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Abstract: To improve the identification accuracy of gas pipeline leakage and reduce the false alarm
rate, a pipeline leakage detection method based on improved uniform-phase local characteristic-
scale decomposition (IUPLCD) and grid search algorithm-optimized twin-bounded support vector
machine (GS-TBSVM) was proposed. First, the signal was decomposed into several intrinsic scale
components (ISC) by the UPLCD algorithm. Then, the signal reconstruction process of UPLCD was
optimized and improved according to the energy and standard deviation of the amplitude of each
ISC, the ISC components dominated by the signal were selected for signal reconstruction, and the
denoised signal was obtained. Finally, the TBSVM was optimized using a grid search algorithm, and
a GS-TBSVM model for pipeline leakage identification was constructed. The input of the GS-TBSVM
model was the data processed by the IUPLCD algorithm, and the output was the real-time working
conditions of the gas pipeline. The experimental results show that IUPLCD can effectively filter the
noise in the signal and GS-TBSVM can accurately judge the working conditions of the gas pipeline,
with a maximum identification accuracy of 98.4%.

Keywords: leak detection; grid search method (GS); twin-bounded support vector machine (TBSVM);
gas pipeline

1. Introduction

Oil/gas pipelines are the arteries of industrial development, shouldering the task
of transporting oil, gas, and other energy to refineries [1]. Oil and gas pipelines are
complicated along the line, and most of them are laid in wild or remote places, and
the laying environments are rather harsh. Therefore, the pipelines are prone to leakage.
Natural gas is flammable and explosive [2,3], so once it leaks, it may cause accidents such
as explosions. Therefore, leak detection of pipelines is important in pipeline operation
management [4,5].

At present, there are many methods for pipeline leakage detection. According to
the current application situation, it can be divided into non-acoustic detection methods
and acoustic detection methods [6,7]. The acoustic method has the advantages of high
detection accuracy and low false alarm rate [8]. However, the acoustic wave is easily
disturbed by the environment during its propagation in the pipeline, which makes the
acoustic signal contain considerable noise [9,10], thus reducing the accuracy of leakage
identification. Therefore, it is particularly important to denoise acoustic signals. Meng
proposed a denoising method combining ensemble empirical mode decomposition (EEMD)
with cross-spectrum analysis, which improved the reconstruction process of the EEMD
algorithm, so that the reconstructed signal contained more leakage information and effec-
tively reduced the noise content [11]. Shi et al. improved the local mean decomposition
(LMD) denoising method. First, the effective component reconstruction signal is obtained
by the peak value obtained by signal correlation analysis. Then, the wavelet analysis is used
to further filter out the noise. This method can filter out most of the noise in the signal, but
there is still residual noise in the denoised signal [12]. Li et al. adopted a combined noise
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reduction method based on cross-spectral analysis and independent component analysis
(ICA) to optimize complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN). Intrinsic mode function (IMF) components were filtered by the obtained
characteristic frequency band and effective amplitude ratio [13].

The twin support vector machine (TWSVM) is one of the most classic and popular
classification models, but it has some problems, such as slow training speed and low
classification accuracy, when dealing with multiclassification problems [14,15]. TBSVM is
improved on the basis of TWSVM. Compared with TWSVM, TBSVM has a faster training
speed and higher accuracy. Lang input the processed signal into a least square twin support
vector machine (LSTSVM) to identify the pipeline leakage, and the identification accuracy
of the model was obviously improved, which could identify the pipeline leakage more
accurately [16]. Kang used a convolution neural network and support vector machine (SVM)
to identify pipeline leakage, which could accurately judge pipeline leakage. However, the
calculation of this method is complicated and the running time is long [17].

To improve the accuracy of pipeline leakage identification, this paper proposes a
gas pipeline leakage detection method based on the IUPLCD denoising algorithm and
GS-TBSVM model. Acoustic waves often contain noise, which affects their recognition
accuracy. In this paper, the IUPLCD denoising algorithm is used to denoise acoustic signals.
The noise content in the denoised signal is extremely low, and the original information is
retained to a great extent. In addition, according to the grid search algorithm and TBSVM,
the GS-TBSVM model is established to identify the working conditions of gas pipelines. By
inputting the data after noise reduction into the model, the leakage of the gas pipeline can
be accurately identified, and the false alarm of the system can be effectively reduced.

