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Abstract: In a wind tunnel process, Mach number is the most important parameter. However, it
is difficult to measure directly, especially in the multimode operation process, leading to difficulty
in process monitoring. Thus, it is necessary to measure the Mach number indirectly by utilizing
data-driven methods, and based on which, to monitor the operation status of the wind tunnel process.
In this paper, therefore, a multimode wind tunnel flow field system monitoring strategy is proposed.
Since the wind tunnel system is a strongly nonlinear system, the kernel partial least squares method,
which can efficiently handle the nonlinear regression problem, is utilized. Firstly, the Mach number is
predicted utilizing the kernel partial least squares method. Secondly, process monitoring statistics,
i.e., the Hotelling T2 statistic and the square prediction error, the SPE statistic, and their control
limits, are proposed to be applied to monitor the wind tunnel process on the basis of the prediction
of the Mach number. Finally, the Mach number prediction and monitoring strategy are applied to a
real process, where mode analysis and division is necessary. After mode division, the single-mode
and multimode processes are modeled and predicted, respectively, and both the single-mode and
multimode processes are monitored online. Satisfactory results were achieved compared with those
of the partial least squares method.

Keywords: multimode; nonlinear; wind tunnel; KPLS

1. Introduction

In wind tunnel systems, power devices are used to drive controllable air flow through
an annular pipe to conduct various aerodynamic tests [1]. Additionally, the wind tunnel
systems contribute significantly to the space industry [2]. Since aerospace vehicles develop
rapidly, the number of wind tunnel tests has increased greatly. Because the wind tunnel
system is an extremely complex, multivariable, nonlinear system with multiple working
conditions and multiple correlations between variables, determining how to develop a
wind tunnel system model suitable for multiple working conditions is difficult. The most
critical factor in modeling each condition of the wind tunnel system is the need to collect a
lot of data to ensure accuracy. It needs many test times to obtain high precision in the model
during the wind tunnel operation and testing, and each time the test energy consumption
is very high; thus, the wind tunnel test would be improved if a safe operation process can
be guaranteed and less data were necessary to guarantee the accuracy of the model. In
recent years, with the improvement in wind tunnel equipment, wind tunnels undergo more
and more test tasks. The tests are increasingly difficult, and the demand for safety and
stable operation is greater [3]. Therefore, in the operation of a wind tunnel, it is particularly
important to monitor the operation state of the process, and it is of great significance to
frequently check the abnormal system operation for the operation of the wind tunnel. In
addition, complex working conditions and high energy consumption also make it very
important to analyze and model for multiple working conditions, capturing the relationship
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between multiple modes, and evaluating the efficiency of building models for multiple
working conditions.

Although the Mach number is very important in the wind tunnel flow field, it is usually
not easy to acquire directly using mechanical principles, especially for multiple working
modes. Therefore, it is typical to predict the Mach number through soft measurements.
Several researchers recently proposed methodologies for Mach number predictions. For
example, Wang et al. predicted the Mach number of a wind tunnel based on the random
forest method [4]; Du et al. established an integrated neural network on the basis of a
feature subset to predict the Mach number [5]; Guo et al. developed a time slice model,
using the partial least squares (PLS) method in multimode wind tunnel systems [6]; and
Yuan Ping et al. developed a kernel partial least squares (KPLS) Mach number prediction
strategy focusing on the nonlinear characteristic of the wind tunnel system [7]. In their
work, the KPLS method was applied to build time slice models and mean value models.
As stated above, prediction methods for the Mach number have been investigated and the
Mach number prediction problem has been solved to a certain degree. However, few works
have been conducted about wind tunnel system monitoring based on the Mach number
predictions, thus, how to utilize the online Mach number predictions to monitor the wind
tunnel flow field is still a problem which has to be settled urgently.

