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Abstract: Optical density (OD) is a critical process parameter during fermentation, this being directly
related to cell density, which provides valuable information regarding the state of the process.
However, to measure OD, sampling of the fermentation broth is required. This is particularly
challenging for high-throughput-microbioreactor (HT-MBR) systems, which require robotic liquid-
handling (LiHa) systems for process control tasks, such as pH regulation or carbon feed additions.
Bioreactor volume is limited and automated at-line sampling occupies the resources of LiHa systems;
this affects their ability to carry out the aforementioned pipetting operations. Minimizing the number
of physical OD measurements is therefore of significant interest. However, fewer measurements also
result in less process information. This resource conflict has previously represented a challenge. We
present an artificial neural-network-based soft sensor developed for the real-time estimation of the OD
in an MBR system. This sensor was able to estimate the OD to a high degree of accuracy (>95%), even
without informative process variables stemming from, e.g., off-gas analysis only available at larger
scales. Furthermore, we investigated and demonstrated scaling of the soft sensor’s generalization
capabilities with the data from different antibody fragments expressing Escherichia coli strains. This
study contributes to accelerated biopharmaceutical process development.

Keywords: high-throughput; microbioreactor system; soft sensor; artificial neural network; optical
density (OD); fermentation; recombinant protein; biopharmaceuticals

1. Introduction

The market demand for recombinantly produced biopharmaceuticals has increased rapidly
in recent years. Various sources estimate a market cap of 2021 between USD 328 and 407 billion
with a projected compound annual growth rate between 7% and 11% [1–4]. Monoclonal anti-
bodies alone make up almost half of this market, with market cap estimations between USD
168 and 185 billion [5–7]. The rise of monoclonal antibodies (and associated therapeutic proteins,
including antibody fragments) can be attributed to their wide-ranging clinical application, as
they are used for treatment against (i) cancers, (ii) inflammatory diseases, (iii) neurological
disorders, (iv) infections, (v) metabolic diseases, (vi) autoimmune conditions and (vii) cardiovas-
cular diseases [8–10]. The rapid growth of the sector resulted in the need for accelerated R&D
pipelines. One of the bottlenecks in establishing recombinant protein production processes is the
development of the fermentation process, during which genetically modified microorganisms
express the protein of interest for subsequent harvesting and purification. In response, high-
throughput methodologies in molecular biology have been developed, leading to the generation
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of sizable libraries of potential recombinant production strains [11,12]. The protein of interest
produced during fermentation processes conducted in this study is a single-chain variable
fragment (scFv), which is an antibody sub-element retaining the antigen binding region of the
antibody. These can be produced rapidly and with higher space–time yields than antibodies
themselves, and have other potential clinical benefits, explaining the industry’s interest in the
production of scFvs [10].

Screening all potential production strains with traditional lab-scale fermentation sys-
tems is time-intensive and associated with high (economic and labor) costs. This gave rise
to the need for high-throughput-microbioreactor (HT-MBR) systems capable of simultane-
ously executing multiple small-scale fermentations under controlled conditions [13]. As
a result, several HT-MBR systems have been developed, commercialized and implemented
in both academia and industry [14–18]. A fully automated MBR system based on four
temperature controlled bioREACTOR 8 (2mag AG, Munich, Germany) fermentation blocks
has been developed and implemented at the Boehringer Ingelheim Regional Center, Vienna;
this has previously been described elsewhere [19,20]. We return to the operation of this
system in more detail in our methodology section (Section 2).

One concern with MBRs is that frequent sampling of the fermentation broth causes
large percentage volume changes in comparison to large-scale fermenters [21]. These
volume changes may have repercussions on the overall fermentation performance and
therefore also on the meaningfulness and scalability of MBR experiments. Moreover,
sampling occupies liquid-handling (LiHa) robotic pipetting arms, which are responsible
for the supplementation of essential process fluids, such as the carbon feed, as well as acid
and base additions. These operations cannot be performed during sampling. Whilst pH
fluctuations are negligible, as acidification of the fermentation broth occurs at a slow pace
at the relatively low cell densities encountered in MBR systems, intermittent carbon source
limitations that occur during sampling represent a greater problem for the microorganism’s
metabolic state. Therefore, it is desirable to minimize the number of samples taken for
at-line and offline measurements in MBR systems.

Soft sensors present a solution to the above-described challenge. These are model-
based systems designed to estimate relevant process variables in real time where physical
sensors cannot provide accurate online monitoring due to technical limitations. Soft
sensors can be subdivided in three categories: (a) mechanistic models [22], (b) statistical
models [23,24] and (c) hybrid models [25–27]. Below, we outline the differences between
these categories and explain our choice of the statistical model.