The rest of the paper is arranged as follows: In Section 2, a signal denoising algorithm
based on IUPLCD is proposed. In Section 3, the GS-TBSVM model is constructed to identify
the leakage of gas pipelines. In Section 4, the experimental analysis is carried out. Finally,
the conclusion of this paper is provided in Section 5.

2. Improved Uniform-Phase Local Characteristic-Scale Decomposition
2.1. Uniform-Phase Local Characteristic-Scale Decomposition

Compared with empirical mode decomposition (EMD), local characteristic-scale de-
composition (LCD) has better performance, and it can effectively reduce the envelope
fitting error and endpoint effect [18]. However, LCD can not completely eliminate modal
aliasing. UPLCD adds a narrow-band cosine signal with a uniform phase change to the
signal to be decomposed, which uniformizes the distribution of each extreme point, thus
achieving the effect of eliminating modal aliasing [19]. UPLCD is decomposed, as follows:

(1) calculate the cycle period Tc and the times nisc of the decomposition algorithm.

nisc = log2(l) (1)

Tc = 2m, m = 1 : nisc (2)

where l is the length of the data, and the frequency f can be obtained according to
the period, f = 1/Tc. According to the actual situation of the signal, the value of
amplitude ε and the number of phases np are set.

(2) Let x(t) = r0(t), w(t; εc; fc; θk) be a narrow-wave cosine signal and there are:

w(t; εc; fc; θk) = εc · cos(2π · fc · t + θk) (3)

εc = ε · rm−1(t) (4)

θk = 2π(k− 1)/np (5)

where, rm−1(t) is the standard deviation and θk is the phase of the signal.
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(3) The i-th ISC component obtained by LCD decomposition is represented by Li(·), and
the first component obtained by LCD decomposition is:

cm,k(t) = L1(x(t) + w(t; εc; fc; θk))
k = 1, 2, · · ·, np; m = 1 : nisc

(6)

ISC1 = (
np

∑
k=1

cm,k(t)−w(t; εc; fc; θk))/np (7)

where, cm,k(t) is the signal to be decomposed after adding narrow-wave cosine signal,
and ISC1 is the first ISC component.

(4) Subtract the obtained ISC1 component from the source signal x(t); use the remaining
signal as the new source signal ri(t); and repeat the above steps to obtain all ISC
components until all ISC components are decomposed; stop the cycle and rnisc(t) is
the residual term.

2.2. Improved Uniform-Phase Local Characteristic-Scale Decomposition

Although the performance of UPLCD is much better than that of LCD, there is no
change in signal reconstruction rules. Similar to LCD, UPLCD does not have a signal
reconstruction principle, but all ISC components are used for signal reconstruction, which
will lead to some ISC components with more noise being used for reconstruction, resulting
in some noise in the reconstructed signal. In this paper, the energy of ISC components
and the standard deviation of amplitude after Fourier spectrum analysis are used as the
selection criteria of ISC, and more components containing useful information are screened
out from all ISC components.

The ISC component contains both useful information and useless information (such as
noise signals). The ISC component with a large proportion of information is called the noise-
dominant component, and the ISC component with a large proportion of useful signals is
called the signal-dominant component. In the energy curve of the ISC component, the first
extreme point is critical for distinguishing whether the ISC component is dominated by
noise or is a useful signal [20]. That is, all components before (including) the critical point
of the energy curve are noise-dominated components, and those after the critical point are
signal-dominated components. The energy of the ISC component can be obtained by the
following equation:

ei =
M
∑

j=1
ISC2

i (t)

i = 1, 2, · · ·, n + 1
(8)

where, ei is the energy of the i-th ISC component, and M is the length of the sequence.
Standard deviation (STD) is the arithmetic square root of variance, which can reflect

