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Abstract: Microparameter calibration is an important problem that must be solved in the discrete
element method. The Gaussian process (GP) response surface methodology was proposed to calibrate
the microparameters based on the Bayesian principle in machine-learning methods, which addresses
the problems of uncertainty, blindness, and repeatability in microparameter calibration methods.
Using the particle flow code (PFC) as an example, the effects of the microparameters on the macropa-
rameters were evaluated using the control-variable method, and the range of the microparameters
was determined based on the macroparameters. The uniform design (UD) method and numerical
calculation were used to obtain training samples, and a GP response surface methodology suitable
for multifactor, multilevel, and nonlinear processes was used to establish the response surface rela-
tionships for macro–micro parameters of rock-like materials in discrete element method. According
to the macroparameters obtained from the uniaxial experiments conducted on rock specimens, the
microparameters were calibrated using the GP response surfaces. Numerical calculations of uniaxial
compression and Brazilian splitting were performed using microparameters, and the results were
compared with laboratory experiments for verification. The results showed that the relative errors of
the GP response surface and laboratory test values were 5.3% for the modulus of elasticity, −7.8% for
compressive strength, and −2.6% for tensile strength. The nonlinear GP response surface considered
the characteristics of multiple interacting factors, and the established nonlinear response surface
relationship between the microparameters and macroparameters can be used for the calibration of
microparameters. The accuracy of the microparameters was verified according to the stress–strain
curve and failure morphology of the rock specimens. The method of using the GP response surface
to establish the macro–micro parameter relationship in the discrete element method can also be
extended to other numerical simulation methods and can provide a basis for accurately analysing the
microdamage mechanism of rock materials under complex loading conditions.

Keywords: discrete element method; Gaussian process response surface methodology; microparame-
ter calibration; numerical simulation; particle-flow code

1. Introduction

Numerical simulations have become an effective tool for studying the microdamage
mechanisms of rocks [1]. Among them, the discrete element method can more realistically
reflect the microscopic characteristics of materials using a simple contact model, which is
convenient for dealing with deformation problems and the associated damage related to
continuous and discontinuous media [2–5]. It is widely used in civil engineering, trans-
portation, water conservation, and other engineering fields. Among these discrete element
methods, the representative particle flow code (PFC) is used to study the mechanical prop-
erties by simulating the mutual motion of particles after the material is discretised into
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rigid particles and using simple contact models, including the contact-bond model (CBM),
parallel-bond model (BPM), and flat-joint model (FJM). However, the prerequisite is to
select the appropriate microparameters [6–13]. Because these macroparameters, such as the
elastic modulus, Poisson’s ratio, cohesion, and friction angle, no longer have an explicit
correspondence with the microparameters in PFC in conventional numerical calculation
methods based on continuous media, a parameter calibration needs to be carried out.
Researchers have used trial and error [14–16], simulation experiments [17–19], and experi-
mental designs [20–23], such as the Plackett–Burman design, central group and design, and
orthogonal design method, to conduct relevant studies on parameter calibration. However,
multifactor interactions, poor generality of parameters for multiple contact models, sim-
plicity, and efficiency require further exploration. An improved method of establishing the
relationship between macro–micro parameters in discrete element methods must be sought
to improve accuracy, reduce the number of tests, and simplify the calibration method.

Because of the interaction of several microparameters, manual calibration methods
are uncertain, blind, repetitive, and pose several other problems. Therefore, researchers
must seek more effective methods for the quantitative calibration of microparameters.
Intelligent algorithms based on machine learning are more adept at dealing with mul-
tiparameter interactions. Among them, the Gaussian process (GP), which is one of the
most important Bayesian machine-learning approaches based on a particularly effective
method for placing a prior distribution over the space of functions, is a generalization of
the Gaussian probability distribution [24], which has been rapidly developed in recent
times as a new machine-learning methodology and has been successfully applied in many
fields [25]. The GP model is determined by the mean and covariance functions, which
are not restricted by a specific form of mathematical structure and can effectively model
the correlations among complex physical systems. In addition, it has better adaptability
to deal with small samples, highly nonlinear, and high-dimensional numbers, which can
provide a variance corresponding to the calculated results and a confidence interval of the
given probability. The factorial design of a GP response surface is based on the statistical
variance analysis method and eliminates unimportant correction parameters, which can
reduce the size (dimensionality) of the optimisation problem. Additionally, it has an ad-
vantage over traditional correction methods, neural networks, support-vector machines,
and other methods.

