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Abstract: The discrete element method (DEM) often uses the angle of repose to study the microscopic
parameters of particles. This paper proposes a multi-objective optimization method combining
realistic modeling of particles and image analysis to calibrate gravel parameters, after obtaining the
actual static angle of repose (αAoR_S) and dynamic angle of repose (βAoR_D) of the particles by physical
tests. The design variables were obtained by Latin hypercube sampling (LHS), and the radial basis
function (RBF) surrogate model was used to establish the relationship between the objective function
and the design variables. The optimized design of the non-dominated sorting genetic algorithm II
(NSGA-II) with the actual angle of repose measurements was used to optimize the design to obtain
the best combination of parameters. Finally, the parameter set was validated by a hollow cylinder test,
and the relative error between the validation test and the optimized simulation results was only 3.26%.
The validation result indicates that the method can be reliably applied to the calibration process
of the flow parameters of irregular gravel particles. The development of solid–liquid two-phase
flow and the wear behavior of centrifugal pumps were investigated using the parameter set. The
results show that the increase in cumulative tangential contact forces inside the volute of centrifugal
pumps makes it the component most likely to develop wear behavior. The results also illustrate the
significant meaning of the accurate application of the discrete element method for improving the
efficient production of industrial scenarios.

Keywords: angle of repose; parameter calibration; irregular particles; multi-objective optimization;
gravel

1. Introduction

At present, centrifugal slurry pumps, as crucial equipment for solid–liquid two-phase
transport media, are widely used in many fields, such as in mining [1–3], iron and steel
metallurgy [4], waterway dredging [5,6], etc. Due to the phenomenon that many solid
particles of different properties interact with the pump in the medium transported by the
centrifugal pump, the slurry pump has problems of high energy consumption, severe wear
of flowing parts, poor equipment operation reliability, and so on [7]. At the same time, due
to the complex mechanism of particle interaction in two-phase flow, the hydraulic design
of centrifugal pumps is usually based on pure water conditions. In the actual production
process, the lack of design ability to resist the erosion of solid particles further aggravates
the problem of short pump life and low pump efficiency. Therefore, an in-depth study of
the solid particle properties and the flow condition of the particles inside the centrifugal
slurry pump is beneficial to improve its efficiency in industrial applications.

With the improvement in computational performance and the gradual study of the
subject by researchers, the discrete element method (DEM) has become an efficient and
promising analytical method for researchers to analyze the flow behavior of particles
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and their interactions. The method is widely used, and has performed well in studies
analyzing a wide range of bulk particle types, such as ores, soils, powders, etc. The
core concept of DEM is to simulate natural materials using a finite number of different
elements to simulate the physical behavior of the particle flow by correctly defining the
microscopic parameters that affect the macroscopic behavior of the material. For non-
viscous bulk materials, these parameters usually include particle shape, size distribution,
particle density, contact stiffness, friction coefficient (sliding and rolling), and damping
coefficient (collision recovery coefficient). Determining these parameter values directly
affects the macroscopic behavior of the material. Since there is no computational method
to obtain the parameter values of the system response directly, it is necessary to calibrate
the DEM model parameters. Generally speaking, DEM simulation parameters are mainly
obtained by direct measurement calibration, indirect virtual calibration, or a combination of
both. A few parameters that are easy to measure can be directly obtained from experimental
measurements for accurate results. However, the measurement results obtained by direct
observation vary significantly due to the influence of the particle material’s properties and
the limitations of the experimental method. Therefore, the results of the above parameter
measurements usually cannot be directly applied to the DEM numerical simulation.

In recent years, many researchers have used virtual simulation experiments to cal-
ibrate the DEM parameters required for DEM simulations, and extensive research has
been conducted for this purpose. Most of these calibration methods use the “trial and
error method,” which consumes a lot of experimental time for repeated parameter testing
and is computationally expensive. To make the calibration process more efficient, many
researchers have tried to reduce computational costs while obtaining better expected results
by building predictive models and optimizing algorithms. For example, Ma et al. [8] devel-
oped a calibration model between the macroscopic parameters of rockfill materials and the
microscopic parameters of the contact model (bonding contact model) using a relevance
vector machine and a memetic algorithm. They verified the feasibility of the calibration
model using a numerical triaxial test. Benvenuti et al. [9] performed a parameter calibration
of cohesionless sintered ores using standard random distribution sampling and artificial
neural networks. The calibration results were checked by angle of repose tester experiments
to obtain the DEM parameters to be calibrated. Hesse et al. [10] proposed a new calibration
for interpreting the shape characteristics of granular materials using convolutional neural
networks, which can derive the material’s flow and stacking behavior. The method was
verified to have good predictive robustness by silo experiments. Wang et al. [11] developed
an improved PSO calibration method, which is automated by a python script to simplify
the calibration process significantly, and proved to be efficient and effective by comparing
with experimental results. Nasato et al. [12] used artificial neural networks combined
with the coarse-grained concept to calibrate the contact parameters of complex-shaped
particles. The method’s effectiveness was confirmed by predicting the static and rolling
friction of the particles using void fraction and dynamic angle of repose, combined with
experimental results for octahedral and cubic-shaped particles. He et al. [13] proposed a
powder calibration method based on the genetic-algorithm-optimized BP neural network.
The range of input parameters was obtained by a search algorithm with cluster analysis
and combined with actual experiments. It was experimentally verified to be an efficient
calibration method. Degrassi et al. [14] used DEM to numerically simulate the diffusion
behavior of coke particles in a blast furnace. They calibrated the contact parameters of the
particles using a meta-model algorithm and verified the model’s accuracy by comparing it
with actual blast furnace plant visualization data. Richter et al. [15] proposed a procedure to
calibrate non-cohesive bulk particles’ contact parameters, combining experiments, numeri-
cal simulations, and optimization algorithms. A new generalized surrogate-model-based
optimization algorithm was used to calibrate the contact parameters of particles using
coarse gravel as a research object. The comparison with experimental results showed
that the algorithm is an effective way. Some researchers have retained the study on un-
derlying physical contact laws during the calibration process, and have developed new
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efficient calibration frameworks for this purpose. Qu et al. [16,17] proposed a hybrid
analytic–computational method to calibrate the contact stiffness of particles. The initial
estimate of contact stiffness is obtained using a derived semi-analytical and semi-empirical
formula in the article. Reliable numerical estimates between macroscopic parameters and
microscopic targets have been obtained by combining the gradient descent method, and
verified by case studies. In the calibration process of Hertz-type contact parameters based
on this framework, the machine learning algorithm Adam has been introduced for op-
timization, and obtained more efficient and accurate results. In addition, Qu et al. [18]
proposed a strain-energy-based method for the calibration of elastic parameters of solid
materials. The method is based on the idea of decoupling and minimizing the difference in
strain energy between the discrete and continuum systems, which significantly improves
calibration efficiency and application flexibility. The above research has significantly im-
proved the efficiency and accuracy of the calibration process and facilitated the progress of
parameter calibration.