the dispersion degree of a data set, and compared with variance, standard deviation can
intuitively reflect the deviation degree of the data set [21]. Fourier transform is carried
out on several ISC components obtained by signal UPLCD decomposition. Among the
obtained spectrograms, the spectrogram dominated by useless signals is more complicated.
At this point, the standard deviation can be used to measure the dispersion of the data
set. The standard deviation of data with more useful information is smaller, and that of
a data set with more useless information is significantly higher than that of a data set
with more useful information. Therefore, the standard deviation can be used to screen
out ISC components with more leakage information. The calculation equation of standard
deviation is as follows:

S =

√√√√√ N
∑

i=1
(Xi − X)

2

N
(9)
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where Xi is the sample value of the data set, X is the average of all sample values, and N is
the number of sample values.

Because UPLCD doesn’t give a reasonable screening principle for ISC components,
this paper makes a screening criterion to optimize and improve it, and screens out the
effective ISC components. The steps of IUPEMD are as follows:

(1) First, the original signal is decomposed by UPLCD algorithm to obtain several ISC
components.

(2) The energy of each ISC component is calculated, the energy curve of each component
is obtained, and the first extreme point of the energy curve is determined.

(3) Fourier transform is carried out on each ISC component, and then the amplitude of
each ISC component is normalized, and then the standard deviation is obtained using
Equation (9).

(4) According to the energy value and the standard deviation of the amplitude of the ISC
components, the ISC components dominated by the signal are screened out, and the
ISC components satisfying the above two conditions are used for signal reconstruction.
The reconstructed signal is the denoised signal. The flow chart is shown in Figure 1.

Processes 2023, 11, 278 4 of 14 
 

 

useful information. Therefore, the standard deviation can be used to screen out ISC com-
ponents with more leakage information. The calculation equation of standard deviation is 
as follows: 

2

1
( )

N

i
i
X X

S
N

=

−
=


 

(9)

where iX  is the sample value of the data set, X  is the average of all sample values, and 
N is the number of sample values. 

Because UPLCD doesn’t give a reasonable screening principle for ISC components, 
this paper makes a screening criterion to optimize and improve it, and screens out the 
effective ISC components. The steps of IUPEMD are as follows: 
(1) First, the original signal is decomposed by UPLCD algorithm to obtain several ISC 

components. 
(2) The energy of each ISC component is calculated, the energy curve of each component 

is obtained, and the first extreme point of the energy curve is determined. 
(3) Fourier transform is carried out on each ISC component, and then the amplitude of 

each ISC component is normalized, and then the standard deviation is obtained using 
Eq. (9). 

(4) According to the energy value and the standard deviation of the amplitude of the ISC 
components, the ISC components dominated by the signal are screened out, and the 
ISC components satisfying the above two conditions are used for signal reconstruc-
tion. The reconstructed signal is the denoised signal. The flow chart is shown in Fig-
ure 1. 

 
Figure 1. Denoising process of the signal. 

  

Acoustic signal

The signal is decomposed by 
UPLCD to obtain multiple 

ISC components.

Fourier transform is performed 
on ISC components, and the 

standard deviation of 
amplitude is calculated.

Calculate the energy value 
of each ISC component 

and draw the energy curve.

ISC components that meet the 
above two screening requirements 
are used for signal reconstruction.

Denoised 
acoustic signal

According to the standard 
deviation of amplitude, the 
ISC component dominated 

by signal is determined.

Determine the ISC 
component dominated by 
the signal according to the 
first extreme point of the 

energy curve.

Figure 1. Denoising process of the signal.