The KPLS method was proposed based on the PLS method. In 1980s, PLS was first
proposed to capture the relationship between independent and dependent variables [8].
Since then, PLS was applied widely in the fields of statistical modeling, monitoring, and
quality prediction and control [9–12], especially for batch processes [13–15]. Afterwards, a
kernel function was introduced into PLS to handle the nonlinear problem [16–19]. Therefore,
it can be used to solve the nonlinear regression problem for industrial processes where
process data usually exhibit strong nonlinearity.

In this paper, a strategy for Mach number monitoring on the basis of Mach number
prediction, which considers the nonlinear characteristic and the multimode characteristic
in a wind tunnel system, is proposed. Considering that the models built based on the
process variables stored in time slices are very easily affected by noise and the predictions
may fluctuate heavily, the mean matrices of the variable time slices are preferred to build
the regression model. Thus, the KPLS algorithm is applied to establish the relationship
between the mean matrix of the process variables and the Mach number of the time slices
within each working mode. In addition, the statistical indexes, i.e., the Hotelling T2 statistic
and the square prediction error, SPE statistic, and their control limits, are proposed for the
Mach number monitoring based on the KPLS method. Consequently, the Mach number
prediction and monitoring strategies are applied to a real process, where mode analysis and
division is necessary. Through mode analysis based on process knowledge, the concerned
multiple working conditions are divided into several modes. After mode division, the
single-mode and multimode processes are modeled and predicted, respectively, and both
are monitored online. The Mach number prediction results as well as the monitoring results
for each mode are compared with those from the PLS method. In addition, a multimode
prediction and monitoring analysis is accomplished adopting the proposed prediction and
monitoring strategy, of which the results are also compared with those obtained by the PLS
method. Finally, a faulty process is monitored and identified.

The following sections of this paper include the following: in Section 2, the mean
matrix KPLS model is introduced, as well as the according monitoring strategy based on
KPLS. Section 3 begins with the structure of the wind tunnel, and then the proposed Mach
number monitoring strategies are illustrated for the multiple modes in detail, compared
with the mean matrix PLS models. Additionally, a faulty process is monitored and identified.
Finally, in Section 4, the conclusions are presented.
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2. Methodology
2.1. Mean Matrix KPLS Regression Model

To deal with the multiple working conditions, the collected data are stored in a way
similar to batch processes, that is, each test of the wind tunnel process is considered as
a batch, and the data are stored in a two-dimensional matrix with the variable direction
and the time direction. Data of several tests with the same working conditions constitute
a data block, which is a three-dimensional matrix, adding the test direction as the third
direction. Furthermore, some data blocks from neighboring working conditions will form
the data matrix of one working mode by analyzing process knowledge, which is still a
three-dimensional matrix. The details of mode division will be outlined in the simulation
section. Here, the methodology will be focused on for each mode. That is, the methodology
comprises the modeling and monitoring strategies for one mode.

As stated above, in each working mode, the measured process variable data forms a

three-dimensional data matrix,
_
X(I × Jx × K), where I represents the total number of tests,

J represents the total number of process variables, and K represents the total number of
sample times within each test. The measured dependent variable of I tests are stored in

the matrix
_
Y(I × Jy × K). After normalization, the normalized process variable and the

quality variable are denoted as X̃(I × Jx × K) and Y(I × Jy × K). Then, by decomposing
the normalized process variable data matrix, X̃, along the time axis, K time slice matrices
can be obtained, i.e., X̃k(I × Jx), k = 1, 2, . . . , K. Similarly, by decomposing the normalized
quality variable data matrix, Y, along the time axis, K time slice matrices can be obtained,
i.e., Yk(I × Jy).