Mechanistic models, (a), are based on one or more equations derived from first princi-
ples that describe direct coherence between accessible process variables and estimated key
process variables [28,29]. The development of mechanistic models requires in-depth knowl-
edge of the relevant process and moderate understanding of supporting process variables.
Another approach to soft sensors, (b), is data-driven statistical modelling. These models
are fitted to historical data from previous experiments, which represent the past behavior
of the process. Statistical tools such as decision trees [30], multiple linear regression [31] or
artificial neural networks (ANNs) [32] can be applied to develop the underlying models for
soft sensors of this type. In comparison to mechanistic models, statistical models can detect
more complex process behaviors due to their adaptive nature and require fewer supporting
process variables. However, they require a sizable amount of historical experimental data
as well as in-depth knowledge on the development and evaluation of statistical models.

Hybrid models, (c), are a combination of mechanistic and statistical models. One
common approach to hybrid models is the development of sequential models where mech-
anistic models make initial estimations of intermediate process variables; these variables
are subsequently used as inputs for statistical models. Alternatively, the statistical model
may be used to produce intermediate estimates which can then be used in the mechanistic
model [33–35]. Parallel hybrid models consist of mechanistic and statistical models running
in parallel, with the joint output being the final estimation [36]. Mechanistic and hybrid
models have been used for the estimation of biomass during fermentation in previous
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studies [37–39]. However, these models relied on data generated through substrate quan-
tification or off-gas analysis, which (to date) is not available in most MBR systems. The
strength of MBR systems lies in the rapid generation of large quantities of experimental
data, which balances out one of the main drawbacks of statistical models: the requirement
of large datasets for model generation and evaluation. Therefore, statistical models are
an attractive choice for modelling bioprocesses in MBR systems.

One of the most powerful statistical models are ANN models, on which our soft sensor
is based (see Section 2). Interest in the field of ANNs surged in recent years; this can be
attributed to the availability of vast quantities of data, increased computational power
and improved training algorithms [40,41]. It has been shown multiple times that ANNs
represent one of the most powerful machine learning methods available, with applications
ranging from comparatively simple tasks such as speech [42] and image recognition [43]
to more complex tasks such as autonomous driving [44] as well as creative tasks such as
music composition [45]. We return to their operation in more detail in our methodology
section (Section 2); however, the basic principle behind ANNs is that a function is estimated
which links a set of specified inputs to a desired output by minimizing the functions´ error
via gradient descent optimization. Each training iteration during gradient descent consists
of an initial estimation of the target values and a subsequent update of the models´ weights
along the gradient of the error with respect to the weights [46].

The greatest challenge regarding the development of an OD soft sensor for high-
throughput MBR systems is that only a limited set of meaningful process parameters (such
as the base addition, carbon feed and inducer addition, as well as pH, temperature and
dissolved oxygen (DO)) is available as online parameters. Further, only a few of these
parameters are directly linked to the OD. The OD soft sensors presented in our study are
based on ANN models, these models having been successfully used to generate models
describing bioprocesses. For example, Zhu et al. (1996) used an ANN to predict lysine
production during a Brevibacterium flavum fermentation based on sugar consumption,
accumulated CO2 and the respiratory quotient [47]. Murugan and Natarajan developed an
ANN-based soft sensor that predicted the biomass based on pH, agitation speed, substrate
concentration and earlier biomass measurements [48]. However, the ANNs used in these
aforementioned studies used variables that require offline measurements for prediction.
Hence these models could not be used for fully automated real-time monitoring.

In contrast, Melcher et al. and Zhu et al. (2020) trained ANNs based purely on online
measurements [49,50]. These were designed for larger-scale processes where informative
variables stemming from, e.g., off-gas analysis or fluorescence spectroscopy, were available.
One of the challenges in this study, by comparison, was that these measurements were not
available for modelling. The overall aim of this study was therefore to develop an ANN-
based soft sensor for the real-time estimation of cell density in a high-throughput MBR
system. Studies describing the development of such soft sensors have not been published
to date.

Implementation of the presented OD soft sensor is expected to increase the overall
scalability and predictive power of fermentation conducted with MBR systems, by enabling
a reduction in physical OD measurements without significant information loss. Addi-
tionally, the OD soft sensor will improve online monitoring and enable OD-dependent
process control. We propose that the presented OD soft sensor can be applied to similar
MBR systems and provide significant benefits, particularly for MBR systems not capable of
glucose quantification or off-gas analysis.