The aim of this study is to propose a novel method (response surface method) for
microparameter calibration in the discrete element method, which is based on the GP in
machine learning. This method has the advantages of small samples, multifactor, multilevel,
and high fitting accuracy, and is suitable for establishing a nonlinear response surface
between two datasets with high generality [26]. The basic theory is based on the GP
response surface, and the general steps of microparameter calibration are introduced in this
study. The effect of the microparameters on the macroparameters was analysed using the
control-variable method to obtain the range of microparameters. Training datasets were
generated using the uniform design (UD) method and numerical calculations to establish a
GP response surface for macro–micro parameters of rock, which used the discrete element
method. The microparameters were calibrated from the macroparameters obtained from
laboratory uniaxial compression and Brazilian splitting experiments using GP response
surfaces. The stress–strain curves of rock specimens under uniaxial compression and
Brazilian splitting were calculated and compared with laboratory experimental results to
verify the accuracy of the macro–micro parameter response relationships established by the
GP response surfaces. The method, as an effective method to solve the parametric inverse
analysis problem, can also be extended to other numerical models for parameter calibration.
The research is helpful to those who are interested in analysing the multicrack extension
process and reveals its microscopic fracture mechanism under complex loading conditions
using the discrete element method in geotechnical engineering.
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2. Gaussian Process Theory
2.1. Gaussian Process Model

A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution [27]. There is a training dataset D of n observations,
D = {(xi, yi)|i = 1, 2, . . . , n}, where x = (x1, x2, . . . , xn) denotes an input vector (covari-
ates) of dimension d, that is, the number of variables, x denotes any random variable, and
y denotes a scalar output or target (dependent variable); the column vector inputs for all
n cases are aggregated in the d× n design matrix X = (x1, x2, . . . , x3), and the targets are
collected in the vector y = (y1, y2, . . . , yn), so we can write D = (X, y). Given this training
dataset D and outputs y∗, we wish to make predictions for new inputs x∗ that we have not
seen in the training dataset [25].

A Gaussian process is completely specified by its mean function and covariance
function. Define the mean function m(x) and the covariance function k(x, x′) of a real
process f (x) as

m(x) = E[ f (x)]
k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))]

}
(1)

where E[ f (x)] denotes the mean of the function f (x), and write the Gaussian process as

f (x) ∼ GP(m(x), k(x, x′)) (2)

f (x) and f (x′) are jointly Gaussian with zero mean and covariance, and the function values
f (x1), . . . , f (xn) corresponding to any number of input points n are jointly Gaussian. Given
a set of input points {xi|i = 1, . . . , n} we can compute the Gram matrix K whose entries
are Kij = k(xi, xj). If k is a covariance function, we call the matrix K the covariance matrix.
A real n× n matrix K is called positive semidefinite.

2.2. Selection of Covariance Function

From Equations (1) and (2), the GP was determined using the mean and covariance
functions. The covariance function (kernel function) plays a decisive role in the prediction
results of the GP model and measures the closeness between the training and prediction
dataset. Covariance functions are typically used in the form of square exponential, linear,
and periodic functions. A covariance function can also be generated by summing several
functions, products, and other operations of the new covariance function, reflecting the
flexibility of the GP kernel function.

In this study, we used the squared exponential covariance function, which has the
advantage of being a smooth and infinitely derivable function and has the characteristic
that neighbouring inputs produce similar outputs. making it the most used covariance
function with a form shown in Equation (3) [28]:

k(xi, xj) = ψ2 exp[−1
2

d

∑
m=1

(
xi,m − xj,m

lm
)

2

], (3)

where xi,m is the m-th variable of the matrix xi =
(

xi,1, xi,2, . . . , xi,d

)
; d is the dimensionality

of the input space; ψ2 is the signal variance, which is used to control the degree of local
correlation; and (l1, l2, . . . , lm, ψ) is the hyperparameter inside the covariance function and
set θ = (l1, l2, . . . , lm, ψ) to simplify the expression.