In addition, in the current DEM simulation, many researchers simplify the shape of
the simulated particles to a spherical shape for the calculation to improve computational
efficiency. However, the fact is that most particles are not perfectly spherical. The volume
friction of irregularly shaped particles when assembled compared to standard spherical
particles is usually lower [19], which can affect the DEM calculation of contact force to
produce bias [20], leading to a significant difference in the actual results. Some researchers
have found that increasing the complexity of the particles is beneficial to improving the
local curvature of the particles and reducing the computational error in calculating the
contact force [21]. Barrios et al. [22] used single-particle tests to estimate material and
contact parameters, showing that particles have reasonable physical significance only
when modeled as natural shapes. In addition to this, the study of irregularly shaped
particles (including particle shape and geometric behavior, etc.) is of tremendous research
importance in many industrial processes; for example, some researchers have found that the
shape of the particles has a significant effect on the mixing, filling, and wear of the material.
Li et al. [23] constructed a model of iron ore particles with the multi-sphere clump method.
They found that iron ore particles are highly irregular, and reducing them to spherical
particles is inappropriate. Xu et al. [24] used DEM to study the wear of non-spherical
ores on parts of tumbling mills, and found that the wear caused by cuboid-like particles
was significantly larger than that caused by spherical particles. Tang et al. [25] compared
the wear produced by four different-sphericity particles with spherical particles on the
flow parts of a centrifugal pump. The results showed that the overall impact wear rate of
the flowing components of the centrifugal pump showed a trend initially decreasing and
then increasing with increasing sphericity, while the overall abrasive wear rate has been
growing steadily. Therefore, a suitable geometry of irregular particles should be selected
when simulating solid particles to accurately describe the shape of solid particles inside the
centrifugal slurry pump and reduce costs.

Therefore, based on the summary mentioned above and given that the solid particles
in this study are mostly bulk irregular gravels, this paper combines various concepts for
the multi-objective optimization of the parameter calibration of irregular gravels. First, an
appropriate filled model is obtained by modeling the actual particle 3D scan model using the
fast multi-sphere method. Literature references and experimental measurements determine
the material’s most sensitive contact parameters, and the sample space is obtained by
sampling using the LHS method. The calibration process is accomplished by baffle lifting
tests, rotary drum tests, and simulation. Then, the RBF neural network is used to construct
a surrogate model between the microscopic contact parameters and the macroscopic angle
of repose. The optimal combination of DEM parameters is determined by NSGA-II and
verified by hollow cylinder lifting tests. Finally, the corresponding numerical simulations
based on the above calibration parameters are carried out to verify the feasibility of the
parameter combinations’ application. The method will provide a reference basis for the
experimental study of centrifugal pump simulation.
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2. Materials and Methods
2.1. The Measurement Method of Angle of Repose
2.1.1. The Angle of Repose Measurement Setup

In this work, 25/10 mm dry gravel samples are selected as the experimental test
material, which is a common material in the actual production process of the centrifugal
slurry pump studied in this case, and the material is easily accessible in a non-viscous and
free-flowing state. To comprehensively evaluate the performance of the calibration frame,
the static angle of repose and the dynamic angle of repose of the material are measured
and calibrated using the baffle lifting test and the rotary drum test, respectively, in this
experimental test study.

(1) Baffle testing setup

The baffle lifting test setup is shown in Figure 1. The structure consists of three parts:
three fixed Plexiglas walls, a Plexiglas substrate, and a sliding baffle. The test setup’s length,
width, and height are 300 mm, 200 mm, and 400 mm, respectively. The dimensions of these
rectangular plates should be chosen to be large enough to reduce the wall effect on the
angle of repose of the test study. A fixed mass of gravel is transferred into the box in the
experiment. After forming a relatively flat material surface, the baffle is lifted at a constant
speed of 0.1 m/s to allow the gravel to flow freely out of the box until it stabilizes, forming
a slope of the material. The angle of this slope is called the static angle of repose, and the
angle value can be obtained using image processing.

(2) Rotary drum test setup

The rotary drum experimental setup is shown in Figure 2. The drum is made of
Plexiglass, with an inner diameter of 300 mm and a length of 150 mm. According to
the results of Arntz [26], when the fill level of the material exceeds 65%, severe radial
segregation occurs; therefore, in this experimental study, the total fill mass of the sand and
gravel material is controlled to 40% of the maximum particle fill level. Then, the rotation
starts at a uniform speed of 30 rpm. After the particle flow is stabilized, the angle between
the particle surface and the horizontal plane is measured as dynamic angle of repose.
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2.1.2. The Measurement Method of Angle of Repose Value

The angle of repose is formed by the natural accumulation of granular materials under
unconstrained conditions, which is commonly used as a macroscopic response parameter
to characterize the specificity of the particles. When materials pile up in a horizontal plane
to form a non-collapsing slope [27], the microscopic parameters of the material can be
measured indirectly from this macroscopic response, and the angle of this slope is the
material’s angle of repose.

In acquiring the material’s angle of repose, the commonly used method is to capture
the image information formed by accumulating granular materials using a high-resolution
camera, and then process the image using computer image processing technology. The
general image processing stage includes grayscale, binarization, denoising, edge point
extraction, and least squares linear fitting of edge points. The angle of repose value can be
calculated based on the slope of the fitted straight line. This paper shows the specific image
processing strategy for the static angle of repose test in Figure 3a–d.

The dynamic angle of repose was obtained by high-resolution processing video of the
drum rotation taken by a high frame rate camera. The dimensions and setup of the test
are as described in Section 2.1.1. Recording started when the drum began to rotate, and
a total of 30 s of the experimental video was recorded, corresponding to 15 revolutions
of the drum. To ensure that the data recorded are not affected by changes in the surface
of the initial drum particles, the data after five revolutions of the drum are used as the
final test record. The captured video is converted into image data, and a square area with
a length equal to half of the drum diameter is cropped near the drum’s center, then, the
image is captured [28]. The selection result of the clipped area is shown in Figure 4a. This
experimental work selects the start–middle–end moment image data corresponding to each
drum revolution for processing. The free contour of the material surface in the clipped area
is obtained by image processing, as shown in Figure 4b–d shows the average surface profile
obtained from the experimental image corresponding to 10 revolutions of the drum. The
average slope is obtained by linear fitting based on the acquired surface profile position
data. This paper takes the arctangent value of this average slope to the horizontal plane as
the dynamic angle of repose.
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Repeatability tests were conducted for both types of experiments mentioned above,
and the results of the experimental process are shown in Table 1.

Table 1. Experimental results of the angle of repose.