3. Grid Search Algorithm-Optimized Twin-Bounded Support Vector Machine
3.1. Twin-Bounded Support Vector Machine

TBSVM is an improvement of TWSVM, which uses successive over-relaxation technol-
ogy to increase the training speed. In addition, TBSVM adopts the principle of structural
risk minimization, which makes it superior to TWSVM in classification accuracy and calcu-
lation time. Similar to TWSVM, TBSVM finds two non-parallel decision hyperplanes to
classify and judge the input data. The optimization problems of the linear TBSVM are as
follows [22]:

min
w1,b1,ζ,ξ∗

1
2 c3(||w1||2 + b2

1) +
1
2 ξ∗Tξ∗ + c1eT

2 ξ

s.t. Aw1 + e1b1 = ξ∗

−(Bw1 + e2b1) + ξ > e2, ξ ≥ 0

(10)
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min
w2,b1,η,η∗

1
2 c4(||w2||2 + b2

2) +
1
2 η∗Tη∗ + c2eT

1 η

s.t. Bw2 + e2b2 = η∗

(Aw2 + e1b2) + η > e1, η ≥ 0

(11)

where c1, c2, c3, c4 is the penalty parameter. e1 and e2 are column vectors with two con-
stituent elements of 1, ξ and η are relaxation variables that control the tolerance-to-noise
ratio.

It can be obtained from Equations (10) and (11) that the constraint of one objective
function is determined by the mode of the other objective function, and the two hyperplanes
are mutually restricted. In the linear state, the Lagrange dual formula of TBSVM is:

L(w1, b1, ξ, α, β) = 1
2 c3(||w1||2 + b2

1) +
1
2‖Aw1 + e1b1‖2

+c1eT
2 ξ + αT(Bw1 + e2b1 − ξ + e2)− βTξ

(12)

From the above, it can be concluded that under the linear condition, in order to have
the optimal solution to the linear programming problem, the dual problem can be obtained
from the KKT condition, as follows:

min
α

eT
2 α− 1

2 αTG(HT H + c3 I)−1GTα

s.t. 0 ≤ α ≤ c1
(13)

min
γ

eT
1 γ− 1

2 γT H(GTG + c4 I)−1HTγ

s.t. 0 ≤ γ ≤ c2

(14)

When a new sample input is to be determined, the linear TBSVM can determine the
label to which the sample belongs, according to the following formula:

Class i = argmin
k=1,2

∣∣(wT
k · x) + bk

∣∣
‖wk‖

(15)

When the data are linearly indivisible in low-dimensional space, SVM maps it to high-
dimensional space by a kernel function, and then classifies the data. Like SVM, TBSVM
uses a kernel function to map data, and then uses a linear method to classify data. With the
introduction of the kernel function, the two hyperplanes of TBSVM can be expressed as:

K(xT , CT)u1 + b1 = 0
K(xT , CT)u2 + b2 = 0

(16)

The optimization problems of the nonlinear TBSVM are as follows:

min
u1,b1,ζ,ξ∗

1
2 c3(||u1||2 + b2

1) +
1
2 ξ∗Tξ∗ + c1eT

2 ξ

s.t. K(A, CT)u1 + e1b1 = ξ∗

−(K(B, CT)u1 + e2b1) + ξ > e2, ξ ≥ 0

(17)

min
u2,b2,η,η∗

1
2 c4(||u2||2 + b2

2) +
1
2 η∗Tη∗ + c2eT

1 η

s.t. K(B, CT)u2 + e2b2 = η∗

−(K(A, CT)u2 + e1b2) + η > e1, η ≥ 0

(18)

At this point, define:
S = [K(A, CT)e1]
R = [K(B, CT)e2]

(19)
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The Lagrange dual problem corresponding to TBSVM can be obtained as follows:

min
α

eT
2 α− 1

2 αT R(SST + c3 I)−1RTα

s.t. 0 ≤ α ≤ c1
(20)

min
γ

eT
1 γ− 1

2 γTS(RRT + c4 I)−1STγ

s.t. 0 ≤ γ ≤ c2

(21)

At this time, when a new sample is to be input, the nonlinear TBSVM can judge the
label to which the sample belongs according to the following formula:

Class i = argmin
k=1,2

∣∣(K(xT , CT)uk + bk
∣∣∣∣√

uT
k K(xT , CT)uk

(22)

3.2. Grid Search Algorithm

The grid search method is an exhaustive search algorithm for specifying parameter
values, and the optimal learning algorithm is obtained by optimizing the parameters of the
estimation function through cross-validation [23].