2.3. Solution of the Hyperparameter

The hyperparameters determine the expression of the GP, that is, the GP response
surface; thus, an optimal choice of the covariance function and calculation method for
the hyperparameters are required. In practical applications, the mean function is set as a
constant to simplify the calculation process.
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To optimise the prediction x∗, the hyperparameter θ is often determined using the
great likelihood method, which is generally performed by taking the negative logarithm of
the marginal-likelihood function. The negative logarithm is the likelihood function. The
partial derivatives of the hyperparameters are obtained, which are further optimised by
the Newton, conjugate gradient, and other methods to find the optimal solution of the
hyperparameters [29]. The optimal hyperparameter θ can be expressed as Equation (4):

θ̂ = argθminL(θ), (4)

where
L(θ) = −lg[p(y|X, θ)] =

1
2

yTK−1y +
1
2

lg(|K|) + n
2

lg(2π). (5)

The partial derivatives of the hyperparameters are as follows:

∂L(θ)
∂θn

=
1
2

tr(K−1 ∂K
∂θn

)− 1
2

yTK−1 ∂K
∂θn

K−1y, (6)

where argθminL(θ) denotes the value of the variable when the function L(θ) is minimized,
tr(•) denotes the trace, and θn denotes the n-th optimal hyperparameter.

The iteration for the training-sample set optimisation is an ideal method for solving
the hyperparameters, which is also a significant advantage in Gaussian algorithms [28,30].
Its specific operation is as follows: 100 sets of initial points are randomly selected to
calculate the corresponding L(θ). Thereafter, ten sets of initial points corresponding to
the smallest L(θ) are selected, and, among the ten sets of results, the smallest L(θ) is the
optimal hyperparameter θ̂.

3. Selection of Parameters

The process of microparameter calibration first requires the establishment of a Gaus-
sian response surface using the microparameter set (X) and the macroparameter set (y),
which are generated by the UD method and numerical simulation, respectively, as shown
in Figure 1.
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Figure 1. Parameter calibration flow diagram.

3.1. Selection of Microparameters

PFC simulates the mechanical behaviour of continuous-media materials by bonding
particle elements that are independent of each other. The primary bonding models com-
monly used to simulate rock materials are CBM and PBM. The difference between CBM and
PBM is shown in Figure 2. A CBM can be regarded as a spring with normal and tangential
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stiffness, which can resist normal and tangential forces. The PBM can be considered as
a series of springs with normal and tangential stiffnesses uniformly distributed over a
certain width of the contact surface, which resists normal forces, tangential forces, and
moments simultaneously. In the PBM, the breakdown of the PBM immediately leads to a
reduction in macroscopic stiffness, which is more consistent with the brittle failure of rock
and discontinuous mediums after failure. Therefore, the PBM was chosen for this study to
simulate the mechanical behaviour of rocks during failure.

Processes 2023, 11, x FOR PEER REVIEW 5 of 13 
 

 

3.1. Selection of Microparameters 
PFC simulates the mechanical behaviour of continuous-media materials by bonding 

particle elements that are independent of each other. The primary bonding models com-
monly used to simulate rock materials are CBM and PBM. The difference between CBM 
and PBM is shown in Figure 2. A CBM can be regarded as a spring with normal and tan-
gential stiffness, which can resist normal and tangential forces. The PBM can be consid-
ered as a series of springs with normal and tangential stiffnesses uniformly distributed 
over a certain width of the contact surface, which resists normal forces, tangential forces, 
and moments simultaneously. In the PBM, the breakdown of the PBM immediately leads 
to a reduction in macroscopic stiffness, which is more consistent with the brittle failure of 
rock and discontinuous mediums after failure. Therefore, the PBM was chosen for this 
study to simulate the mechanical behaviour of rocks during failure. 