Test Sequence

Baffle Lift Test
(Static Angle of Repose Test)

Rotary Drum Test
(Dynamic Angle of Repose Test)

Linear Fit Slope
Value Angle Value (◦) Mean Value of

αAoR_S (◦)
Mean of Linear

Fit Slope
Mean Value of

βAoR_D (◦)

1 0.6515 33.0834

32.5340 1.1527 49.0579
2 0.6292 32.1781
3 0.6448 32.8131
4 0.6269 32.0852
5 0.6373 32.5102
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2.2. DEM Contact Model

In this paper, to accurately describe the flow state of dry sand and gravel materials, the
simulation was performed using a Hertz–Mindlin (no-slip) model built in the commercial
DEM software EDEM (EDEM 2020, DEM Solutions, Edinburgh, UK). The Hertz–Mindlin
no-slip model is one of the essential contact models in DEM simulations [29], as shown
in Figure 5, which combines the Hertz contact theory with Mindlin’s improved part of
the tangential no-slip model, and it can accurately calculate the contact forces between
the pellets.

The normal contact force Fn for the contact between particle A and particle B can be
described as

Fn =
4
3

E∗
√

R∗δ
3
2
n (1)

where δn is the normal overlap, E∗ is the equivalent Young’s modulus, and R∗ is the
equivalent radius. E∗ and R∗ can be defined as

1
E∗

=

(
1− v2

A
)

EA
+

(
1− v2

B
)

EB
(2)
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1
R∗

=
1

RA
+

1
RB

(3)

where EA, vA, RA, EB, vB, and RB are the Young’s modulus, Poisson’s ratio, and contact
sphere radius of contact body A and contact body B, respectively.
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The tangential contact force Ft between particle A and particle B is related to the
tangential overlap δt and the tangential stiffnes St. The tangential force can be described as

Ft = −δtSt (4)

The tangential damping force is defined as

Fd
t = −2

√
5
6

β
√

Stm∗v
→
rel
t (5)

where v
→
rel
t is the tangential component of the relative velocity between the two contacting

bodies of A and B. The tangential stiffness St is defined as

St = 8G∗
√

R∗δn (6)

where G∗ is the equivalent shear modulus, which can be described as

G∗ =
1

GA
+

1
GB

(7)

where GA and GB are the shear modulus of contact bodies A and B, respectively. Consid-
ering that the granular material applied in this paper is a non-viscous bulk material, the
tangential force will be limited by Coulomb friction (µsFn, where µs is the coefficient of
static friction). To ensure the accuracy of the tangential force calculation in the calculation
process, therefore, the tangential force [30] is defined in this paper as

|Ft| = min
{∣∣∣Fp

t − kt∆δt

∣∣∣, |µFn|
}

(8)

where kt is the tangential stiffness of the contact, Fp
t is the tangential force at the previous

time step, ∆δt is the incremental tangential displacement between the two particles, and µ
is the friction coefficient.
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The normal damping force Fd
n between particle A and particle B can be described as

Fd
n = −2

√
5
6

β
√

Snm∗v
→
rel
n (9)

where v
→
rel
n is the normal component of the relative velocity between the contacting bod-

ies, and m∗, β, and Sn denote the equivalent mass, damping ratio, and normal stiffness,
respectively, and can be defined as

G∗ =
1

GA
+

1
GB

(10)

β =
ln e√

ln2 e + π2
(11)

Sn = 2E∗
√

R∗δn (12)

where mA and mB express the masses of contact bodies A and B, respectively, and e is the
coefficient of recovery.

2.3. Particle Property Parameters

When performing DEM material parameter calibration, the material parameters stud-
ied can be divided into two categories: those obtained from direct measurements and those
obtained from DEM simulations. The following requires the study of each of these two
types of property parameters.

2.3.1. Measurement of Direct Particle Parameters

(1) Irregular-shaped particle modeling

As mentioned in Section 1, the particle shape can significantly impact the DEM
calibration accuracy and fluidity studies. Therefore, to ensure the accuracy of the DEM
simulation, the gravel particle shapes are divided into five categories: cone, prism, discoid,
ellipsoid, and sphere. Various typical particles are selected to generate 3D digital mesh
models using a high-precision 3D scanner. Then, the geometric models used for DEM
simulations are generated in the discrete element simulation software with the particle
filling tool. The constructed multi-sphere model is shown in Figure 6, and the relevant
parameters are shown in Table 2.

Table 2. Model parameters for different fill levels.

Particle Shape
Low Fill Level (5~8 Spheres) Medium Fill Level (20~25 Spheres) High Fill Level (40 + Spheres)

Number Volume
(×103 mm3)

Mass
(g) Number Volume

(×103 mm3)
Mass

(g) Number Volume
(×103 mm3)

Mass
(g)

Cone 5 3.83 10.19 24 4.68 12.47 46 4.63 12.32
Prism 6 5.56 14.85 22 6.50 17.29 42 6.83 18.19

Discoid 5 0.48 1.28 23 1.18 3.14 44 1.33 3.53
Ellipsoid 8 1.67 4.44 22 1.84 4.91 42 1.93 5.14
Sphere 5 1.89 5.02 25 1.89 5.04 43 1.81 4.81

As seen in Figure 6, the gap between the actual model and the filled model due to
sharp edges gradually decreases as the filling level increases, gradually increasing the
filling accuracy between the filled model and the original model. In this paper, the relative
volume error of the model is used to quantify the error between the particle-filled model
created by the multi-sphere method and the actual model, and the relative volume error
Vre is described as

Relative volume error =
∣∣∣∣Vm −VR

VR

∣∣∣∣× 100% (13)
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where Vm is the filled model volume and VR is the actual particle volume. The model
volume and relative volume errors for the above different fill levels are shown in Figure 7.
From the figure, it can be seen that although using more and smaller spheres can reduce the
relative volume error to improve the accuracy of the fitted model, at the same time, it also
increases the computational cost significantly. Therefore, a medium fill level (20~25 spheres)
is finally chosen for DEM model construction to improve the computational efficiency.
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Standard sampling of 1 L particles was carried out according to the above particle
shape classification; Table 3 shows the percentage of the number of particles of different
shapes. When performing DEM simulations, the number of particles is controlled according
to the statistical ratio of the number of particles.

Table 3. Model parameters for different fill levels.

Particle Shape Cone Prism Discoid Ellipsoid Sphere

Percentage (%) 18.61 23.73 22.65 18.11 16.90

Meanwhile, in order to describe the closeness of the irregular particle geometry to a
perfect sphere, the sphericity [31] is used to define as

Ψ =
SAes

SArp
=

3√36πV2

SArp
(14)

where SArp is the actual surface area of the particle, mm2; SAes is the surface area of the
sphere determined from the same volume of particles, mm2; and V is the actual volume
of the particle, mm3. As described in the previous section, the final model parameters for
constructing the DEM simulation model of irregular particles using the fast multi-sphere
method are shown in Table 4.
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Table 4. Model parameters for different fill levels.