First, a series of parameters are selected from the candidate parameter set and com-
bined to obtain the candidate parameter list [24]. Then, the parameter list is traversed, the
candidate parameters are entered into the model, and the score of the parameter combina-
tion is calculated. Finally, from the candidate parameter list, the parameter with the highest
score is selected as the optimal parameter of the model.

For grid search, if a point in the parameter space points to the real minimum value of
the loss function, the minimum value and the corresponding parameters can be captured.
The larger and denser the parameter space, the greater the possibility that the combination
in the parameter space just covers the minimum point of the loss function. That is, in
extreme cases, when all possible values in the parameter space are exhausted, the grid
search will certainly be able to find the optimal parameter combination corresponding to
the minimum value of the loss function, and the generalization ability of this parameter
combination must be stronger than that obtained manually.

3.3. Grid Search Algorithm-Optimized Twin-Bounded Support Vector Machine (GS-TBSVM)

Because the parameters of the traditional TBSVM model are randomly obtained, the
accuracy of the model is not high. The kernel function of the TBSVM model determines
the accuracy of the model to a great extent, so optimizing the parameters of the kernel
function can improve the performance of the model. In this paper, a GS-TBSVM model
is constructed according to the grid search method and TBSVM. The model adopts the
grid search method to optimize the parameters of kernel function in TBSVM and improve
recognition accuracy.

The RBF kernel function is one of the commonly used kernel functions. It can realize
nonlinear mapping and has few parameters, which will not affect the complexity of the
model. Therefore, in the nonlinear case, the RBF kernel function is adopted in this paper,
K(xi, xj) = exp(−λ

∥∥xi − xj
∥∥2
).

The parameters of RBF include kernel parameter g and penalty parameter C, and
the grid search algorithm will first take these two parameters as a combination to form a
parameter space. Then, the space is divided into equal grids according to the proposed
coordinate system, and each group of vectors in the coordinate system represents a group of
(C, g) values. By bringing each group of data in the space into the TBSVM, the performance
of the model is verified until the optimal values of kernel parameter g and penalty parameter
C are found. The specific process is shown in Figure 2.
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4. Experiment and Discussion

In this paper, a gas pipeline of a petrochemical company was used for leakage experi-
ments. The length of the pipeline was 12 km, the diameter was 200 mm, and the pressure
at the first end of the pipeline was 2.3 MPa and 0.6 MPa, respectively. At 1 km, 3 km, 5 km,
7 km, and 11 km of the pipeline there was a ball valve of 8-mm and 5-mm bore. A PCB
106B acoustic sensor with a range of 0–57 kPa, a sensitivity of 43.5 Mv/kPa, and a sampling
frequency of 1000 Hz was installed at each end of the pipeline to collect the acoustic signals
in the pipeline. The NI-DAQ9181 data acquisition device was used to collect the data. The
computer and software used were a PC with an Intel Pentium processor (2.90 GHz) and
6 GB RAM and MATLAB R2014a. The experimental schematic is shown in Figure 3. The
experimental site is shown in Figure 4. Figure 5 shows the PCB 106b acoustic sensor.
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The acoustic signal collected by sensor 1 was used as an example for the denoising
experiment. The 8-mm valve at 3 km of the pipeline was opened to simulate a leak in the
pipeline, and the original signal collected by sensor 1 at the first station of the pipeline is
shown in Figure 6.
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Figure 6 shows that the original signal contained more noise and the signal fluctuated
more, and the trend of the signal curve could not be judged. Then, the IUPLCD algorithm
was used to reduce the noise of the original signal. First, the original signal was decomposed
into 12 ISC components of different scales and a residual term by using the UPLCD
algorithm. Then, the energy value of each ISC component and the standard deviation of
the amplitude after FFT transform of the components were calculated. Finally, the ISC
components were filtered according to the energy values and standard deviations and the
signal was reconstructed.