 
(a) (b) 

Figure 2. Schematic diagram of a contact model: (a) contact-bond model (CBM), (b) parallel-bond 
model (PBM). 

The parameters of the particles and parallel bonds are included in the PBM (see Table 
1). To simplify the calculation, it was necessary to assume that the particles and parallel 
bonds have the same deformation properties, that is, c cE E=  and /  = /n s n sk k k k . It was 
also assumed that the radius of the parallel bonds is the same as the radius of the smaller 
particles in contact with each other, that is, = 1.0λ . Therefore, the microparameters cE , 

/n sk k , cσ , cτ  and u  were selected as test factors. 

Table 1. Microparameters of the PBM. 

Parameters of the Particles Parameters of the Parallel Bonds 
Modulus of the particles: cE  Modulus of parallel bonds: cE  
Ratio of normal to tangential stiffness of 
the particles: /n sk k  

Ratio of normal to tangential stiffness of 
parallel bonds: /n sk k  

Friction coefficient of the particles: u  
Average value of normal strength of parallel 
bonds: cσ  

 
Average value of tangential strength of 
parallel bonds: cτ  

 Radius increase factor of parallel bonds: λ  
  

Figure 2. Schematic diagram of a contact model: (a) contact-bond model (CBM), (b) parallel-bond
model (PBM).

The parameters of the particles and parallel bonds are included in the PBM (see
Table 1). To simplify the calculation, it was necessary to assume that the particles and
parallel bonds have the same deformation properties, that is, Ec = Ec and kn/ks = kn/ks.
It was also assumed that the radius of the parallel bonds is the same as the radius of the
smaller particles in contact with each other, that is, λ = 1.0. Therefore, the microparameters
Ec, kn/ks, σc, τc and u were selected as test factors.

Table 1. Microparameters of the PBM.

Parameters of the Particles Parameters of the Parallel Bonds

Modulus of the particles: Ec Modulus of parallel bonds: Ec
Ratio of normal to tangential stiffness of the
particles: kn/ks

Ratio of normal to tangential stiffness of
parallel bonds: kn/ks

Friction coefficient of the particles: u Average value of normal strength of parallel
bonds: σc
Average value of tangential strength of parallel
bonds: τc
Radius increase factor of parallel bonds: λ

3.2. Range Determination of Microparameters

The training set (D) needs to be established by substituting the microparameter set (X)
into the discrete element numerical model to generate the macroparameter set (y). There-
fore, it is necessary to first determine the range of the microparameters and subsequently
generate the training set (X) within this range. The control-variable method was used to
determine the range of microparameters by calculating the linear relationship between the
microparameters and the macroparameters, whereafter the range of the microparameters
based on the empirical values of the macroparameters is deduced.
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The Initial microparameters were ”et a’: Ec = Ec = 50 GPa, kn/ks = kn/ks = 1.0,
u = 0.5, Rmin = 0.3mm, and Rmax/Rmin = 1.66. The single-factor analysis method,
where only one microparameter (σc) is changed repeatedly while other microparameters
are kept constant, was used to calculate the linear relationship. The range σc = τc was
set to 20–300 MPa. Numerical calculation models were established to simulate uniaxial
compression experiments to obtain macroparameters and study the influence of micropa-
rameters on macroparameters. The relationship between the parallel-bond and uniaxial
compression strengths were obtained, as shown in Figure 3. Linear fitting of the numerical
test results yielded y = −0.4 + 1.65x. According to the petrophysical tests results of the
rock mass [31], the uniaxial compression strengths of marble range from 40 to 120 MPa.
Substituting x = 40 and x = 120 into y = −0.4 + 1.65x yields y = 24.1 and y = 72.3,
respectively. Therefore, the range of values for the cohesive strengths of σc and τc was set
to 24.1–72.3 MPa. Following similar calculations, the range of the parallel-bond modulus
(Ec) was set to 34.35–103.05 GPa, and that of the stiffness ratio (kn/ks) to 0.455–1.365, with
their fitting lines shown in Figures 4 and 5. As suggested by Potyonndy and Cundall [17],
for rocky materials, u can be considered to have a nonzero value of 0.5. To investigate the
effect of u on the macroscopic response, the variation range of u was set to 0.25–0.75.
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3.3. Selection of Macroparameters