2. Materials and Methods
2.1. High-Throughput-Microbioreactor System

The operating procedures of the MBR system developed and implemented at the
Boehringer Ingelheim Regional Center, Vienna will be discussed briefly in this article;
however, a detailed description can be found elsewhere [19]. The centerpiece of the MBR
system is a set of four fermentation blocks (bioREACTOR8; 2mag AG; Munich, Germany),
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each holding eight sterile single-use MBRs (Mini-Bioreactors HTBD LG1-PSt3 Hg; PreSens
GmbH, Regensburg, Germany) equipped with fluorometric sensor spots for online pH and
dissolved oxygen (DO) measurements, which are placed under a HEPA filter (BDK Luft-
und Reinraumtechnik, Sonnenbühl, Germany) to ensure sterile operation. The 32 single-use
15 mL bioreactors are equipped with fluorometric sensor spots for measuring DO and
pH [20]. The stirred MBRs are supplemented with essential fluids such as base, acid and
carbon source by a liquid-handling (LiHa) arm via a Tecan Freedom EVO 200 robotics
system (Tecan Group, Männerdorf, Switzerland). This robotics system is also responsible
for transporting microplates and deep-well plates between peripheral elements of the
MBR setup. Fully automated OD measurements for biomass quantification are performed
at-line by a microplate spectrophotometer (SPECTRAmax PLUS384; Molecular Devices
Corporation, San Jose, CA, USA). To measure the OD, samples are taken by the LiHa
robotic arm and subsequently 1:10, 1:50 and 1:200 dilutions are performed within a 96-well
microplate, which is then transported to a spectrophotometer (SPECTRAmax PLUS384;
Molecular Devices Corporation, San Jose, CA, USA) for the final OD quantification at
a wavelength of 550 nm. The relative standard deviation of the OD measurement was
determined to be 4.7% throughout the operating range. Samples taken for offline analysis,
mostly for titer quantification, are stored in a deep freezer at −20 ◦C (STR44-DF; Liconic
Instruments, Montabaur, Germany). The temperature of the MBRs is regulated with
a temperature-controlled water circuit that flows through the fermentation blocks. The DO
within the MBRs is regulated with a cascade controller, first varying the agitation rate from
1900 to 2800 RPM followed by oxygen supplementation to a maximum of 50% v/v.

2.2. Data Generation

To generate the diverse dataset required for the development of the ANN-based OD
soft senor, a design of experiments (DoE) case study with four different scFv-expressing
Escherichia coli (E. coli) BL21(DE3) strains was conducted. This allowed us to train and
validate the OD soft sensor on fermentations executed under varying process conditions.

The expression systems of strains 1–3 were genome-integrated, while the expression
system of strain 4 was plasmid-based. All strains contained the same IPTG inducible scFv
expression system, controlled by a T7 promotor and a lacI regulator. Additionally, strains
1 and 2 expressed different combinations of helper factors. The plasmids that encoded
the helper factor genes of strains 1 and 2 were induced with a second inducer (inducer 2;
compound name confidential).

A two-level, five-factor irregular-fraction design with 32 experiments and eight center
points was used for the initial parameter screening of strains 1 and 2. For strains 3 and
4, a two-level four-factor factorial design, also with 32 experiments and eight center-
points was used. The varied process parameters were temperature, pH, induction length,
IPTG concentration and in the case of strains 1 and 2, the inducer 2 concentration. The
temperature was varied in a range of 12 ◦C, the pH in a range of 1.2, the IPTG concentration
in a range of 400 µM and the induction length in a range of six hours. Design plans were
augmented for subsequent parameter optimization, which included duplicate face-centered
design points and six center points resulting in an additional 26 experiments for strains
1 and 2 and 22 experiments for strains 3 and 4. The generation of the design plans was
performed with DesignExpert 11 (Stat-Ease, Minneapolis, MN, USA).

All processes were conducted with chemically defined batch and feed medium. Once
the carbon source within the batch medium was exhausted, a feeding scheme was initiated
that consisted of a two hour long exponential feed phase, followed by a linear feed that
lasted until the end of the process. Four hours into the feed phase, the inducers were added
to the fermentation broth to initiate scFv and helper-factor production.

2.3. Data Processing and Model Development

An overview of the data processing and model development pipeline is given in the
form of a flowchart in Figure 1. The data generated with the MBR system was stored
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in a data warehouse and retrieved using InCyght software (Exputec, Vienna, Austria).
The data was then exported to Microsoft Excel (Microsoft, Redmond, WA, USA) and
finally imported to Python 3.7.5. (Python Software Foundation, Wilmington, NC, USA)
where all further data engineering and handling was performed. Numeric operations were
performed using Numpy 1.20.3 and pandas 1.1.2 [51,52]. All plots were generated with
matplotlib 3.3.1 [53].

Figure 1. Flowchart of the data processing and model development pipeline.

Interpolation was carried out for all parameters (pH, DO, temperature, addition of
base/acid, addition of carbon feed, addition of inducer, process volume, agitation rate, oxygen
flow and OD) to align the measurement frequency of the entire data set (e.g., pH measurements
were every five seconds, while OD measurements were hours apart). For all liquid additions
and the process volume, the last available value was propagated forward until the next
change of value. The pH, DO, temperature, agitation rate and oxygen flow were interpolated
linearly. Third order smoothing splines from SciPy 1.6.2 (scipy.interpolate.UnivariateSpline)
were chosen for the OD as individual measurements were hours apart, and the resulting
data followed a curvilinear relationship that cannot be described accurately with linear
interpolation [52,54,55]. The interpolated OD was taken as the best estimate of the OD without
additional physical measurements. Smoothing splines mitigate the influence of measurement
noise—with the exception of infeasible outliers—on the spline fit as they are not forced exactly
through the datapoints. Nevertheless, the quality of the OD interpolation was evaluated
by plotting the interpolated data together with the measured data, which was followed by
an analysis for feasibility. OD outliers were first identified by utilizing boxplots to compare
individual growth rates to the corresponding growth rate populations observed during
fermentations of the same strain and removed in case of unfeasibility. Fermentations where
the first or last OD measurements, or more than two others, were considered unfeasible, were
not used for modelling.