The KPLS method is introduced to solve the nonlinear problem [20]. First, process
data are projected nonlinearly by the mapping function,

Φ : x ∈ Rn → Φ(x) ∈ F (1)

where x is a vector in the initial space, Rn is the n-dimensional Euclidean space, Φ is the
constructed mapping function, and F the high-dimensional feature space. The appropriate
kernel function should be selected to accomplish the mapping. The inner product in the
feature space is

〈Φ(x), Φ(z)〉 = K(x, z) (2)

where z is a vector in the initial space. There are many kernel function forms, and usually,
it is necessary to carefully choose the kernel function to better transform the characteristics
of the process variables. Common kernel functions include the Gaussian kernel function,
the polynomial kernel function, the radial kernel function, exponential kernel function, and
so on. Typically, the Gaussian kernel function can be expressed as

K(x, z) = exp(
‖x− z‖2

2σ2 ) (3)

The polynomial kernel function can be expressed as

K(x, z) = (〈x, z〉+ c)d (4)

For concision, only these two typical kernel functions are introduced here.
In a previous work, heavy noise in the time slice models was found, and the mean

value model, which is built based on the parameters of the time slice models, was proven
to produce better prediction results than the time slice models [7]. However, usually,
there may be thousands of time slice models, and the kernel transformation of each time
slice variable matrix to obtain the regression parameters of KPLS may take a long time,
which is not efficient. Therefore, a novel way to build the model, i.e., the mean matrix
model based on the time slice models, is proposed here. The mean value process variable
matrix is obtained before the kernel transformation, and only needs to conduct the kernel
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transformation once on the mean value process variable matrix to acquire the regression
parameter of the mean matrix model. The details are introduced below.

To avoid the influence of noise, the mean value of the process data and the mean value
of the quality data of each mode during the certain time period are first obtained before
conducting the kernel transformation, as follows:

X̃ =
K

∑
k=1

X̃k (5)

Y =
K

∑
k=1

Yk (6)

Then, the mean value of the process data matrix, X̃, is projected into the selected high
dimensional kernel space, obtaining the data matrix denoted as Φ.

In this high dimensional space, Φ and Y can be treated in a linear way. Thus, the mean
matrix PLS model can be obtained as follows [16,21]:

Φ = TPT + E (7)

Y = UQT + F (8)

where T and U are the score matrices, P and Q are the loading matrix and loading vectors,
E and F are the residual matrix and residual vectors.

A typical NIPALS-KPLS algorithm is shown below.

1. Initialize u randomly.
2. t = ΦΦTu = Ku, t← t/‖t‖ .

3. c = YTt.
4. u = Yc, u← u/‖u‖ .
5. Repeat steps 2–5 until convergence.
6. K← (I− ttT)K(I− ttT), Y← Y− ttTY .
7. Return to 2, until all latent variables are calculated.

The regression relationship between Φ and Y can be written directly as

Ŷ = ΦB = ΦΦTU(TTΦΦTU)
−1

TTY = KU(TTKU)
−1

TTY (9)

where B is the regression parameter vector.

B = ΦTU(TTΦΦTU)
−1

TTY = ΦTU(TTKU)
−1

TTY (10)

For the new process data that need to be predicted after the kernel transformation,
Xnew,k, the quality prediction is

Ŷnew,k = Φnew,kB = Φnew,kΦTU(TTΦΦTU)
−1

TTY = Knew,kU(TTKU)
−1

TTY = Knew,kBkpls (11)

2.2. Mach Number Monitoring Based on KPLS

In this paper, online monitoring is conducted based on the Hotelling T2 statistic and
the square prediction error (SPE) statistic. The Hotelling T2 statistic measures the process
variation of the principal space, represented by the deviation of latent variables. SPE
statistic measures the process variation of the residual space, representing by the deviation
of the process variables.

In the current operating condition, the definitions of the Hotelling T2 statistic and the
SPE statistic are

Tk
2 = Φ(xk)

TR(
TTT
I − 1

)
−1

RTΦ(xk) (12)
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SPEk = ‖
_
y k‖

2
= ‖(IJy −KU(TTKU)−1TT)yk‖

2
(13)

where
_
y k is the residual vector at the k-th moment.