In numerical calculations, the mechanical parameters typically used in rock materials
include compressive strength σc, elastic modulus E, and tensile strength σt. Therefore,
compressive strength σc, elastic modulus E, and Brazilian splitting strength σt were selected
as macroparameters in this study, which were also the physical–mechanical parameters
commonly used in finite element numerical calculations.

3.4. Discussion

A Gaussian process is completely specified by its mean function and covariance
function, while there are many kinds of covariance functions, selecting different covariance
functions will get a different response surface, which will affect the calculation accuracy of
the results; so, the user needs to select the appropriate covariance function according to the
existing experience. Meanwhile, sampling methods, such as Uniform Design (UD), Latin
Hypercube Sampling (LHS), Hammersley Sequence Sampling (HSS), etc., are needed in the
process of selecting the training samples, but different sampling methods will get different
sample sets, which will also have some impact on the results.

4. Parameter Calibration Process

According to the principle of the GP response surface methodology, a training dataset,
including inputs X and outputs y, are required to construct the response surface. The
generation of an appropriate training set is the key to constructing the response surface.
Therefore, it is necessary to design numerical and physical experiments to generate a
training dataset. The purpose of the experimental design was to obtain as much information
as possible with as few trials as possible. The choice of the experimental scheme directly
affects the fitting accuracy of the response surface and the cost of the test. If the number
of tests is too small, it is difficult to reflect the response relationship between the input
parameters and output results. If the number of tests is too large, it improves the accuracy
but also increases the test cost. Moreover, an excessive number of tests is not necessary [32].
The commonly used experimental design methods are UD, Latin Hypercube Sampling,
and Hammersley Sequence Sampling [29]. In this study, the UD method was selected to
construct a GP response surface based on the balance between the prediction accuracy and
the experimental cost.

4.1. Generation of Training Dataset for Microparameters

The selection of input and output parameters needs to be based on experience to
select the most sensitive parameters to the calculation results and discard the insensitive
parameters as much as possible to reduce the calculation dimension and improve the
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calculation efficiency. Meanwhile, we need as many sample sets as possible, and the more
sample sets we have, the higher the accuracy of the Gaussian response surface.

The training set X needs to be generated first according to the range of microparame-
ters and subsequently substituted into the numerical model (PFC) to generate the training
set y. In the experimental design, the five parameters, Ec, kn/ks, σc, τc, and u were used
as input parameters for X. The three parameters, σc, E and σt, obtained by numerical
calculations were used as the output response results y.

According to the range of microparameters, 30 sets of training samples were generated
using the UD method. The results (input parameters: X) are presented in Table 2. Thirty
sets of numerical calculations were required to generate the training set y.

Table 2. Training dataset.

No.

Input Parameters: X
(UD Results)

Output Parameters: y
(Numerical Calculation Results)

Ec/GPa kn/ks σc/MPa τc/MPa u E/GPa σc/MPa σt/MPa

1 48.09 1.001 33.74 33.74 0.55 70.24 55.47 4.91
2 48.09 1.183 24.10 43.38 0.75 71.82 56.83 4.13
3 75.57 1.001 33.74 62.66 0.55 126.61 81.15 4.51
4 103.05 1.183 72.30 43.38 0.75 201.37 79.33 4.82
5 48.09 0.637 33.74 53.02 0.35 68.36 68.59 5.72
6 89.31 0.455 72.30 62.66 0.55 149.98 100.11 4.91
7 103.05 1.183 33.74 72.30 0.25 201.37 79.29 4.81
8 61.83 0.637 53.02 33.74 0.55 61.44 56.06 4.62
9 61.83 1.183 43.38 24.10 0.35 74.93 45.05 4.13