Type
SArp

(mm2)
SAes

(mm2)
VR

(mm3)
Vm

(mm3) Ψ
Vre
(%)

Cone 1709.798 1325.839 4.782 4.540 0.775 5.07
Prism 2027.787 1742.317 6.373 6.839 0.859 7.30
Dicoid 873.751 573.521 1.558 1.292 0.656 17.08

Ellipsoid 874.393 725.863 2.048 1.839 0.830 10.21
Sphere 758.346 727.244 1.767 1.844 0.959 4.36

(2) Apparent density measurement of particles

In this paper, the apparent density of irregular particles was measured using the fluid
displacement method. The mass of the particles was determined by a mass gauge (0.01 g ac-
curacy). The material was poured into a graduated cylinder (205 mm diameter and 1000 mL
volume) for 1 min. Then, the difference in the volume change in the fluid inside the cylinder
was measured. Due to the low porosity of the experimental material, the liquid volume
change in the internal permeation of the particles is ignored to simplify the testing proce-
dure. In addition, to show that the angle of repose measured by the above method is not
significantly affected by changes in permeate volume, we conducted a sensitivity analysis
on particle density and angle of repose, described in Section 2.3.2. The particle’s apparent
density is the ratio of the difference in volume between the material’s mass and the change
in liquid. The measurements were repeated 10 times to ensure the experiment’s reliability,
and the results are shown in Table 5.

2.3.2. Sensitivity Analysis of Particle DEM Parameters

In this section, the influence of the characteristic intrinsic parameters of the particles
(Young’s modulus, Poisson’s ratio, particle density, collision recovery coefficient) on the
angle of repose is studied and analyzed. The results are shown in Figure 8. The value
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or range of contact parameters of particle–particle, and particle–geometry interactions in
DEM calibration are provided, as shown in Table 6.

Table 5. Apparent density measurement of particles.

No.
Volume of

Replacement Liquid
(mL)

Mass
(g)

Apparent Density
(g/mL)

Mean Value
(g/mL)

Standard
Deviation

1 9.5 25.703 2.706

2.661 0.052

2 17.0 44.750 2.632
3 9.4 25.447 2.707
4 18.0 47.883 2.660
5 13.5 35.407 2.623
6 14.2 37.047 2.609
7 14.2 38.300 2.697
9 13.5 35.087 2.599
9 6.0 16.580 2.763
10 8.0 20.940 2.618
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Table 6. DEM parameters, relevant symbols, and values/ranges studied in this paper; parameters to
be calibrated are set as ranges, which are denoted by *.

DEM Parameters Symbol Value/Range Source

Plexiglass Poisson’s ratio νw 0.25 Literature [21]
Shear modulus of Plexiglass (Pa) Gw 3 × 109 Literature [21]

Plexiglass density (kg/m3) ρw 1190 Literature [21]
Particle Poisson’s ratio νp 0.3 Section 2.3.2

Particle Young’s modulus (Pa) Gp 1 × 107 Section 2.3.2
Particle density (kg/m3) ρp 2661 Section 2.3.2

Collision recovery coefficient e 0.6 Section 2.3.2
Particle–particle sliding friction coefficient µs_pp 0–0.8 *
Particle–particle rolling friction coefficient µr_pp 0–0.8 *

Particle–geometric sliding friction coefficient µs_pw 0–0.8 *
Particle–geometric rolling friction coefficient µr_pw 0–0.8 *

Rayleigh time step(s) ∆t 4.2 × 10−5

Poisson’s ratio and Young’s modulus of particles are the critical parameters used to
characterize the elastic properties of granular materials, and play an essential role in the
study of deformation, fragmentation, and stress distribution of granular materials [28].
However, these parameters do not significantly affect the analysis of the macroscopic
response of materials [32]. As shown in Figure 8a,b, it is evident that Poisson’s ratio and
Young’s modulus have little effect on the static/dynamic angle of repose of the material.
The influence of Poisson’s ratio and Young’s modulus on the material’s static/dynamic
angle of repose is minimal. With the increase in Poisson’s ratio and Young’s modulus, the
average value of the change in the angle of repose is within 1.5◦, but the calculation time
shows an exponential increase. Based on the calculation cost and accuracy requirements,
the parameters in this paper were chosen to be Poisson’s ratio value of 0.3 and Young’s
modulus of 1 × 107 Pa.

In Section 2.3.1, the density of the particles was measured directly. The relationship
between the particles’ density and the repose angle was also studied in this section to verify
the method’s reliability. Figure 8c shows that the static/dynamic angle of repose of the
particles did not change significantly with the density change in a more extensive range of
particle density change (2000–3000 kg/m3). The average change in the angle of repose of
the particles in this range was within 2◦. The overall error was about 3.5%; therefore, the
method of ignoring the volume of liquid permeating inside the particles is appropriate in
this paper. The final choice of particle density value is 2661 kg/m3.

In the static free-flowing case of gravel, the recovery coefficient also did not signif-
icantly affect the behavior of the particles. In this paper, different values of collision
coefficients in the range of 0.2 to 1.0 were chosen for the above DEM simulations. The
results presented in Figure 8d show that the collision coefficient has almost no effect on the
angle of repose of the granular material in the simulation conditions set in this paper, which
remains consistent with the conclusions obtained by other researchers [33]. The collision
recovery coefficient was finally chosen to be 0.6 in this paper.

3. Construct the Optimal Mathematical Model

Relevant theories have shown that the combination of microscopic parameters af-
fecting the granular material’s macroscopic response is ambiguous when only a single
calibration experiment is considered [34,35]. Therefore, this paper uses a multi-objective
optimization model to study both the material’s static and dynamic angle of repose and the
flow chart of multi-objective optimization based on the RBF neural network and NSGA-II
showed in Figure 9.
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3.1. LHS-Based Model Dataset Construction

Optimal Latin hypercubic sampling is an improved method that enables the sampling
points to be uniformly distributed inside the variable design space. Therefore, it has a good
space-filling and equalization function.

This paper uses a uniformly distributed LHS-based method to sample the calibration
parameters in multiple dimensions. The four DEM parameters (µs_pp, µr_pp, µs_pw, µr_pw)
to be calibrated for the study were sampled in 140 groups to obtain a 4 × 140 matrix of
virtual test sample points. The first 100 groups are used as the RBF neural network training
data, and the last 40 are used as the validation data. The sample point matrix constructed
in this paper is shown in Table 7.

Table 7. Matrix of 140 sample points based on LHS sampling (partial data; full data in Appendix A).