Their control limits are

T2
α =

H(I2 − 1)
I(I − H)

Fα(H, I − H) (14)

SPE(α) = gχ2
h,α (15)

where Fα(H, I − H) is the F distribution with the confidence α and degrees of freedom, H
and I−H, and H is the total number of retained latent variables; gχ2

h,α is the χ2 distribution
with the confidence level of α and the proportional coefficient of g = s/2µ; h = 2µ2/s; µ is
the mean value of SPEk; and s is the variance of SPEk, k = 1, . . . ,K.

For the new process variable vector xnew,k, which needs to be monitored, the online
statistics are calculated as

Tnew,k
2 = xnew,k

TR(
TTT
I − 1

)
−1

RTxnew,k (16)

SPEnew,k = ‖
_
y new,k‖

2
= ‖(IJy −KU

(
TTKU

)−1
TT)ynew,k‖

2
(17)

where
_
y new,k is the residual vector at the k-th moment.

3. Illustration and Discussion
3.1. Wind Tunnel System

Figure 1 shows a typical continuous transonic wind tunnel, which is a Chinese low-
noise variable density reverse channel built in 2012. The wind tunnel investigated in this
work is 0.6 m × 0.6 m. The design scheme of the wind tunnel adopts the compressor drive
system with wide working condition and its integration with the wind tunnel, semi-flexible
wall nozzle, low-noise transonic test section, main injection slot of fingerboard re-entry
regulator, high-performance heat exchanger, and three-stage regulator, plus an adjustable
central throat and other new technologies.
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When the wind tunnel starts working, the wind tunnel flow field is quickly formed.
After a period of operation in the wind tunnel, the gas continuously enters the tunnel.
Through controlling the main exhaust valve to empty the gas, the total air pressure in the
stability section and the static pressure of the test segment will reach the target value, thus
the Mach number will be stable.

There are a great deal of working conditions associated with a wind tunnel process
due to varying parameter settings. Many process parameters exist in a wind tunnel process,
such as jet groove, opening/closing ratio, and control mode of the total pressure, while
their influences on the working condition division are not quite clear. In addition, it is
not sensible to build models for each working condition with any slight change in any
process parameter. Therefore, how to conduct meaningful mode division is significant
for the wind tunnel system. After careful analysis of the knowledge of the wind tunnel
process, the working condition with the J7 model, 28 mm jet groove, an opening and closing
ratio of 2%, and the negative pressure mode are investigated in this paper. Within one
working condition, there are still many other operation factors, such as the attack angle
step, the speed setting value, and so on, which will have a large influence on the mode
division, and further affect the modeling of the Mach number. The concerned process
variables are listed in Table 1. Due to the fact that, in the specific wind tunnel process, the
motor speed of 1800 rpm is a typical working condition, here, the 1800 r motor speed is
applied. Additionally, the influence of the attack angle change to the wind tunnel field is of
interesting to researchers in this field; thus, the attack angle steps are used as the index to
divide the data block into different working modes, which are shown in Table 2. The attack
angle step of Mode 1 is 2, which includes data blocks 1, 2, 3, and 4, and the attack angle
step of Mode 2 is 1, which includes data blocks 5, 6, 7, 8, and 9. Each data block stores the
process data under the same working condition.

Table 1. Process variables.

No. Process Variable Unit

1 Total pressure Bar
2 Stable static pressure Bar
3 Test static pressure Bar
4 Outlet static pressure Bar
5 Temperature ◦C
6 Humidity %
7 Test section flow m3/s
8 Attack angle ◦

9 Speed m/s
10 Blade angle ◦

11 Main output pressure Bar
12 Main inlet pressure Bar
13 Main output temperature ◦C
14 Main inlet temperature ◦C
15 Auxiliary angle ◦

16 Auxiliary inlet pressure Bar
17 Auxiliary output temperature ◦C
18 Mass flow of auxiliary outlet m3/s
19 Mass flow of auxiliary inlet m3/s
20 Auxiliary gas flow m3/s
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Table 2. Operating modes.