10 48.09 0.637 53.02 72.30 0.75 68.36 107.37 5.71
11 75.57 0.455 33.74 24.10 0.75 67.51 38.31 4.73
12 89.31 1.365 53.02 53.02 0.55 131.96 90.60 5.31
13 103.05 0.819 43.38 43.38 0.45 153.37 71.44 4.87
14 34.35 0.455 62.66 43.38 0.45 43.28 70.68 5.01
15 103.05 0.637 24.10 53.02 0.65 159.84 61.31 8.02
16 34.35 0.819 72.30 24.10 0.65 48.75 43.35 3.81
17 34.35 1.365 43.38 72.30 0.65 66.07 88.60 3.72
18 89.31 1.001 53.02 33.74 0.25 131.20 59.50 4.71
19 48.09 1.365 72.30 53.02 0.25 82.30 96.79 4.11
20 34.35 1.001 53.02 62.66 0.35 54.79 100.42 5.21
21 75.57 0.455 43.38 43.38 0.25 67.51 66.88 4.72
22 61.83 1.183 62.66 62.66 0.45 74.93 110.14 4.14
23 89.31 0.819 43.38 62.66 0.75 106.06 93.50 4.18
24 75.57 0.819 72.30 72.30 0.35 133.63 112.27 4.33
25 61.83 1.001 62.66 53.02 0.65 77.88 91.54 4.45
26 75.57 1.365 62.66 33.74 0.65 116.83 64.21 4.61
27 89.31 1.365 24.10 24.10 0.45 131.96 43.19 5.31
28 61.83 0.455 24.10 72.30 0.45 67.50 69.92 4.72
29 34.35 0.819 24.10 33.74 0.25 48.75 51.10 3.82
30 103.05 0.637 62.66 24.10 0.35 158.48 40.55 11.41

4.2. Generation of Training Dataset for Macroparameters

Numerical calculations, including uniaxial compression and Brazilian splitting, were
performed using the microparameters above to obtain the training set (output parameters:
y). The sizes of the rock samples were 50 × 100 mm (diameter × height) for the uniaxial
compression simulation and 50 mm (diameter) for the Brazilian splitting simulation. The
minimum radius of the particle was Rmin = 2 mm, and the radius ratio of the particle was
Rmax/Rmin = 1.66. The numerical model is shown in Figure 6.
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Based on the above model, 30 sets of numerical simulations, including uniaxial com-
pression and Brazilian splitting, were performed using the input parameters (X) in Table 2.
The stress and strain values in each direction during loading were recorded, stress–strain
curves of the numerical calculations were obtained, and uniaxial compression strengths σc,
elastic modulus E, and Brazilian splitting strength σt were calculated as output results (y)
(see Table 2).

4.3. Establishment of GP Response Surface and Calibration Process of Microparameters

The calculation for the GP model in Equations (1)–(6) was prepared as a toolkit em-
bedded in MATLAB, and the calculation process was completed in MATLAB. The training
set must be transformed into a matrix format recognisable by the MATLAB programme, as
shown in Equations (7) and (8).

Training set (inputs):

x =
[
Ec kn/ks σc τc u

]
, (7)

where the first, second, third, fourth, and fifth columns are the modulus of parallel bonds,
the ratio of normal to tangential stiffness of parallel bonds, the average value of normal
strength of parallel bonds, the average value of tangential strength of parallel bonds, and
the friction coefficient of the particles, respectively. There are 30 rows in total.

Training set (outputs):
y =

[
E σc σt

]
, (8)

where the first, second, and third columns are the elasticity modulus, uniaxial compression
strengths, and Brazilian splitting strength, respectively.

Laboratory uniaxial compression and Brazilian splitting experiments of marble were
carried out, and the corresponding macroparameters were obtained, as shown in Table 3.
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Table 3. Macroparameters of marble.

E/GPa σc/MPa σt/MPa

66.1 63.9 3.8

The macroparameters were used as outputs y∗ (Equation (9)) and were put into the
GP response surface model to obtain the predictions x∗ (Equation (10)). The calibrated
microparameters are listed in Table 4.