No
Design Variables Objective Functions

µs_pp µr_pp µs_pw µr_pw αAoR_S βAoR_D

1 0.177 0.329 0.533 0.427 28.3 54.1
2 0.585 0.582 0.469 0.273 37.1 66.6
3 0.599 0.441 0.796 0.342 40.6 66.8

. . . . . .
138 0.220 0.647 0.107 0.623 18.3 21.8
139 0.678 0.744 0.026 0.762 7.9 17.5
140 0.031 0.658 0.126 0.684 8.1 22.1

3.2. RBF Neural Network Structure Design

The RBF neural network is a three-layer feed-forward neural network containing
an input layer, a hidden layer, and an output layer. The first layer is the input layer,
which includes all the design factors that produce the influence; the second layer is the
hidden layer, where the nodes in the hidden layer use radially symmetric basis functions
as activation functions [36,37]; and the third layer is the output layer, which is composed of
all the responses. RBF neural networks transform the non-linear input–output mapping
relationship into radial basis functions and the hidden layer–output layer transfer function
into a linear adjustable function, which significantly accelerates the learning speed and
avoids the local minimal value problem.
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In this paper, the RBF neural network is used as an approximate model for fitting
microscopic parameters (particle–particle and particle–geometric sliding/rolling friction
coefficients) with macroscopic responses (static and dynamic angle of repose); the structure
of the RBF neural network used in this paper is schematically shown in Figure 10.
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3.3. RBF Model Optimization Based on NSGA-II

This paper uses the NSGA-II algorithm to optimize the surrogate model above. The
NSGA-II algorithm is a fast and efficient global optimization algorithm proposed by Kalyan-
moy Deb in 2002 [38]. The algorithm ensures the diversity of populations with high
precision optimization results by proposing a fast non-dominated sorting algorithm.

In this paper, the static/dynamic angle of repose values obtained from actual measure-
ments of baffle lifting test and rotary drum test parameters are used as target constraints,
while the design ranges of microscopic parameter variables are combined for optimization.
The corresponding design variables and target function constraint equations are described
as follows: {

target value αAoR_S = 32.534◦

target value βAoR_D = 49.058◦
(15)

Subject to


0 ≤ µs_pp ≤ 0.8
0 ≤ µr_pp ≤ 0.8
0 ≤ µs_pw ≤ 0.8
0 ≤ µr_pw ≤ 0.8

(16)

4. Results and Discussion
4.1. Precision Analysis of RBF Model

The accuracy of the surrogate model is usually evaluated using the coefficient of
determination R2 shown in Formula (17), which is also used to assess the RBF neural
network surrogate model in this paper. When R2 is closer to 1, it proves a better fit for the
model, which is usually considered in engineering applications when R2 ≥ 0.9.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (17)

where yi is the simulated value of the model; ŷi is the predicted value of the model; yi is
the average of the simulated values of the model; and N is the number of sample points.
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Figure 11 shows the linearly fitted static/dynamic angle of repose DEM simulated
values versus predicted values, from which it can be seen that the regression coefficient
R2 for the model is 0.965 for the static angle of repose and 0.958 for the dynamic angle
of repose.
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In addition, We also analyzed the relative error between the angle of repose prediction
value of the RBF model and the DEM simulation value. The results are shown in Figure 12,
and there is only a small amount of dispersion between both. The predicted values of both
targets are relatively close to the DEM simulation results; thus, it can be concluded that
the established RBF neural network prediction model can be reliably calibrated for the
DEM parameters.
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The sensitivity analysis results are shown in Figure 13. It is evident that the particle–
geometry static friction coefficient has the most significant effect on the dynamic angle of
repose (54.10%). The particles have many frictional collisions with the geometry when
they flow freely in the drum setup, so this coefficient significantly affects the dynamic
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response angle. The particle–particle static friction coefficient is an essential factor that
substantially affects the dynamic angle. In addition, the particle–particle static friction
coefficient is a relevant variable that significantly affects the static angle of repose (48.22%).
In summary, the static friction coefficient plays a crucial role in studying the performance
of the macroscopic angle of repose of gravel particles.
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4.2. Muti-Objective Optimization Design

In this work study, the meaning of multi-objective optimal design is to take the actual
values of static/dynamic angle of repose (αAoR_S = 32.054◦, βAoR_D = 49.058◦) obtained
through experimental measurements as the objective constraint, and the particle–particle
sliding friction coefficient, particle–particle rolling friction coefficient, particle–geometry
sliding friction coefficient, and particle–geometry rolling friction coefficient as the optimiza-
tion object, and find the optimal combination of parameters to satisfy the target results
within the determined range of values of design variables. From the sensitivity analysis
of parameters in Section 4.1, it can be seen that the objective functions are affected by
each design variable to different degrees, so when dealing with the optimization prob-
lem of multi-objective parameters, the Pareto front is usually used as the solution to the
optimization problem.

In this work, the relevant settings of the NSGA-II algorithm are shown in Table 8. The
optimal combination of design variables obtained is the particle–particle sliding friction
coefficient of 0.323, the particle–particle rolling friction coefficient of 0.061, the particle–
geometry sliding friction coefficient of 0.316, and the particle–geometry rolling friction
coefficient of 0.441. During the calibration of DEM parameters, it is almost impossible to
achieve a perfect calibration match. This is mainly caused by two factors: (1) Parameter
results, obtained through the laboratory, suffer from typical experimental scatters [39].
Meanwhile, to acquire different properties of particles, the results obtained from various
experiments may also have conflicting problems, which dramatically affect the accuracy
of calibration results. (2) Particle packing configuration in DEM simulation cannot be
completely consistent with experiments. Therefore, some of the particles’ behavior will
inevitably be influenced by some random factors [40]. In summary, to guarantee the accu-
racy of simulation and experiment, it is reasonable to choose 5% accuracy in engineering
applications as a tolerance criterion in the DEM calibration process.
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Table 8. NSGA-II algorithm setup.

Option Value

Population Size 500
Number of Generations 200
Crossover Probability 0.9

Crossover Distribution Index 10.0
Mutation Distribution Index 20.0

Table 9 shows the comparison between the DEM simulations and the results of the
calibration parameters based on the above optimization. It can be seen from the table that
the relative errors of the optimized objective function values are all less than 5%, which
indicates that the optimization results are appropriate.

Table 9. Error analysis of the optimization results of the objective function.

αAoR_S(
◦) βAoR_D(

◦)

Optimization results 32.534 49.058
DEM simulation results 34.094 48.838

Relative error 4.795% 0.448%

4.3. Verification Instance Based on Static Stacking Angle

To verify the correctness of the above calibration procedure, this section verifies
the stacking angle of gravel particles via a hollow cylinder lifting test during quasi-static
conditions. The validation setup is shown in Figure 14, where non-sticky granular materials
are transferred into a hollow Plexiglas cylinder with a diameter of 200 mm and a height
of 500 mm, and left to stand to allow the particles to be deposited and stabilized. The
surface is to be smoothed, and then the hollow cylinder is lifted at a uniform speed of
0.01 m/s [41]. The particles all flowed freely from the cylinder until the material stabilized
in a cone-shaped pile. Then, images are recorded from both directions using a camera,
and the images are processed to determine the final stacking angle formed by the stack.
The simulation settings were kept consistent with the experimental conditions, and the
parameters determined by calibration were used as parameter inputs. The final results are
shown in Figure 14.

Table 10 compares the simulated values and experimental measurements after pa-
rameter calibration. From the table, it can be seen that the calibrated particle microscopic
parameters show better agreement in the hollow cylinder verification test. This verification
result is in accordance with the angle of repose tolerance range proposed in this paper.

Table 10. Comparison of experimental and simulation results of static stacking angle.

