the subsequent finishing stages, producing wastes
such as shavings and wet blue sanding dust [96]. These wet blue residues, which contain
various levels of chromium-stabilized collagen, have seen research advancements that
enable the reduction in chromium content. After chrome removal, theoretically, collagen-
based protein is appropriate for feeding poultry, ruminants [97], and pets. It is vital to
exclude chromium from the final product due to its notorious toxicity and associated health
risks, from allergic reactions to cancer [98].

One noteworthy advancement is the increase in studies for efficient chrome extraction
from protein hydrolysates [99,100]. This process leverages collagen of different qualities,
which can be converted into valuable products such as gelatin, elastin, and animal feed. The
efficiency and Cr (III) recovery depends on extraction methods; see Table 5. Furthermore,
the profitability of this process depends on the market demand for these protein-based
products. Recycling wet blue waste plays a dual role; it not only aids in reducing waste
within the leather industry but also generates substantial economic value, as in the case of
Bangladesh, which, in 2022, started exporting wet blue waste, capitalizing on its growing
demand and utility worldwide [101].

Table 5. Recovery of chromium from different processes.

Recovery Method Initial Results Cite

Microbial fermentation with
Aspergillus carbonarius

82.00
-

g kg−1 protein
g kg−1 chrome

* 68.40
* 28.00

g kg−1 protein
mg kg−1 Cr3+ [102]

Hydrolysis with MgO and trypsin enzyme 908.10
34.20

g kg−1 protein
g kg−1 chrome

646.30
1.47

g kg−1 protein
mg kg−1 Cr3+ [103]

Enzymatic hydrolysis with alcalase -
-

g kg−1 protein
g kg−1 chrome

867.70
3.93

g kg−1 protein
mg kg−1 Cr3+ [104]

Alkaline protease 708.00
40.50

g kg−1 protein
g kg−1 chrome

-
-

g kg−1 protein
mg kg−1 Cr3+ [105]

Pressure assisted hydrolysis with NaOH in
an autoclave

20.50
24.8

g kg−1 protein (N)
g kg−1 chrome

-
496.00

g kg−1 protein
mg kg−1 Cr3+ [106]

Sodium and calcium hydroxide hydrolysis 804.40
-

g kg−1 protein (N)
g kg−1 chrome oxide

570.00
0.0054

g kg−1 protein
mg kg−1 Cr3+ [107]

Alkaline hydrolysis in steam explosion
system with CaO

146.00
45.60

g kg−1 protein (N)
g kg−1 chrome oxide

** 44.00
** 5.5

g kg−1 protein
mg kg−1 Cr3+ [108]

Ultrasound assisted with
ethylenediaminetetraacetic acid 25.28 g kg−1 chrome 505.00 mg kg−1 Cr3+ [109]

* Original data: protein 68.4 g/L, Cr3+ 0.028 g/L; ** to compare the equivalence, 1 L = 1 kg was used.

The environmental challenge posed by chromium-tanned leather waste disposal
stems from the potential conversion of trivalent chromium salts to the more soluble and
carcinogenic chromium (VI) salts. This conversion can be instigated by factors such as UV
light exposure, temperature fluctuations above 353 K, changes in humidity, natural pH
shifts in landfills, and the leather hydrolysis process.

- In an alkaline medium:
2Cr2O3 + 8OH− + 3O2 → 4CrO4

− + 4H2O ∆G0 < 0 (1)

- In an acid medium:
2Cr2O3 + 2H2O + 3O2 → 4Cr2O7

2− + 4H+ ∆G0 < 0 (2)

These reactions (1) and (2) are pH sensitive and can be accelerated in metal soils
such as those containing cerium and manganese [110,111]. To avert Cr (VI) contamination
and ensure premium collagen quality, collagen extraction from chromed wastes involves
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acid, basic, enzymatic hydrolysis [112], and combined methods [113,114]. These extraction
processes require controlling pH and keeping temperatures between 70 ◦C and boiling.
These unique measurements during hydrolysis, as supposed, increase the production costs.
In these processes, protein yields vary from 25 to 30%; likewise, high-quality gelatins have
been obtained that can compete in price with commercial gelatins [115].