Data Blocks Mach Number Speed Initial Attack Angle Target Attack Angle Attack Angle Step Mode

1 0.7813 1800 −4 −2 2

Mode 1
2 0.7831 1800 −2 0 2
3 0.7803 1800 0 2 2
4 0.7726 1800 2 4 2

5 0.7684 1800 4 5 1

Mode 2
6 0.7647 1800 5 6 1
7 0.7613 1800 6 7 1
8 0.7581 1800 7 8 1
9 0.7539 1800 8 9 1

The following simulation will be accomplished based on these two data modes with
different data blocks. In Mode 1, some of the data of block 3 are taken as the test data,
and the rest of the data in Mode 1 are taken as the training data. For convenience, the test
data and training data for mode 1 are called test data 1 and training data 1, respectively.
The dimensions of training data 1 are 4 × 20 × 654, and the dimensions of test data 1 are
1 × 20 × 654. Similarly, in Mode 2, some of the data of block 7 are taken as the test data,
and the rest of the data in Mode 2 are taken as the training data, which are called test data
2 and training data 2, respectively. The dimensions of training data 2 are 5 × 20 × 654, and
the dimensions of test data 2 are 1 × 20 × 654. For multimode analysis, training data 1
and training data 2 are combined to form the training data of the multiple modes, with the
dimensions 8 × 20 × 654. Moreover, test data 1 and test data 2 are still used in the test,
representing Mode 1 and Mode 2, respectively.

3.2. Mach Number Prediction Based on KPLS Model

In this section, firstly, to verify the prediction precision, mean matrix KPLS models are
built for single modes, Mode 1 and Mode 2, respectively, and the predictions of the mean
matrix KPLS model as well as the predictions of the mean matrix PLS model are obtained
and compared. Secondly, the multiple modes, which consist of Mode 1 and Mode 2, are
used as the object to conduct the multimode Mach number prediction to illustrate the
effectiveness of the prediction strategy based on mode division.

A. Single-mode prediction

Firstly, mean matrix KPLS models and mean matrix PLS models are built utilizing
the training data and the test data of each mode. The prediction results of Mode 1 and
Mode 2 are shown in Figure 2a,b, respectively. It can be seen that better prediction results
are provided by the mean matrix KPLS model than the mean matrix PLS model. Obviously,
the prediction results of the mean matrix KPLS model are much closer to the actual values
of the Mach number, and there are many fluctuations in the predictions results of the mean
matrix PLS model, which are caused by the unmodeled dynamics and processes that are
not taken into account in the PLS method assumptions. The regression parameters of the
mean matrix PLS model and the mean matrix KPLS model are shown in Figures 3 and 4.
From Figure 3, it can be seen that process variables 2, 3, 4, 12, 17, and 19, which are stable
static pressure, test static pressure, outlet static pressure, main inlet pressure, auxiliary
output temperature, and mass flow of the auxiliary inlet, respectively, have larger impacts
on the predicted variables than the others. From Figure 4, the regression parameter of
KPLS does not reflect the regression relationship with the process variables due to the
kernel matrix.
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B. Multimode prediction

After the analysis for single modes, multiple modes, which consist of Mode 1 and
Mode 2, are focused on. That is, training data 1 and training data 2 are combined to form the
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training data of the multiple modes. The multimode prediction can help to judge whether
it is necessary to model each mode respectively. Firstly, using the combined training data
of the two modes, the mean matrix KPLS model and the mean matrix PLS model are built.
Test data 1 and test data 2 are predicted, respectively, to clearly observe the prediction
results for each mode. The prediction results are represented in Figure 5a,b. It can be
seen that the mean matrix KPLS model provides much better predictions than the mean
matrix PLS model. Similar to the single-mode prediction, the predictions of the mean
matrix KPLS model are much closer to the actual values of the Mach number, and there
are many fluctuations in the predictions of the mean matrix PLS model. The regression
parameters of the mean matrix PLS model and the mean matrix KPLS model are shown in
Figures 6 and 7. From Figure 6, it can be seen that the regression parameters for Mode 1
and Mode 2 are the same, which conforms to the modeling strategy. Additionally, they are
similar to the regression parameters obtained by for the single modes.
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Figure 7. KPLS regression parameter: (a) Mode 1; (b) Mode 2.