Experiment Serial
Number θ1(

◦) θ2(
◦) θ3(

◦) θ4(
◦) γs(◦) γs_mean(◦)

1 30.92 31.88 32.45 29.28 31.13

32.53
2 32.36 32.15 31.50 33.18 32.29
3 34.51 36.60 34.05 33.62 34.70
4 34.71 30.46 33.39 33.13 32.92
5 30.85 31.35 32.15 32.10 31.61

Optimized Simulation 32.19 31.73 32.05 29.91 31.47 31.47
Relative Error 3.26%
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4.4. DEM Virtual Test of Solid–Liquid Two-Phase Flow and Wear of Centrifugal Pump

To further illustrate the effectiveness of the application of the calibration parameter
set, this section simulates a centrifugal pump at rated operating conditions using coupled
CFD–DEM based on the particle model and calibration parameters constructed above. The
purpose of the centrifugal pump simulation test is to better understand the development
of solid–liquid two-phase flow inside the pump and the occurrence of the primary wear
behavior of the pump body. The inlet boundary condition of the centrifugal pump was set
to 2.1 m/s, and the outlet was set to free outflow. The RNG k-ε turbulence model and the
slip mesh model were chosen to solve the actual motion of the impeller accurately. The
time step of the CFD simulation was set to 1.15 × 10−5 s, during which the impeller rotated
approximately 1◦. In contrast, the time step of the DEM simulation was set to 1.15 × 10−6 s,
with a time step ratio of 1:10 and a synchronous time-saving step of 0.01 s. The total time
step is 3600, and the total simulation time is set to 15 T (T represents the time required for
one impeller revolution, i.e., 0.04 s/revolution) to ensure the full development of the solid
and liquid phases inside the centrifugal pump.
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4.4.1. Particle Trajectory Distribution inside the Pump

Figure 15 shows the distribution trajectory of solid particles inside the centrifugal
pump with a rated speed of 1450 rpm, a flow rate of 25 m3/h, and a particle volume fraction
of 1% at different moments. To better show the connection between particle velocity and
distribution position, particle size is displayed with particle velocity as a scalar in the
current view. It can be seen from the figure that the number of particles inside the pump
increases from t = 0 s until it stabilizes at t = 0.30 s, when the centrifugal pump reaches a
stable operating state. The particles are distributed more uniformly in the inlet section of
the pump (Figure 15 (0.05 s)), and when the particles enter the impeller, they enter along
the pressure side of the blades (Figure 15; 0.10–0.13 s). As the centrifugal rotation of the
impeller accelerates, the particles begin to separate from the impeller. Most of the particles
will maintain a stable spiral trajectory during the process from the impeller outlet to the
entry into the volute, which is associated with the impeller blade shape (Figure 15; 0.15 s);
at this time, most of the particle trajectories are close to the pressure side of the impeller’s
blade, a trend also shown in the study by Huang et al. [42]. The particles are influenced by
their gravity and other comprehensive effects inside the volute. The particles will gather on
the wall side of the volute, and the number of particles increases gradually from the tongue
side to the outer wall of the volute. Furthermore, some particles hit the outer wall, rebound
into the inner wall of the volute flow channel, and stay on the inner wall at a lower speed,
as shown in Figure 15 (0.20–0.30 s).
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4.4.2. Study of Solid–Liquid Two-Phase Characteristics of Centrifugal Pump

Figure 16 shows the solid–liquid two-phase distribution characteristics of the cen-
trifugal pump. From Figure 16a, it can be seen that the most prominent area of pressure
change in the pump appears in the impeller region, and mainly shows a gradual increase
in pressure from the inlet to the outlet area of the impeller, which is primarily related
to the centrifugal effect of the impeller rotation. At the same time, a low-pressure area
is generated at the inlet of the centrifugal pump, which is conducive to the solid–liquid
mixture that can better enter the interior of the centrifugal pump for transport. It can
also be seen that the pressure distribution in the volute is also related to the trend in the
solid particle distribution. Figure 16b shows the particle–fluid velocity distribution. The
figure shows that in the impeller radial direction, the fluid velocity near the pressure side
gradually increases, and near the suction side it gradually decreases. In addition, it can be
seen that the particle size distribution is also related to the fluid velocity distribution: the
smaller particles are mainly concentrated on the suction side of the impeller and near the
inner wall of the volute channel; in comparison, the larger particles are primarily focused
on the pressure side of the impeller and the outer wall of the volute. The main reason
for this distribution characteristic is that the density of solid particles is larger than the
density of the fluid phase; with inertial and centrifugal forces, large particles obtain a higher
velocity, showing the phenomenon of clinging to the surface. At the volute outlet, with the
increase in the flow channel area and the effect of gravity, the fluid velocity appears to be
significantly reduced.
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4.4.3. Development of Wear Behavior of Primary Pump Components

In order to study the primary wear behavior of the flow components of centrifugal
pumps, this section analyzes the wear behavior of the shroud, blade, hub, and volute of
centrifugal pumps with the relative wear model. The model can show the component’s
wear through normal cumulative contact energy and tangential cumulative contact energy,
and reveal the wear mechanism of the element quantitatively through normal contact force
and tangential cumulative contact force.

Figure 17a,b shows the distribution of the normal/tangential cumulative contact
energy of the impeller, from which it can be seen that the pressure side of the impeller
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and the hub are most likely to experience wear behavior, and the closer the area to the
impeller axis the further the wear appears. The head of the blade is the point at which the
maximum value of normal cumulative energy is reached, which indicates that this part is
more likely to experience wear behavior. The main reason for this phenomenon is related
to the erosive wear in the area where the particles enter the impeller from the inlet. In
addition, the interaction between the impeller and the particles, on the one hand, increases
the particle velocity; on the other hand, the particles have a cutting effect on the blade’s
pressure surface, further aggravating the appearance of wear behavior.
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Figure 17c,d shows the cumulative contact energy of the volute. The tongue and
volute are the primary areas where wear occurs, which is strongly related to the trajectory
of the particles. After gaining a large velocity through the impeller, the particles move
with the fluid phase in the volute channel. The tangential velocity of the particles interacts
with the volute wall surface, deepening the volute wall’s wear. In addition, the wear
range occurring on the volute wall also closely correlates with the accumulation location in
particle movement.