A notable collagen purification method by Chaudhary and Pati [116] involved protease,
α-amylase, and lime to treat a 3:1 water–collagen mix at different times and temperatures
with a maximum recovery of 12%. Birds fed with diets replacing soybean meals with
20% and 30% protein hydrolysate exhibited more significant weight gain than those on
a standard diet. Heavy metal tests further confirmed that the meat’s chromium levels
remained within 67.83 and 82.12 ppb, under safe limits.

Another method extracted collagen from dried wet blue remnants using 0.5 M acetic
acid and 5 mM EDTA in a 1:10 weight/volume ratio for 24 h. The extracts were filtered
and salted with NaCl to a final concentration of 0.9 M. The precipitate was dissolved in
0.5 M acetic acid, reprecipitated with 0.9 M NaCl, then dissolved in a minimal volume of
0.1 M acetic acid and lyophilized. This process yielded acetic acid-soluble collagen at a rate
of 6.15%. A SDS-PAGE analysis confirmed the collagen purity and identified it as type I,
making this optimal for animal consumption [117].

3.3. Evaluation of Security of Recycled Solid Chromed Tannery Wastes for Animal Feed

Trace amounts of Cr (III) are integral to human metabolic functions. While the upper
intake level for chromium has not been defined due to the absence of observed toxicities
from food and prolonged high-dose supplement intake, recommended doses do vary. The
recommendation for women aged 19–50 is 25 micrograms daily, increasing to 45 micrograms
during lactation [118]. Meanwhile, the FDA advises an intake of 120 micrograms daily [119],
whereas the no observed adverse effect level is 1468 mg kg−1-day−1 recommended by
EPA [120]. Nonetheless, an excessive presence of heavy metals can lead to severe adverse
impacts on human health [121]. Assuming that Cr (III) is the only contaminant, a 65 kg
individual could safely consume up to 285 g of poultry daily. However, the potential
conversion of Cr (III) to the more dangerous Cr (VI) during cooking raises genuine concerns
about meat chemistry [122].

Hexavalent chromium, or Cr (VI), is particularly hazardous; prolonged exposition to
this ion can lead to significant health issues such as skin disorders, respiratory problems,
gastrointestinal tract damage, provoking cancer, and severe DNA damage depending on
the exposure route [123]. The Office of Environmental Health Hazard has set the maximum
allowable dose level for Cr (VI) at 8.2 µg day−1 [124]. However, findings by Mazumder
et al. [125] sounded alarm bells. Chickens fed on tannery waste-derived protein showed Cr
(VI) levels between 86 and 177 µg kg−1 in over 25% of samples, potentially exceeding the
safety threshold [125]. Such findings cast serious doubt on using chromed waste residues
in animal feeds.

Interestingly, if present in feed at concentrations below 0.6 mg mL−1 (maximum
0.46 µg Cr mL−1), chrome hydrolysates have no adverse effects on zebrafish embryo
development. This safety with zebrafish embryos is consistent across various extraction
methods such as alkaline, enzymatic, or combined, even when extracted collagen contains
783 mg kg−1 of chromium [126].

In Bangladesh, chrome-containing constituents such as raw skin trimmings and wet
blue scraps are used in poultry feed due to their high protein content. However, there is a
rising concern over chromium contamination in poultry, posing potential risks to human
consumers. A study by Ahmed et al. revealed that while specific poultry feed components
maintained chromium within safe limits, others showcased alarmingly high concentrations.
The experiments with broiler chickens (Gallus gallus domesticus) fed on chrome-infused feed
revealed that raw skin trimmings and several poultry feed samples contained chromium
levels below 0.03 mg kg−1. In contrast, wet blue shaving dust, starter feed (FS10), and
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grower feed (FS11) exhibited significantly elevated chromium concentrations, ranging from
3.02 to a staggering 29,854.4 mg kg−1 [127].

Moreover, processes applied to these tannery wastes did not reduce chromium concen-
tration to safe levels. In the case of chickens consuming these feeds, chromium accumulation
ranged between 0.42 and 0.84 mg kg−1 across various body parts. Such levels surpass the
daily adequate intake for humans. Crucially, for broiler chicken feed, regulations stipulate
that total chromium from supplemental sources should not exceed 0.2 mg kg−1 [128].
This study underlined the need for stricter control measures in feed formulations to safe-
guard human health. This concern was echoed in the research by Bari et al. [129], where
broiler chicken, desi chicken, and free-ranging chicken were fed chromium shavings, with
chromium concentrations varying from 0.27 to 0.98 mg/kg and lead concentrations ranging
from 10.27 to 10.36 mg kg−1. Given that these chromium concentrations exceeded the
recommended dose of 0.2 mg kg−1, the findings highlighted potential risks for humans
consuming poultry fed with chromed tannery waste-based concentrates.