A set of up to 65 inputs was extracted from the process data for each 30 min period post-
induction to train the ANN models and estimate the OD during testing. The main inputs
utilized for estimation were the volume-specific cumulative ammonia and volume-specific
carbon feed additions at the time of estimation. As it was assumed that the past behavior of
the volume-specific cumulative ammonia addition contains valuable information, its value
at the end of each 30 min interval of the ten hours prior to each estimation point was used
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for modelling. Further, the volume-specific cumulative ammonia addition rates at each of
those timepoints were calculated and converted to inputs. Another input subset consisted
of DO-dependent parameters, such as the cumulative time, for which the DO was at 0%.

Cross-validation is an essential step in the development of ANN models as it reduces
overfitting, increases the model´s generalization capability, and ensures that the model
is capable of correctly estimating target values for unseen data. Therefore, inputs were
subdivided fermentation-wise into three different data sets of varying sizes:

(a) The training set contained 70% of all available fermentations and was used to fit the
ANN models;

(b) The validation set contained 15% of all available fermentations and was used to detect
overfitting, in which case model training was stopped;

(c) The test set contained 15% of all available fermentations and was used for model validation.

To ensure an even distribution of fermentations of similar OD characteristics, each fer-
mentation was first allocated into one of four groups based on the volume-specific cumulative
base addition (<0.06 µL ammonia/µL process volume, 0.06–0.07 µL/µL, 0.07–0.075 µL/µL and
>0.075 µL/µL) at the end of the process. The data was subsequently split from the four groups
into each of the three aforementioned subsets. The OD itself was not used as a splitting criterion,
as it is not a given that two processes with the same OD at the end of each process had similar
ODs throughout the process. In total, ten random data splits were performed. To ensure that all
model inputs were in the range between 0 and 1, min/max normalization was applied.

xscaled =
x − min(x)

max(x)− min(x)
(1)

To simulate the validation and test data being unknown, the maximum and minimum
values of each variable (x) were taken from training set data.

2.4. Artificial Neural Networks

All models investigated in this study are feed-forward ANNs. ANNs are machine
learning models that learn to estimate response y from input data X. They consist of
multiple hidden layers each containing a set of neurons. Each neuron computes a linear
combination z of n inputs xi, their corresponding weights wi and a bias b.

z =
n

∑
i=1

xiwi + b (2)

For the ANN to be able to learn non-linear correlations, a non-linear activation function
is used to transform z. In this study the leaky ReLU activation was used; however, other
activation functions such as sigmoid or hyperbolic tangent are also in common use. Leaky
ReLU is a linear function with an angle at the origin [56]. The degree of the angle is defined
by parameter α, where smaller values of α result in a more pronounced non-linearity. The
leaky ReLU function is shown in Equation (3).

f (z) = max(αz, z) (3)

The transformed output of each neuron is then forwarded to the next hidden layer.
ANNs are trained by updating the model weights to reduce the model loss L. This is
achieved via gradient descent, where the weights are changed in the opposite direction of
the gradient of the weights with respect to L scaled by the learning rate λ.

wt+1 = wt − λ
∂L
∂wt

(4)
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The most common losses used for regression problems are the mean squared er-
ror (MSE) and the root mean squared error (RMSE), the latter of which is defined by
Equation (5), where ŷ is the ANN prediction.

L = RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

To prevent the ANN from overfitting, L is repeatedly evaluated on the validation
set. An increasing validation loss is an indicator of overfitting, at which point training is
stopped. This process is commonly referred to as early stopping. It is common practice
to initialize ANN weights randomly at the beginning of training. Various strategies for
initializing the weights have emerged over the years [57]. Most initializers sample from
either a normal or uniform distribution. The initializer used in this study samples from
a normal distribution for each layer with mean zero and a variance of 2

f anin
where f anin is

the number of each layer´s inputs.
All ANN models were generated using Google’s Tensorflow 2.5.0. (Google, Mountain

View, CA, USA) Python library [58]. The model hyperparameters were optimized using
a Python script that compared the accuracies of models trained with multiple hyperpa-
rameter combinations. This process is represented by the loop in Figure 1, and a more
detailed description of the algorithm can be found in Appendix A. An overview of the final
hyperparameters is presented in Table 1. For model selection, 100 models were trained
using the optimized set of hyperparameters. The model that resulted in the smallest MSE
for the validation set and the smallest sum of the MSEs for the training and validation sets
was picked for further analysis.

Table 1. Parameters of the ANNs used in this study. The final parameters and values were derived
through multiple rounds of iterative testing (see Appendix A).