The RMSE values of each mode and multimode predictions were calculated and are
shown in Table 3. Since the RMSE values of the mean matrix PLS model are approximately
ten times of those of the mean matrix KPLS model, it can be concluded that the mean
matrix KPLS model is better than the mean matrix PLS model. This is consistent with
the anticipation that since the wind tunnel field has strong nonlinear characteristics, the
KPLS model, which can handle the nonlinear regression problem, would provide better
prediction results than the PLS model, which deals with linear regression. Meanwhile, the
RMSE values of the predictions of the KPLS model satisfy the prediction precision, and the
prediction results of the single-mode model are better than those of the multimode model.
This means that if these data blocks were combined as one mode, i.e., without dividing
into two modes, the prediction results will be worse. Thus, mode division is necessary for
the wind tunnel flow field system, and, based on good mode division, modeling for each
mode will be more efficient. The standard deviations of PLS and KPLS are listed below in
Table 4 [22]. The standard deviations of the regression parameters of the mean matrix PLS
model are around 0.4, while those of the mean matrix KPLS model are around 0.99.

Table 3. RMSE values of predictions.

Cases Mean Matrix PLS Model Mean Matrix KPLS Model

Test data 1 using the
single-mode model 2.730 × 10−3 0.204 × 10−3

Test data 2 using the
single-mode model 1.781 × 10−3 0.251 × 10−3

Test data 1 using the
multimode model 2.595 × 10−3 0.254 × 10−3

Test data 2 using the
multimode model 2.878 × 10−3 0.357 × 10−3
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Table 4. Standard deviations of the regression parameters.

Cases Mean Matrix PLS Model Mean Matrix KPLS Model

Test data 1 using the
single-mode model 0.3938 0.9921

Test data 2 using the
single-mode model 0.4123 0.9994

Test data 1 using the
multimode model 0.4425 0.9978

Test data 2 using the
multimode model 0.4425 0.9961

As shown above, the Mach number predictions satisfy the required precision. This
proves that the relationship captured by the mean matrix KPLS model strongly represents
the real relationship between the process variables and the Mach number. Since the mean
matrix KPLS model provides better predictions than the mean matrix PLS model, the
relationship captured by the mean matrix KPLS is more reliable than the mean matrix PLS
model. Moreover, it can be implied that the following monitoring based on the mean matrix
KPLS model would be more reliable than that based on the mean matrix PLS model. This
implication illustrates that the Mach number prediction is an indispensable step before
applying the specific monitoring strategy. Obviously, if a mode cannot accurately represent
the relationship between variables, the monitoring strategy based on this model also cannot
monitor the process correctly.

3.3. Mach Number Monitoring

In this section, firstly, based on the mean matrix KPLS models, the monitoring statistics
as well as their control limits are calculated for the normal test data of Mode 1 and Mode 2,
respectively. Secondly, the multimode Mach number monitoring process is conducted.
Finally, a faulty process is monitored.

A. Single-mode monitoring

Firstly, the T2 and SPE statistics and their statistical control limits are calculated for
each mode based on the quality prediction for single modes. The confidence level α is set
to 0.9. The monitoring results of normal data of Mode 1 and Mode 2 are obtained, and are
shown in Figure 8a,b,c,d, respectively. In these figures, both the T2 and SPE statistics are
beneath their control limits, which means the test data are in a normal status. Therefore,
the mean matrix KPLS model provides satisfactory monitoring results.