Silva et al. investigation further highlighted the risks of using wet blue in animal feeds.
Upon feeding 48 Wistar diets containing 0 to 50% of tannery chromed wastes, adverse
effects on the animals’ weight gain and kidney impacts were observed. The damage was
directly proportional to the concentration of wet blue. The injuries were even worse with
diets that replaced 25% to 50% of the weight with previously purified wastes (80% less
chrome). The authors recommend removing at least 99% of chrome to consider wet blue
for animal feed [130].

However, not all tannery waste derivatives pose risks. A study on delimed tan-
nery fleshing hydrolysates, processed through acid hydrolysis and fermentation, showed
promise. The investigation used male Wistar rats fed diets up to 15% of these hydrolysates.
The study comprised acute toxicity assessments over 15 days and subacute evaluations
spanning 30 days. The biochemical examinations of all serum, liver, and urine samples
showed no notable alterations. This consistency was also evident in the liver histology
outcomes, comparable to those from the control group. Thus, the study conclusively deter-
mined that incorporating up to 15% of delimed tannery fleshing hydrolysates into diets is
safe, making them a valuable protein-rich ingredient for livestock feed formulations [131].

Lastly, a study assessing tannery waste protein concentrate as a potential replacement
for a commercial protein named Jasoprot in cattle feed revealed optimistic results. Twelve
cattle were subjected to various diets. The results indicated that diets with tannery waste
protein concentrate significantly improved weight gain and profitability. Notably, the
concentrate was free of aflatoxin and met typical beef chemical standards, including safe
chromium levels under 24 ng g−1 (2 µg/serving). Organoleptic scores remained consistent
across diets, suggesting no compromise in meat quality. Thus, combined with Jasoprot, tan-
nery waste protein concentrate emerged as a cost-effective substitute in the cattle industry
without affecting meat or carcass quality [132,133].

In Figure 4, a unanimous agreement among the surveyed authors indicates the ben-
efits of tallow in animal diets. D’Agaro, E. remains the outlier for untanned wastes, not
finding compelling evidence to use collagen from these residues in animal feed [72]. The
predominant concern with chromed tannery wastes lies in the high chromium levels in
extracted collagen, potentially endangering humans eating such meat. While studies by
Silva et al. [130], Jini et al. [131], Jahangir-Alam et al. [133], and Zhao et al. [126] saw no
issues with tannery wastes, five other researchers identified chromed wastes as dietary
risks for animals. This emphasizes the need for effective dechroming before using tannery
residues in animal feeds.
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3.4. Analysis of Global Leather Waste Trade Data

According to the United Nations Comtrade database and Observatory of Economic
Complexity (OEC) [134,135], the trade of leather waste, leather dust, and raw animal hides
saw steady growth in their business between 2020 and 2021. In global trade, leather waste
occupied the 1200th position as the most traded product, with a cumulative trade value of
USD 37,500,000 in 2021.
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China is the top exporter, primarily due to its manufacturing prowess, with Indonesia
as the leading importer, as shown in Figure 5. This highlights the significance of leather
waste trade, potential growth, or partnerships based on trade dynamics. While the exact
volumes of tannery wastes used for animal feed are unclear, their global economic impact
is evident. Bangladesh uses tanning residues for poultry feed for economic reasons, but its
safety needs further study. A wealth of waste exists for animal feed, with ample suppliers
available [135].
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3.5. Economic Implications of Dechroming Tannery Waste Residues

Collagen extraction and chrome recovery from tannery residues are understudied,
with most data from older research or being proprietary; see Table 6. Environmental regu-
lations prioritize chromium recovery from wastewater. Untanned collagen-rich residues,
typically sent to gelatin manufacturers, are easier to recycle than tanned residues. The
latter requires intensive processing compared to simple hydrolysis. Pretreatments help to
reduce chromed residue purification costs [136], and after solubilizing the solid wastes, the
recovery of chromium can be performed in dechroming plants. Low et al. developed a
technology where an imprinted polymer bead can recover chromium from tanning liquor,
improving the sustainability and efficiency of the tanning industry by reducing contamina-
tion in waterways. The economic analysis, based on an industrial-scale chromium recovery
plant designed to process 5000 L of tanning liquor per hour, shows incomes, and the author
recommends this plant for medium- or high-throughput enterprises. An alternative solu-
tion [137], especially in regions with multiple small tanneries, is establishing a centralized
chromium recovery plant.
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Table 6. Cost of plants to dechrome tannery wastewater.