Parameter Value/Type

Architecture Feed-forward neural network
Number of hidden layers 3

Number of neurons of input and
hidden layers 40

Activation function for all neurons Leaky ReLU (α = 0.2) [56]
Loss metric MSE

Optimization algorithm Nesterov-accelerated
Adaptive moment estimation [59]

Learning rate 0.00015
Beta 1 0.9
Beta 2 0.999

Batch size 32
Maximum number of epochs 1000

Number of epochs Determined by early stopping
Early stopping metric Validation loss

Patience 30 epochs
Initializer He normal [60]

3. Results
3.1. Overview of the Data

For the generation of robust probabilistic models, it is essential that a broad feature
space of both the estimated variable as well as the covariates is encapsulated within the
dataset. Therefore, a five-factor DoE study was performed with variations in temperature, pH,
induction length and the inducer concentration of two different inducers. In the following, we
present an overview of the data this study yielded, and our analysis of these data.

The interpolated OD time-series data of all experiments used for model generation are
visualized in Figure A1. Strains 1 and 3 had the most similar growth characteristics with
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the bacteria entering a stationary phase or decline phase between 27 and 30 h of process
time in most experiments. In the case of strain 2, the biomass generally increased linearly
until the end of the bioprocess. In contrast, strain 4 generally did not grow as well as the
other strains, as the beginning of the decline phase was frequently reached between 22 and
25 h of process time. The different growth characteristic of strain 4 can be attributed to
the plasmid-based expression system. The batch phase in experiments of strain 4 was also
usually approximately two hours shorter than that of the other strains.

Fundamental descriptive statistics of the final OD values for each strain are summa-
rized in Table 2. Comparing the mean, standard deviation, 75% and 25% quartiles, and
maximum and minimum of the distributions of the final OD of strains 1 and 3 further
underlines their similarity. The overall observed maximum of the final OD was 79.1 and
the minimum was 21.3, which shows that the different process conditions combined with
the use of different strains resulted in different growth behaviors. Therefore, an OD soft
sensor that can estimate the OD for this dataset accurately can be considered robust due to
the broad feature space encountered in this dataset.

Table 2. Descriptive statistics of the final OD. The population mean, 1. and 3. Quartiles, maxi-
mum and minimum were calculated for each strain. Strains 1 and 3 had similar growth behavior,
whereas fermentations with strain 2 generally resulted in the highest and strain 4 in the least biomass
accumulation. All values were calculated using the set of final OD values.

Strain Mean OD 1. Quartile 3. Quartile Maximum Minimum

Strain 1 55.6 ± 6.7 52.8 59.8 71.2 30.8
Strain 2 65.6 ± 6.6 61.8 70.0 79.1 48.2
Strain 3 53.4 ± 8.3 50.5 59.0 66.8 31.6
Strain 4 35.5 ± 11.8 26.9 41.4 65.5 21.3

To gain insight into the biologically and methodologically induced variation of the
OD, center-point experiments of the DoE study—which had identical process parameter
set points—were analyzed and compared with one other. Additionally, the variation of the
cumulative base addition was investigated in comparison with the variation of the OD.
Similarities between these quantities would indicate that the variation of the OD was not
an artefact due to measurement errors, but that individual experiments resulted in different
growth behaviors. Furthermore, the cumulative base addition was of particular interest,
as this covariate has previously been shown to be strongly correlated to the biomass, and
variations of the cumulative base addition between runs might therefore explain observed
differences in the measured OD.

As the measured OD at induction was used as a model input and designed to predict
the OD exclusively during the induction phase, only the variation of the OD and cumulative
base addition during the induction phase were of interest. To analyze these variations,
initial measurements were aligned at the origin in order to remove variation developing
pre-induction. For this purpose, the OD value and time at the first measurement was
subtracted from all data points of the respective experiment. The cumulative base addition
was likewise aligned to the initial OD measurement. The aligned data are visualized in
Figure 2 and the standard deviations of the OD and the cumulative base additions at the
time of the measurements are summarized in Table 3. The standard deviations of both the
OD and the cumulative base addition generally increased over time, with the exception
of the standard deviation of the OD of strain 2. The standard deviations for all strains
fall within the expected range; differences can be explained by measurement inaccuracies,
biological variation and process variation stemming from the HT-MBR system.
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Figure 2. Visualization of the aligned time-series data of the OD and cumulative base addition of the
center point experiments of strain 1 (A,B), strain 2 (C,D), strain 3 (E,F) and strain 4 (G,H), respectively.
For plots (A,C,E,G), the area in dark blue indicates the standard deviation and the light blue area
the tolerance interval. The mean for all plots is indicated as a red line. Individual measurements are
marked by blue plus signs.

Table 3. Summary of the normalized standard deviations of the OD and the cumulative base additions
of replicate experiments of each strain. The standard deviation at the first measurement is zero, as
the data was aligned to start at the origin. In general, the standard deviation of the cumulative base
addition increased together with the standard deviation of the OD.