In the energy curve of ISC components, the first extreme point is critical for distin-
guishing whether the ISC components are dominated by noise or useful signals, that is, all
components before the critical point of the energy curve (including at the critical point)
are noise-dominated, and the components after the critical point are signal-dominated.
Figure 7 shows the energy values of each ISC component.
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As shown in Figure 7, the first extreme point of the energy curve was the point
corresponding to ISC4. Therefore, ISC1-ISC4 are the noise-dominated components and
ISC5-ISC12 are the signal-dominated components.

The Fourier transform of each ISC component obtained from the UPLCD decomposi-
tion yields spectrograms that vary widely and with different degrees of dispersion. The
spectrograms of the noise-dominated ISC components are more complex. The standard
deviation reflects the degree of dispersion of a data set, and it can visually reflect the degree
of deviation of a data set compared to the variance. Therefore, the standard deviation can
be used to determine which components are signal-dominated. To prevent the ISC compo-
nents of different orders after the Fourier transform from differing in order of magnitude,
this paper first normalizes the values and then calculates the standard deviations between
different ISC components. Figure 8 shows the standard deviation of the magnitude of each
ISC component after Fourier transform.
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From Figure 8, the standard deviation of ISC1-ISC6 had a large degree of variation
and a high degree of dispersion, so it was the noise-dominated component. The standard
deviation of ISC7-ISC12 had a smaller degree of variation and a low degree of dispersion,
so ISC7-ISC12 was the signal-dominated component.

To preserve the original information to the greatest extent, the ISC components that met
both the energy and standard deviation requirements were used for signal reconstruction.
The energy and standard deviation curves of the ISC components were combined, and ISC7-
ISC12 could meet both requirements, so ISC7-ISC12 was selected for signal reconstruction.
Under the same conditions, UPLCD was selected to denoise the signal, and the obtained
signal curve was compared with the signal curve after denoising by IUPLCD, as shown in
Figures 9 and 10.
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Figure 10. Signal curve after denoising by the IUPLCD method.

From Figures 9 and 10, it is obvious that the curve obtained by the method used in
this study is smoother, contains less noise, retains the original leakage information to the
greatest extent, and can clearly illustrate the trend of the signal and the inflection point.

Leakage was simulated by opening 8-mm and 5-mm valves at 1 km, 3 km, 5 km, 7 km,
and 11 km of the pipeline, and 3000 sets of leakage acoustic signals were collected for each.
The same 3000 sets of data were collected under normal pipeline conditions. From the data,
2000 sets of data were selected as the training set of the model, and the remaining 1000 sets
were used as the test set.

For the working conditions of the pipeline, the normal working condition category was
set as 1 and the occurrence of leakage category as 2, and the GS-TBSVM model was applied
to identify the working condition of the pipeline. The values of the kernel parameter g and
the penalty parameter C were set in the range [0,100], and the optimal parameters were
obtained by using the grid search algorithm: g = 0.13 and C = 51.6.

To verify the accuracy of the GS-TBSVM model, the GS-SVM model and GS-TWSVM
model were selected for comparison with the model established in this paper. According to
the grid search algorithm, the optimal parameters of the GS-SVM model are g = 0.43 and C
= 19.8. The optimal parameters of the GS-TWSVM model are g = 0.22 and C = 31.1. Each of
the above optimal parameters was brought to the model to judge the working conditions of
the pipeline. The optimal model was selected by considering the training effect and testing
effect of the model.

Leakage data at 3 km of the pipeline with an 8-mm leak aperture were used for training
and testing, and the performance comparison of the three models is shown in Table 1.

Table 1. Performance comparison of different methods.