Costs Related to the Plant Operating Conditions Payback Period
Country

Cite
Year

Plant construction: USD 357,833
Maintenance costs: 4% of capital cost
Chromium value: USD 1.1 kg−1

Hazardous disposal savings: USD 74.5 TON−1

600 kg day−1 2.56 years New Zealand [136]

Capital cost: USD 5 million
Chrome content in the spent liquor: 3–4 g L−1

as Cr2O3
Regenerated chrome liquor: USD 0.20 kg−1

Cr2O3 content: 9–10% by weight.
Effluent treatment: USD 2.6 m−3

Sludge production: 1600 TONS
Cost of landfilling: USD 66.8 TON−1

400–500 m3 day−1 of
spent chrome liquor in

an 8 h shift
10 years

Bangladesh

[137]

1981

2000

Initial fixed investment: USD 4083
Operating cost: USD 17,978
Benefit-to-cost (B/C) ratio: 4.67,
Net present value (NPV): +USD 80,864

No data 100 to 241 days

Pakistan

[138]
1994

2004

Pre-production expenditure: USD 10.199
Total initial fixed investment: USD 97.136
Pollution charges: USD 115.613
Total benefits in 2000–2001: USD 27.355
Benefit-to-cost (B/C) ratio: 0.5
Net present value: −USD 176.431
Total annual operating cost: USD 176.43

No data 36 years

Pakistan

[139]
2007

Buljan [138] stated that a central chrome recovery unit in Santa Croce sull’Arno, Italy,
was established, recovering 490 tons of Cr (III) 2000 for USD 1.45 million. While India had
about 100 chrome recovery units using magnesium oxide, many ceased operations due to
leather quality and cost concerns, similar to China.

Khan et al. deemed the chromium recycling plant at Riaz Tanneries economically and
environmentally beneficial. Despite its environmental importance, another study by Khan
et al. found the plant’s financial model unviable without adjustments, such as alternative
machinery suppliers and better integration with tannery operations [139].

The feasibility of industrial-scale dechroming processes depends on the industry,
chosen method, and factors such as regional differences, available technology, and research
advancements, as illustrated in Table 6. Some processes may be more profitable in certain
countries due to these variables.

4. Conclusions

Collagen, which makes up 21.5% of rawhide trimmings, can be extracted, achieving
up to a 75% yield, resulting in products with notable antioxidant properties. Remarkably,
replacing traditional fishmeal with 50% fermented tannery fleshing flour in Labeo rohita diets
led to promising growth and nutritional outcomes. Additionally, using fleshing-derived
flour in broiler chick diets showed no adverse effects and increased profitability by USD
0.13 per kilogram of live weight.

Tallow, extracted from untanned tannery wastes using advanced techniques such as
hydrolysis and fermentation, can achieve up to a 98% yield. Feeds enriched with this tallow
have demonstrated enhanced growth in broilers and lambs when compared to standard
diets. The positive results in animal development suggest the potential of harnessing tallow
from untanned tannery residues.
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However, a significant concern arises from chromium solid waste. Most experts believe
these wastes need rigorous purification to remove residual chromium before being used in
animal feed formulations. The challenge lies in the absence of a foolproof process to purify
the extracted collagen and concerns about potential human contamination. Therefore, more
research is essential before endorsing such residues for animal nutrition.

Untanned tannery residues present more opportunities than tanned ones to serve
as animal feed sources. While the potential of tannery-derived tallow is evident, more
in-depth exploration is required, especially concerning the purification of chromed residues
for animal feed.

5. Future Research Prospects

The utilization of tannery waste in animal feed presents both opportunities and
challenges. Critical areas for future research include a more profound economic analysis of
this practice, an understanding of its impact on animal productivity, and a thorough cost–
benefit assessment. Additionally, the development of cost-effective chromium purification
methods and studies on potential chromium conversion during food preparation are
essential to ensure the safety and viability of this approach. Addressing these research gaps
is crucial for the sustainable and safe adoption of tannery waste in animal feed.
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