Strain Type
Normalized Standard Deviation at Measurement

# 1 [%] # 2 [%] # 3 [%] # 4 [%] # 5 [%]

Strain 1 OD 0 5.03 6.93 6.75 11.44
Cumulative base addition 0 3.59 3.88 3.47 9.49

Strain 2 OD 0 10.32 7.30 8.03 7.33
Cumulative base addition 0 2.28 3.74 5.36 5.29

Strain 3 OD 0 7.42 5.67 8.23 10.56
Cumulative base addition 0 2.37 2.53 2.07 9.69

Strain 4 OD 0 9.38 7.46 11.39 8.74
Cumulative base addition 0 4.22 2.58 8.96 5.53
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3.2. OD Soft Sensor Performance

Initially, four ANN models were trained: one model for each of the four strains,
and one single ANN model trained on the entire dataset. Some expected advantages of
a multi-strain model include: (a) significant reduction in the development time for model
generation; (b) reduction in complexity of the final soft sensor, avoiding the requirement to
switch between strain-specific models; (c) expansion of the variable space of the models;
and (d) greater ease in capturing strain independent growth characteristics, given the
availability of more training data.

The average normalized RMSE-based accuracy of the strain-specific ANN models on
the respective test sets was 94.34%. A more detailed performance summary of the strain-
specific models can be found in Table A1. Before the single model for all strains was trained,
strain identification parameters were added to the data inputs using one-hot encoding.
This modification, allowing the model to distinguish between the different strains, was
beneficial in improving model accuracy given the different growth characteristics of the
strains. The combined model resulted in an accuracy of 95.14%, surpassing the previous
benchmark of the four individual models. The standard deviation of the OD measurement
of 4.7% placed a limit on maximal achievable accuracy; further model improvements were
therefore not readily attainable beyond this point. It could be reasonably expected that
the performance gain of combined models compared to individual models would be more
pronounced for smaller datasets.

Additional performance indicators of the combined OD soft sensor are presented in Table 4.
The spread in the RMSE between the training and test sets was minor, and therefore overfitting
was not considered to be an issue. Additionally, the percentage of estimations within the
tolerance interval of the measured OD values of one standard deviation (σ) and two standard
deviations (2σ) were calculated to gain insight into the distribution of the prediction errors. The
accuracy achieved by the combined model can be viewed as an excellent result.

Table 4. Performance indicators for the combined OD soft sensor for all four strains.

Set RMSE Accuracy 1 [%] Estimations within σ [%] Estimations within 2σ [%]

Training 2.97 96.60 75.21 93.35
Validation 3.07 94.69 56.80 85.20

Test 2.81 95.14 57.96 89.39
1 Based on the NRMSE.

3.3. Generalized OD Soft Sensor

While the models described earlier are capable of estimating the OD of different strains
accurately, they rely on training data of all four strains as well as on strain identification
markers. Therefore, the model is not capable of estimating the OD for unknown strains
during de novo fermentations. To remedy this shortcoming, a generalized OD soft sensor
was developed that can estimate the OD during de novo fermentations.

To generate the generalized OD soft sensor, the strain identification markers were removed
and ANN models were trained on data only of specific strains. The resulting models were then
tested using external test sets, which included fermentation data generated during processes
of the other remaining strains, which means that the models had to estimate the OD for
fermentations of previously unseen strains. In total, three models were generated and tested in
this way. The first model, which will be referred to as model 2, was trained on data of strain
2 and tested using data of strains 1, 3 and 4. Model 24 was trained on data of strains 2 and 4,
and tested on data of strains 1 and 3, and model 124 was trained on data of strains 1, 2 and
4, and tested on data of strain 3. The data from fermentations of strain 2 was included in all
models as strain 2 behaved in the most predictable manner as decline phases rarely occurred.
Fermentations with strain 2 resulted in the highest final OD values. For model 24, data from
fermentations of strain 4 was also added, as strain 4 showed the most non-linear behavior and
resulted in the lowest final OD values. Therefore, the whole variable space was mostly covered
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with these two strains. Finally, to train model 124, data of fermentations of strain 1 were added.
The performance indicators of all three models are presented in Table 5. The accuracy for the
external test set increased with the number of strains that were used for training.

Table 5. Summary of the performance indicators for model 2, model 24 and model 124.

Model Set RMSE Accuracy 1 [%] Estimations within σ [%] Estimations within 2σ [%]

Model 2 Training 2.73 94.93 60.19 93.10
Validation 3.03 94.38 50.40 82.40

Test 3.04 94.36 54.40 88.80
External Test 7.82 84.32 25.63 51.04

Model 24 Training 2.68 95.17 60.25 91.16
Validation 3.17 94.29 57.23 83.19

Test 3.26 94.17 50.84 83.12
External Test 5.01 89.36 42.72 70.01

Model 124 Training 2.43 95.79 65.40 93.06
Validation 2.96 94.88 57.35 88.34

Test 2.76 95.22 59.25 88.26
External Test 3.63 91.37 47.41 80.31

1 Based on the NRMSE.

All three models achieved both an overall accuracy and an accuracy for the test set of
above 94% for the strains they were trained on. The accuracy for the external test set was
unsatisfactorily low with 84.32% for the simplest model; however, the accuracy increased
substantially with additional training data of the other strains, reaching an accuracy of
91.37% for the external test set of model 124. The progression of the model estimation
capabilities, based on two example experiments of strain 3 with different growth profiles,
is shown in Figure 3.