Denoising
Method Model Time/s Accuracy of

Training Set %
Accuracy of Test

Set %

UPLCD
GS-SVM 18.72 92.78 94.51

GS-TWSVM 11.38 93.21 95.23
GS-TBSVM 6.65 93.84 95.66

IUPLCD
GS-SVM 16.33 93.46 95.16

GS-TWSVM 9.69 94.67 95.53
GS-TBSVM 5.13 94.29 96.28

As shown in Table 1, the recognition accuracies of all three optimized models were
above 94%. Among them, the recognition accuracy of the model built based on the IUPLCD
denoising algorithm was significantly higher than that of the model built based on the
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UPLCD denoising algorithm. This shows that the IUPLCD algorithm can effectively
improve the recognition accuracy after processing the signal. The GS-TBSVM model based
on the IUPLCD algorithm had the highest recognition accuracy, which could reach 96.28%,
and the running time was 5.13 s. In a comprehensive view, the GS-TBSVM model had the
best performance, the GS-TWSVM had the second-best performance, and the GS-SVM had
the worst performance, relatively speaking.

The collected data were then all denoised using the IUPLCD algorithm, and then
the GS-TBSVM model, GS-SVM model, and GS-TWSVM model were trained and tested.
The comparison of the recognition accuracy of the three models under different working
conditions is shown in Table 2.

Table 2. The FAR and FDR of IRPCA-based and PCA-based leak detection methods.

Work
Conditions Leakage Caliber GS-SVM GS-TWSVM GS-TBSVM

Leakage at 1 km 8 mm 93.9% 95.6% 97.3%
5 mm 94.3% 94.8% 96.8%

Leakage at 3 km 8 mm 95.6% 95.5% 96.3%
5 mm 95.1% 95.5% 96.1%

Leakage at 5 km 8 mm 96.6% 96.1% 97.5%
5 mm 94.1% 96.5% 97.1%

Leakage at 7 km 8 mm 95.4% 95.3% 98.4%
5 mm 94.6% 94.8% 97.5%

Leakage at 11
km

8 mm 96.3% 96.7% 97.1%
5 mm 95.8% 96.5% 96.9%

According to Table 2, the recognition accuracy of GS-TBSVM for pipeline leaks was
significantly higher than that of GS-SVM and GS-TWSVM models, regardless of leaks
at different locations or leaks of different sizes at the same location, and the recognition
accuracy of the GS-TBSVM model for pipeline leaks was up to 98.4%.

5. Conclusions

To identify pipeline leaks accurately and in a timely manner, improve pipeline man-
agement, and prevent safety accidents, a pipeline leak detection method based on IUPLCD
and GS-TBSVM is proposed in this paper. In response to the drawback that the UPLCD
algorithm cannot select the effective ISC components, the algorithm was optimized and
improved. The energy value and standard deviation of the amplitude of ISC components
were used as the screening criteria for effective ISC components, and the signal-dominated
ISC components were screened out and used in the signal reconstruction. The reconstructed
signal had extremely low noise content, which better restored the original leakage signal.
Finally„ to identify pipeline leakage accurately and in a timely manner, a new pipeline
leakage identification model GS-TBSVM was constructed based on the advantages of the
grid search algorithm and TBSVM. This field experiment verifies that the noise reduction
signal was input into the GS-TBSVM model, and the model can accurately determine the
working condition of the pipeline and has a high recognition accuracy.

Compared with UPLCD and other denoising algorithms, the IUPLCD algorithm pro-
posed in this paper is optimized in the screening of ISC components, which can accurately
screen out the effective ISC components for signal reconstruction, and the noise content
of the reconstructed signal is lower, and the original information of leakage is retained
to a greater extent. In the identification of pipeline working conditions, compared with
GS-SVM and GS-TWSVM models, the GS-TBSVM model constructed in this study has
faster parameter seeking and higher identification accuracy, which effectively improves the
performance of the leak detection system.
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The leak detection method proposed in this paper was applied to gas pipelines with
good results and was found to accurately identify leaks in gas pipelines and effectively
improve the performance of leak detection. For a complete leak detection system, in
addition to the leak detection function, the system should also have a leak locating function
so that it can find the leak location in time to deal with the leak when it is detected.
Therefore, in our future work, we plan to investigate the leak localization method for gas
pipelines to achieve precise localization of leaks.
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