Table 4. Calibration values of microparameters.

Ec/GPa kn/ks σc/MPa c/MPa u

45.72 0.94 44.83 43.37 0.497

Outputs (macroparameters):

y∗ =
[
66.1 63.9 3.8

]
. (9)

Inputs (microparameters):

x∗ = [45.72 0.94 44.83 43.37 0.497]. (10)

4.4. Experimental Validation of Calibrated Microparameters

To verify the accuracy of the calibrated microparameters, the values in Table 4 were
used to establish a numerical model for uniaxial compression and Brazilian splitting
numerical calculations, and the calculated results were compared with those of labora-
tory experiments.

The stress–strain curves obtained from the numerical simulations and laboratory
experiments are shown in Figure 7, and the calculated macroparameters are listed in Table 5.
In the laboratory experimental results, the stress–strain curves showed a downward trend
(nonlinear growth trend), indicating that the rock samples underwent a compression-
density process. However, the stress–strain curves in the numerical calculations could
not characterise this phenomenon, and the calculated values were slightly higher than
the experimental values. In the numerical simulations and laboratory experiments, the
relative errors of the GP response surface calculated values and laboratory test values
were 5.3% for the modulus of elasticity, −7.8% for uniaxial compression strengths, and
−2.6% for tensile strength. The specimens exhibited splitting failure characteristics in
the simulation of uniaxial compression and cracking failure along the middle of the rock
samples in the Brazilian splitting simulation, which was maintained at the same level as
the failure characteristics of the laboratory experiments.

Table 5. Calculated and experimental values of macroparameters for marble.

E/GPa σc/MPa σt/MPa

Experimental values 66.1 63.9 3.8
Calculated values 62.8 68.9 3.9

Relative error 5.3% −7.8% −2.6%
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The uniaxial compressive strength from the experiment is 63.9 MPa while that of the
numerical calculation is 68.9 MPa. The calculated values were slightly higher than the
experimental values, and the relative error between them is −7.8%, which shows that
the calibrated microparameters can reflect the macro failure strength. But, the calcula-
tion accuracy needs to be further improved. The numerical calculation only considers
a limited number of factors, and the calculated constitutive model fails to consider the
nonlinear characteristics of the rock. But, in the actual stress environment, there may be a
combination of multiple factors. Therefore, more factors may need to be considered in the
numerical calculation.

5. Conclusions

In this study, a novel method for the calibration of microparameters based on the
discrete element method and the GP response surface methodology was proposed. A GP
model was developed to establish the GP response surface using a training dataset gener-
ated by the UD method and numerical simulations. The microparameters were calibrated
using the macroparameters obtained from uniaxial compression and Brazilian splitting
tests, and the accuracy of the numerical model was verified using the laboratory test data.

(1) The sensitivity parameters (i.e., σc, E, v, and σt) were screened, and the range of the
microparameters was initially determined according to their effect on the macroparameters
using the control-variable method;

(2) The training set X of the microparameters was generated according to the UD
method, and a numerical model was established to generate the training set y of the
macroparameters. The response relationship of rock macro–micro parameters in the PFC
was established using the GP response surface methodology, and the microparameters (x∗)
were calibrated according to the macroparameters (y∗) determined by laboratory uniaxial
and Brazilian splitting experiments;

(3) Numerical models were established based on the calibrated microparameters, and
numerical calculations were performed to compare the stress–strain curves and failure
morphology of the rock specimens with laboratory tests under uniaxial compression and
Brazilian splitting. The results showed that the rock specimens had the same failure strength
and morphology in laboratory experiments and numerical calculations. The relative errors
of the GP response surface and laboratory test values were 5.3% for the modulus of
elasticity, −7.8% for compressive strength, and −2.6% for tensile strength, which verified
the accuracy of the macro–micro parameter relationship established by the GP response
surface methodology in the PFC for rock materials;
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(4) GP response surfaces can consider the interaction of multiple factors, which is
suitable for establishing nonlinear response surfaces between the macro–micro parameters.
This method can be extended to other contact and numerical models.
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