Figure 3. Progression of the generalized model estimates based on two examples of strain 3 (A–C) and
(D–F).

In the first example shown in Figure 3A–C, model 2 incorrectly estimated an OD increase
throughout the process. This was most likely due to the rare increases in OD in the training
set of model 2. In contrast, model 24 identified the OD decrease and model 124 replicated
the OD accurately. Similarly, in the second example illustrated in Figure 3D–F, model 2
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underestimated the OD throughout the process, whilst the expansion of the training set for
model 24 as well as model 124 refined the model estimations further.

The evidence presented in Table 5 and Figure 3 suggests that the OD soft sensor is
capable of estimating the OD for unknown strains of appropriate similarity with acceptable
accuracy. One can only expect a similar generalization performance when the variable space
is covered by the training data and the models perform well on the strains in the training data.
Therefore, the model is not expected to yield accurate results for highly dissimilar fermentation
processes, such as yeast fermentations. However, it can be assumed that the estimation quality
for unknown strains will continue to increase with the number of different strains included
within the training set. As the database of processes increases over time, retraining will lead
to more accurate models, which have improved generalization capabilities.

3.4. Information Retention for Processes with Fewer Measurements

In order to evaluate the soft sensor under post-implementation conditions, where fewer
OD measurements will be taken, eight fermentation runs were performed for all four strains.
Process parameter set points were identical to the ones used for the center point experiments
of the DoE study, and only three OD measurements were taken. The data were subsequently
used to evaluate the OD soft sensor, which resulted in a RMSE of 3.88 and a NRMSE-based
accuracy of 92.27%. 45.20% of estimations were within σ and 74.60% were within 2σ.

Upon initial examination, the estimation performance may appear worse when com-
pared to the estimation performance for fermentations with five OD measurements. How-
ever, the performance evaluation was assessed using OD values derived from spline
interpolation. As fewer OD measurements were taken, the spline interpolations have most
likely underfitted the true OD, since peaks that occurred between measurements, were not
captured correctly. This behavior was most pronounced for strain 3, where a peak that
typically occurred at 30 h was missed when applying the measurement regime with only
three measurements, which can clearly be seen in Figure 4.

Figure 4. Comparison of OD trends of fermentations with identical process conditions with five OD
measurements (A) and fermentations with three OD measurements (B) of strain 2.

In order to determine whether or not the soft sensor could identify these missed peaks,
the three measured OD values obtained from experiments with the sparse measurement
regime, the corresponding OD soft sensor estimates and the average OD of each measure-
ment performed during the respective experiments with five OD measurements, were
compared (Figure 5). When analyzing the soft sensor estimates for strain 3 (Figure 5C),
it can be seen that the soft sensor estimated the peak that was typically observed at 30 h
during fermentations with five OD measurements correctly. A similar yet less pronounced
behavior was observed for strain 1 (Figure 5A). The model underestimated the OD for
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fermentations with strain 2 (Figure 5B). The soft sensor was capable of estimating challeng-
ing, highly non-linear fermentations with strain 4, where the OD dropped significantly
(Figure 5D). It should also be noted that the interpolated OD may not have described the
true OD correctly, aside from the missed peak, as the quality of the spline interpolation
probably suffered due to the reduction in available data points.

Figure 5. Simulations of the generalized OD soft sensor for fermentations during which three OD
measurements were conducted. The measured ODs for specific experiments are shown together with
the model estimates for that experiment and the average measured ODs of experiments with identical
process parameter set points where five measurements were taken. One representative simulation is
presented each for (A) strain 1, (B) strain 2, (C) strain 3 and (D) strain 4.

In summary, the examples presented indicate that the soft sensor could correctly
estimate the OD of four different scFv-expressing E. coli strains with different growth
characteristics ranging from linear to moderately and highly non-linear growth. As the
OD soft sensor was capable of achieving accuracies of over 92% (which is assumed to
be an underestimation of the true accuracy due to underfitting of the interpolated OD) it
can be concluded that the presented OD soft sensor provides a viable alternative to the
previously employed measurement scheme with five OD measurements.

4. Discussion

This study has demonstrated the utility of ANNs in the development of a soft sensor to
estimate the OD during E. coli fermentations conducted in a high-throughput MBR system
with strains of varying growth characteristics in real time. A generalized OD soft sensor was
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developed that was able to estimate the OD of unknown strains with an accuracy of >91%,
and scaled with the number of strains within the training set. For this reason, we expect the
estimation quality to increase with the growth of databases. Finally, the OD soft sensor was
tested on fermentations during which a reduced number of physical OD measurements
were executed. An accuracy of over 92% was achieved, which was comparable to the 95%
achieved on the initial test data. However, as OD peaks were missed during experiments
taking only three measurements; the interpolated OD failed to accurately represent the true
OD, resulting in an underestimation of the soft sensor accuracy.