B. Multimode monitoring

Afterwards, normal test data 1 and test data 2 are monitored. The T2 and SPE statistics
and their statistical control limits are accordingly calculated based on the quality prediction
for multiple modes. The monitoring results are represented in Figure 9a–d. Both the T2 and
SPE statistics of the mean matrix KPLS model are beneath the control limits, which means
the test data are in a normal status. Meanwhile, some points of the SPE statistic of the mean
matrix PLS model go beyond the control limits. In addition, the monitoring results of the
mean matrix KPLS model are more satisfactory than those of the mean matrix PLS model,
since there is some noise in SPE that exceeds the controls limits and may cause false alarms.
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Figure 8. Mach number monitoring results: (a) T2 for Mode 1; (b) SPE for Mode 1; (c) T2 for Mode 2;
(d) SPE for Mode 2.

C. Fault monitoring

Finally, a faulty process is introduced for monitoring. Firstly, the monitoring results of
faulty test data 1 and test data 2 are obtained, and are shown in Figure 10a–d, respectively.
For Mode 1, the T2 statistic is beneath the control limit, while the SPE statistic goes beyond
the control limit, which means the test data are in a faulty status. For Mode 2, both the
T2 statistic and SPE statistic go beyond their control limits, which means the test data are
in a faulty status. It can be seen that faulty process monitoring by the single-mode mean
matrix KPLS model provides satisfactory monitoring results. Secondly, the monitoring
results of faulty test data 1 and test data 2 are monitored by the combined model of the two
modes, respectively. The monitoring results are represented in Figure 11a–d. Both the T2

and SPE statistics go beyond their control limits, which means the test data are in a faulty
status. In addition, the monitoring results of the multimode mean matrix KPLS model can
also provide satisfactory monitoring results. When a fault occurs, it can be monitored and
identified correctly.
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Figure 10. Mach number monitoring results of a faulty test: (a) T2 for Mode 1; (b) SPE for Mode 1;
(c) T2 for Mode 2; (d) SPE for Mode 2.

Based on the previous illustration, the implication derived after the Mach number
prediction section, i.e., that the monitoring based on the mean matrix KPLS model would
be more reliable than that based on the mean matrix PLS model, has been proven.
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In summary, the simulation section shows the application outcomes of the proposed
Mach number prediction results, followed by the monitoring results based on the mean
matrix KPLS method. Before further analysis, typical working conditions are divided
into two modes, and following analysis is focused on Mode 1, Mode 2, and the multiple
modes. During the Mach number prediction, the mean matrix KPLS model provides
better predictions than the mean matrix PLS model, which proves the efficiency of the
kernel function in handling the nonlinear problem. Meanwhile, the single-mode models
for Mode 1 and Mode 2 can offer better predictions than the multimode model, which
proves the necessity of mode analysis and mode division. Furthermore, based on the more
precise prediction of the Mach number, process monitoring for the two modes is conducted.
Additionally, the monitoring results of the mean matrix KPLS model are compared with
those of the mean matrix PLS model, and both the results of the single-mode model and the
results of the multimode model are obtained and observed. Finally, fault process data are
monitored by both the single-mode model and the results of the multimode model. Both
of these models can offer satisfactory monitoring results. Since the single-mode model is
better at predicting the Mach number, it is also preferred in Mach number monitoring.

4. Conclusions

A strategy for Mach number monitoring is introduced in this paper on the basis of the
prediction of the Mach number for a multimode wind tunnel system. First, mean matrix
KPLS models are established to obtain the Mach number predictions. Secondly, based on
the Mach number predictions, a process monitoring strategy is proposed based on T2 and
SPE statistics and their control limits. In application, better predictions are achieved based
on proper mode division. Through the comparison with PLS, KPLS is superior at solving
the nonlinear problem, providing better prediction and satisfactory monitoring results.
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