To further reveal the wear mechanism of the components of the centrifugal pump,
stress analysis of the main components in the pump is performed in this section. The results
of the average accumulated contact force variation for each part are shown in Figure 18. In
the t = 0 s to t = 0.1 s stage, the accumulated contact force of the components is 0, which is
mainly because the length of the inlet extension prevents the particle group from moving
to the internal centrifugal pump. There is no contact with the components. After t = 0.1 s,
the particles begin to contact the flow parts, which causes wear. Each component’s average
cumulative contact force change is linearly related to time. It can be seen that the average
cumulative contact force of the volute is larger than the rest of the components. As
demonstrated in Figure 17, the volute is the component where the most severe wear
behavior occurs. The wear behavior of the volute mainly originates from the increase in
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the accumulated tangential force of the particles on the volute. After accelerating through
the impeller to obtain a more significant velocity, most of the particles cause tangential
action on the spiral surface of the volute. In addition, it can also be seen from the figure that
the average cumulative contact force of the blade and hub also changes more significantly.
In the t = 0 s to t = 0.3 s stage, the blade’s normal contact force is higher than the rest of
the components, which is directly related to the trajectory of the particles in Section 4.4.1:
At this time, the particles enter the impeller area from the inlet section, and a direct
collision with the blade head occurs to form impact behavior. As the number of particles
entering the system, and their motion, stabilizes, more particles interact with the large
contact area of the volute, eventually causing the cumulative contact force of the volute to
increase rapidly.
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5. Conclusions

This paper uses simulation tests and optimization algorithms to calibrate and verify
the angle of repose of gravel materials in centrifugal slurry pump conditions. Considering
the problems of parameter combination ambiguity and particle model accuracy, this paper
proposes a multi-objective optimization method with the static and dynamic angle of
repose as the response values of irregular gravel materials. Further experimental validation
shows that the procedure can be accurately applied to the calibration of flow parameters of
irregular bulk materials. The main conclusions are as follows:

(1) This paper constructs a more accurate particle irregular multi-sphere model based
on the original gravel 3D scanning model. It combines the independent angle of
repose test and the image analysis method to measure gravel’s angle of repose. The
well-estimated results of the angle of repose show that the scheme is an accurate
and efficient method for obtaining the angle of repose values for irregular materials.
The results of the sensitivity study of the DEM parameters show that the intrinsic
parameters of the particles in the simulation (Poisson’s ratio, Young’s modulus, and
particle density) and the collision recovery coefficient do not have a significant effect
on the angle of repose. However, a moderate reduction in Young’s modulus could
significantly reduce the computational cost.

(2) In this paper, the design variables are obtained by LHS, and the R2 values of the static
and dynamic angle of repose in the multi-objective optimal design model constructed
by the RBF model as a surrogate model are 0.965 and 0.958, respectively. This result
indicates that the established surrogate model can accurately reflect the relationship
between particle micro-parameters and macro-responses. The parameter sensitivity
analysis of the optimized model showed that the sliding friction coefficient had
the most significant influence on the macroscopic angle of repose of the particles.
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The best combinations of gravel particle simulation parameters were also obtained,
i.e., the particle–particle sliding friction coefficient of 0.323, the particle–particle rolling
friction coefficient of 0.061, the particle–geometric sliding friction coefficient of 0.316,
and particle–geometric rolling friction coefficient of 0.441.

(3) The results of the validation test of gravel stacking angle with the optimal combination
of parameters show that the relative error between the DEM simulated value and
the physical test stacking angle is 3.26%, which is within the allowable tolerance
of the angle of repose. The particle stacking shape of the simulated test almost
remains consistent with the physical test. The above results show that the new
optimization model constructed in this study can be realistically and reliably applied
to the calibration of flow parameters of gravel particles.

(4) The CFD–DEM coupling method was used to analyze the solid–liquid two-phase
transient flow inside the centrifugal pump. The results show that the particle trajec-
tory distribution inside the centrifugal pump exhibits a direct connection with the
centrifugal force and gravity on the particles and the shape of the impeller. The volute
is the most severely impacted component of the centrifugal pump in terms of wear.
The increase in the cumulative tangential contact force of the volute is the essential
factor in generating the wear behavior. This study only analyzes the development
of solid–liquid flow and wear behavior inside centrifugal pumps and verifies the
validity of the calibrated parameter set for application in industrial scenarios. The
interaction mechanisms between the particles and the components inside the pump
and the related applications will be further investigated in detail in the future.
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Appendix A