Implementation of the presented OD soft sensor would enable model-based predictive
control and allow for a reduction in OD measurements. This can be reasonably expected to
improve the overall meaningfulness and scalability of data generated with MBR systems. It
must be mentioned that the model should be validated repeatedly post-implementation to
ensure that potential distributional shifts within the data do not affect its performance. In
the case that performance does suffer, the model must be retrained. In a similar spirit, the
model should also be retrained when data from other cellular hosts expressing different
products are generated, to expand its capabilities continuously. Over time the model will
then also learn to predict the OD under these process conditions. Therefore, we want to
emphasize the importance of proper data management, which is essential for time-efficient
model retraining. Additionally, there is clear ground for future research to adapt the OD
soft sensor to estimate other performance variables (e.g., product titer) and test this on
different MBR systems.

Although the models already performed well in various settings, it is theoretically
possible that further attempts to improve performance might arise from more rigorous
input variable selection. It would also be interesting to investigate whether expanding the
model to include a mechanistic part could further improve its performance. This, however,
poses a significant challenge, as hybrid models require the construction of material balances
that usually rely on off-gas analysis, which is not performed in the current iteration of the
HT-MBR system used in this study. Another approach to improving the model could be
to use ensembles of multiple different machine learning models. It must be kept in mind,
however, that this would also increase the resources required for retraining the model. One
might also consider improving the explainability of the model by applying methodologies
such as the permutation feature importance, Shapley Additive exPlanations or partial
dependence plots [61–64].

5. Conclusions

In this article, we have shown that an ANN-based soft sensor is capable of estimating (to
a high level of accuracy) the OD during E. coli fermentations in an HT-MBR system. This is
an important finding, as it has not previously been clear that a soft sensor could provide accurate
real-time OD estimations without informative state variables stemming from, e.g., substrate
quantification or off-gas analysis, typically available for fermentations of lager scales. Implemen-
tation of the presented OD soft sensor does not only lay the foundation for the development
of model-based process control, but also reduces the workload of the LiHa arm of HT-MBR
systems. This is expected to impact the meaningfulness of small-scale fermentations conducted
with the HT-MBR system positively, as the LiHa need not then queue other important tasks
such as carbon feed or base addition. Furthermore, we have successfully demonstrated the
generalization capabilities of the soft sensor scale with a number of different production strains;
we have discussed in brief the importance of model retraining post-implementation. Ultimately,
our findings represent a crucial step towards accelerated process development of recombinant
protein production.
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Appendix A

An iterative grid search approach was performed for hyperparameter optimization.
At first, the parameters to be investigated were defined: the number of layers; the number
of neurons per layer; the learning rate; the activation function; the optimizer; the initial-
ization scheme; the patience for early stopping; the use of dropout layers with different
dropout ratios; and application of the L1 and L2 loss. Then a simple model (few layers and
neurons) that correctly converged was trained. This model laid the foundation for further
optimization. For each optimization step, a set of hyperparameters was defined and the
accuracy of models trained by applying each hyperparameter combination within this set
was compared. A model´s accuracy was evaluated using nested cross-validation, meaning
that its accuracy was not assessed against the original test set, but against an additional
validation set that consisted of 10% of the training set. This additional validation set was
not used to train models. Ten models were trained for each hyperparameter combination
to improve stability. This was necessary as random model initialization leads to models
converging differently. To avoid overfitting, each hyperparameter combination was eval-
uated on all ten data splits and the combination resulting in the highest overall accuracy
was considered optimal. The number of hyperparameters in each set was limited to ten as
the number of possible combinations, n, scaled with 2n. The next set of hyperparameters
was then chosen based on the results of the previous optimization step. This process was
repeated until no further accuracy improvement was identified.

Appendix B

Figure A1. Visualization of the OD against time of (A) strain 1, (B) strain 2, (C) strain 3 and (D) strain
4. Each line indicates a different fermentation.
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Appendix C

Table A1. Summary of the performance indicators for the strain-specific models.

Strain Set RMSE Accuracy1 [%] Estimations within σ [%] Estimations within 2σ [%]

Strain 1 Training 2.70 94.18 64.22 91.37
Validation 2.01 95.68 71.60 93.20

Test 2.09 95.50 68.00 96.80

Strain 2 Training 3.57 93.38 55.25 83.40
Validation 3.50 93.50 36.80 80.80

Test 2.96 94.52 47.79 87.55

Strain 3 Training 2.51 94.03 56.74 95.98
Validation 2.28 94.58 67.06 96.76

Test 2.45 94.17 67.06 94.05

Strain 4 Training 2.20 94.95 65.49 89.16
Validation 2.79 93.59 50.90 78.37

Test 2.97 93.16 53.85 76.92
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