Design Variables Actual Value Predicted Value

µs_pp µr_pp µs_pw µr_pw αAoR_S/◦ βAoR_D/◦ αAoR_S/◦ βAoR_D/◦

0.519 0.343 0.761 0.248 40.3 62.9 - -
0.289 0.080 0.070 0.678 17.8 17.4 - -
0.258 0.008 0.144 0.650 25.0 28.8 - -
0.579 0.040 0.158 0.657 32.3 33.9 - -
0.529 0.160 0.181 0.782 34.8 37.1 - -
0.584 0.105 0.060 0.779 22.0 17.8 - -
0.177 0.329 0.533 0.427 28.3 54.1 - -
0.208 0.222 0.234 0.331 27.6 41.0 - -
0.141 0.434 0.292 0.079 23.7 44.3 - -
0.623 0.191 0.178 0.604 37.9 34.6 - -
0.002 0.144 0.080 0.715 7.9 17.2 - -
0.794 0.099 0.054 0.791 26.7 16.5 - -
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0.277 0.059 0.189 0.617 28.2 34.1 - -
0.729 0.156 0.022 0.672 7.4 14.6 - -
0.451 0.021 0.006 0.613 2.0 11.0 - -
0.160 0.559 0.376 0.576 23.9 49.4 - -
0.153 0.180 0.193 0.755 22.2 35.3 - -
0.604 0.686 0.099 0.646 29.0 30.3 - -
0.214 0.762 0.131 0.625 20.1 27.3 - -
0.709 0.732 0.064 0.631 19.6 25.9 - -
0.191 0.627 0.040 0.774 5.8 11.7 - -
0.098 0.663 0.001 0.642 1.2 5.2 - -
0.102 0.638 0.013 0.731 4.9 6.7 - -
0.649 0.700 0.122 0.661 31.9 31.1 - -
0.678 0.744 0.026 0.762 7.9 17.5 - -
0.031 0.658 0.126 0.684 8.1 22.1 - -
0.287 0.239 0.662 0.293 34.6 56.9 - -
0.317 0.475 0.779 0.117 35.1 62.7 - -
0.273 0.595 0.372 0.307 30.2 54.5 - -
0.114 0.339 0.559 0.189 24.1 53.9 - -
0.585 0.582 0.469 0.273 37.1 66.6 - -
0.000 0.438 0.706 0.529 12.5 40.9 - -
0.257 0.598 0.481 0.539 30.7 57.5 - -
0.666 0.348 0.552 0.032 42.8 66.3 - -
0.098 0.510 0.227 0.122 17.1 29.9 - -
0.565 0.524 0.737 0.212 41.1 68.1 - -
0.371 0.575 0.635 0.283 35.3 60.7 - -
0.599 0.441 0.796 0.342 40.6 66.8 - -
0.399 0.534 0.537 0.156 34.6 58.4 - -
0.498 0.378 0.443 0.235 38.7 58.1 - -
0.232 0.527 0.494 0.255 29.2 53.9 - -
0.054 0.322 0.334 0.084 17.6 40.2 - -
0.655 0.591 0.583 0.420 39.1 70.5 - -
0.761 0.360 0.418 0.329 42.6 62.2 - -
0.018 0.551 0.510 0.337 13.8 40.0 - -
0.453 0.463 0.592 0.225 37.4 66.9 - -
0.336 0.346 0.322 0.295 33.6 52.0 - -
0.409 0.210 0.317 0.434 35.5 52.3 - -
0.692 0.516 0.546 0.321 39.4 66.4 - -
0.490 0.301 0.646 0.516 40.2 63.9 - -
0.218 0.312 0.525 0.410 29.6 55.2 - -
0.359 0.392 0.486 0.016 36.2 57.3 - -
0.508 0.381 0.327 0.132 37.8 55.7 - -
0.404 0.586 0.250 0.495 32.4 45.0 - -
0.243 0.494 0.416 0.095 29.5 52.6 - -
0.746 0.327 0.784 0.269 44.4 62.4 - -
0.555 0.371 0.748 0.573 39.6 62.9 - -
0.154 0.266 0.774 0.023 27.2 52.3 - -
0.083 0.466 0.440 0.101 19.4 41.7 - -
0.447 0.246 0.401 0.352 39.2 51.3 - -
0.436 0.218 0.741 0.141 41.8 61.4 - -
0.768 0.305 0.210 0.452 38.7 43.7 - -
0.781 0.414 0.273 0.393 37.9 57.8 - -
0.347 0.387 0.263 0.069 30.4 46.5 - -
0.367 0.200 0.388 0.259 35.9 55.2 - -
0.030 0.444 0.206 0.543 11.4 28.2 - -
0.130 0.520 0.457 0.491 23.5 50.7 - -
0.646 0.552 0.694 0.003 41.2 66.3 - -
0.546 0.577 0.259 0.217 34.1 44.3 - -
0.297 0.532 0.246 0.448 27.5 41.3 - -
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0.040 0.319 0.268 0.521 14.6 38.4 - -
0.332 0.483 0.643 0.363 35.8 58.5 - -
0.703 0.253 0.424 0.038 44.2 58.5 - -
0.631 0.315 0.769 0.441 44.7 62.8 - -
0.150 0.296 0.304 0.025 23.5 40.7 - -
0.614 0.241 0.512 0.173 43.2 61.3 - -
0.678 0.421 0.381 0.078 42.1 61.8 - -
0.065 0.454 0.523 0.467 18.4 45.1 - -
0.622 0.205 0.282 0.461 40.6 56.4 - -
0.077 0.404 0.431 0.200 19.8 45.3 - -
0.190 0.232 0.718 0.525 29.8 57.1 - -
0.734 0.547 0.473 0.198 39.1 64.9 - -
0.484 0.259 0.340 0.356 37.9 54.5 - -
0.013 0.296 0.658 0.104 14.9 40.9 - -
0.793 0.229 0.586 0.384 45.8 64.7 - -
0.235 0.570 0.352 0.505 28.8 47.3 - -
0.196 0.226 0.728 0.468 29.8 54.2 - -
0.785 0.536 0.625 0.588 45.1 66.0 - -
0.582 0.270 0.598 0.559 42.7 62.8 - -
0.122 0.290 0.565 0.109 24.0 52.2 - -
0.205 0.565 0.652 0.011 30.0 54.7 - -
0.088 0.274 0.758 0.504 21.8 47.4 - -
0.291 0.450 0.407 0.556 32.5 55.2 - -
0.424 0.367 0.214 0.282 33.0 42.0 - -
0.106 0.364 0.576 0.388 22.7 49.8 - -
0.721 0.250 0.358 0.166 43.5 59.1 - -
0.535 0.471 0.240 0.184 33.6 48.8 - -
0.427 0.540 0.627 0.597 37.7 64.4 - -
0.540 0.397 0.363 0.062 38.8 65.3 - -
0.176 0.334 0.678 0.318 28.5 51.4 - -
0.053 0.112 0.136 0.670 13.7 23.1 15.0 25.7
0.508 0.019 0.089 0.711 30.1 20.2 25.7 24.1
0.129 0.131 0.118 0.705 18.8 24.2 16.4 23.4
0.545 0.127 0.170 0.728 35.6 39.4 35.0 34.3
0.305 0.175 0.080 0.797 20.8 20.9 22.7 21.2
0.392 0.070 0.092 0.749 31.2 23.6 28.0 21.0
0.161 0.062 0.105 0.698 18.3 22.5 19.7 22.2
0.780 0.032 0.147 0.693 33.4 33.3 37.6 27.9
0.497 0.676 0.112 0.725 26.7 28.4 24.6 27.6
0.697 0.778 0.197 0.770 31.3 43.0 36.0 32.6
0.468 0.715 0.019 0.754 4.4 17.9 7.2 17.2
0.375 0.616 0.038 0.708 7.4 15.8 10.7 22.4
0.347 0.694 0.047 0.687 9.4 21.2 8.8 16.0
0.426 0.753 0.151 0.744 25.9 31.7 26.4 33.5
0.472 0.502 0.792 0.375 38.1 65.5 38.3 65.1
0.065 0.792 0.165 0.606 11.1 29.3 11.1 27.6
0.415 0.783 0.168 0.738 26.9 34.9 26.5 33.1
0.337 0.609 0.073 0.786 14.6 26.2 9.3 16.4
0.743 0.725 0.033 0.635 10.4 22.6 12.7 21.4
0.220 0.647 0.107 0.623 18.3 21.8 15.8 21.2
0.380 0.431 0.447 0.585 34.3 56.6 36.8 59.6
0.522 0.277 0.700 0.367 41.0 61.2 41.8 62.4
0.035 0.283 0.615 0.398 17.5 42.9 18.8 45.2
0.608 0.424 0.299 0.056 37.5 57.0 38.3 58.9
0.681 0.459 0.462 0.230 40.2 64.2 40.4 65.3
0.387 0.488 0.223 0.155 31.4 42.3 30.0 41.2
0.272 0.401 0.608 0.477 33.3 59.8 32.4 58.0
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0.576 0.486 0.716 0.047 39.1 67.3 41.1 66.6
0.469 0.287 0.571 0.146 39.8 57.6 40.4 62.2
0.758 0.260 0.681 0.305 45.8 65.5 45.3 63.4
0.635 0.498 0.287 0.180 37.3 58.9 36.5 53.7
0.743 0.355 0.395 0.548 44.2 66.8 42.5 60.9
0.308 0.504 0.347 0.205 32.0 42.9 31.6 51.4
0.057 0.412 0.492 0.480 18.2 43.1 18.3 45.2
0.657 0.417 0.505 0.569 40.3 69.3 43.2 66.6
0.707 0.373 0.605 0.420 42.4 66.9 43.0 66.9
0.716 0.214 0.314 0.132 44.4 53.5 41.5 55.4
0.322 0.477 0.727 0.405 34.9 59.9 35.4 58.4
0.463 0.563 0.671 0.245 36.7 65.8 38.1 66.7
0.252 0.388 0.687 0.048 32.7 59.6 32.9 58.7
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