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Abstract: In order to solve the corrosion problem of production string in the process of acidiz-
ing for the purpose of production, a new water-based annular protective fluid suitable for HTHP
acid gas, including H2S-CO2 wells, was developed. Firstly, an appropriate deoxidizer, bactericide,
and corrosion inhibitor shall be selected according to the production string of acid gas. In addi-
tion, the synergism between additives is evaluated. Then, by designing the additive ratio, the
optimal formulation of the water-based annular protective fluid is determined. Finally, a high-
temperature autoclave was used to evaluate the protective performance of the water-based annular
protective liquid. The results showed that it is recommended to use water-based annular protec-
tive liquids prepared with clear water that comes easily from nature (rivers, etc.), which consist
of a corrosion inhibitor, CT2-19C (30,000 ppm), BN-45 bactericide (2 g/L), and anhydrous sodium
sulfite (3 g/L). The density of the water-based annulus protection liquid is 1.02 g/cm3, and the
freezing point is −2.01 ◦C. The dissolved oxygen content of water-based annulus protection fluids
prepared with clear water in formation water shall be controlled within 0.3 ppm. The corrosion
inhibition rate of water-based annular protective fluid in the liquid phase is higher than 90%, and
the corrosion rate of P110SS steel in the gas–liquid phase is lower than the oilfield corrosion control
index (0.076 mm/y).

Keywords: CO2-H2S environment; water-based annulus protection liquid; corrosion inhibitor;
deoxidizer; bactericide

1. Introduction

China’s natural gas production is concentrated in the Sichuan Basin and the Tarim
Basin. These high sulfur gas fields will produce acid gases, including H2S and CO2, in the
process of natural gas production [1–3]. The high content of H2S and CO2 will seriously
corrode the production of string and promote the failure of the production tubing [4–6].
Dong et al. pointed out that in an acidic environment, the production tubing at the bottom
of the deep well contains water, which can cause internal corrosion [7]. This is mainly
because carbon steel only contains one layer of FeS in the CO2-H2S environment. The
corrosion resistance of Cr-containing steel production tubing to CO2-H2S is higher than
that of carbon steel, which is mainly due to the fact that Cr-containing steel is rich in Cr and
S elements from the outside to the inside. Cr-containing compound Cr(OH)3 and Sulfide
of Fe FeS are competitively deposited on the surface of 3Cr steel. The deposition of FeS
inhibits the precipitation of Cr(OH)3, which preferentially accumulates near the surface to
form an inner layer, while Cr(OH)3 is far away from the surface to form an outer layer [8].

In addition, the packer rubber cartridge of the production tubing will be severely
corroded in the CO2-H2S environment [9,10]. The effect of corrosion on the mechanical
properties of AFLAS and FKM rubber was not obvious, but it was very significant on
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HNBR rubber. FKM rubber has good corrosion and aging resistance, followed by AFLAS
rubber, whereas HNBR rubber has the worst corrosion and aging resistance in the CO2-H2S
corrosive environment [11]. After the packer leaks the acid, gas will enter the annulus and
cause pressure in the annulus, which will cause serious corrosion to the casing [12–14]. In
addition, the annular space between the closed production tubing and oil casing, CO2-H2S
gas accumulation, bacteria propagation, and other conditions are relatively serious, result-
ing in thinning and corrosion of the casing wall thickness [15–17]. Therefore, it is necessary
to add environmental control protection fluid in the annular space between the closed
production tubing and oil casing. Annular protection fluid generally contains oil-based an-
nular protection fluid and water-based annular protection fluid [18–21]. Oil-based annular
protective fluid is usually based on white oil and engine oil, and then a small amount of
corrosion inhibitor is added [22,23]. Water-based annular protective fluid is usually based
on well pad water, and then different agents are added, such as corrosion inhibitors, deoxi-
dizers, and bactericides [24,25]. Zeng et al. formulated an oil-based annular air protection
solution suitable for a CO2 gas injection environment, which is composed of white oil and
a massive imidazoline inhibitor, and the corrosion inhibition rate was more than 80% [15].
Although many new annular protective fluids have been developed, there is still a lack
of efficient annular protective fluids suitable for sour gas production wells. Among them,
the oil-based annular air protection liquid will pollute the environment, and a large dose
of additives is required to achieve a better protection effect, so it is urgent to prepare a
high-efficiency water-based annular air protection liquid with a good corrosion inhibition
effect that is environmentally protected. The paper aims to solve the corrosion problem of
the oil casing annulus in high-acid recovery wells. A high-efficiency water-based annular
protective fluid that fits HTHP sour gas wells has been developed and evaluated. First, the
additives including deoxidizer, bactericide, corrosion inhibitor, pour point depressant, and
density regulator were selected, and were then evaluated on the performance of added
protection fluids on this basis. This paper’s conclusion offers a basic guarantee for the safe
operation of high-acid production wells.

2. Experiments
2.1. Environmental Analysis of Corrosion of Sour Gas Well Production String

According to the data of an oilfield in northwest Sichuan, the acid gas produced in
wells mainly includes 1.5 MPa H2S and 3 MPa CO2. The packer is easily leaked in an
HTHP environment, resulting in the acid gas and trace oxygen in the formation quickly
entering the annulus. Therefore, it is seen that the corrosion environment is harsh because
of the high annulus pressure of 40 MPa and the high temperature of 160 ◦C, and Figure 1
exhibits the produced wells of high-temperature and high-pressure (HTHP) acid gas wells.
The tail pipe of wellbore liner is made of nickel-base alloy with good corrosion resistance,
and carbon steel P110ss is used above the setting section of the packer. The annular space
between the closed production tubing and oil casing is easy to breed bacteria, including
saprophytic bacteria, iron bacteria and sulfate-reducing bacteria, which further aggravates
the corrosion. To balance the differential pressure between the upper and lower packers and
protect the production tubing and oil casing from further corrosion, water-based annular
protective fluids need to be added. The water-based annular protective liquid is composed
of corrosion inhibitors, deoxidizers, and bactericides.
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Figure 1. Schematic diagram of production well of HTHP acid gas well.

2.2. Experimental Consideration

Figure 2 exhibits the design thinking of water-based annular protective fluids fitted to
HTHP sour gas wells. The design of water-based annular protective fluid mainly includes
the selection and determination of additives, the selection and evaluation of additive
synergy, the proportion design of additives, and the performance evaluation of water-based
annular protective fluid. Among them, additives including corrosion inhibitors, oxygen
scavengers, and fungicides are selected from mature products in the Chinese market.
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2.3. Experimental Method
2.3.1. Physical and Chemical Properties Test

First, the water solubility of all active additives including, deoxidizer, bactericide,
corrosion inhibitor, and formation water, needs to be considered. Therefore, the water
solubility of active additives and formation water must be evaluated by SY/T5273-2014
(technical specifications and evaluating methods of corrosion-inhibitors for oilfield pro-
duced water). Then, the deoxidizers, bactericides, and corrosion inhibitors are screened
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according to the standard SY/T5889-2010 (evaluation method for performance of deaer-
ator), SY/T5757-2010 (general technical conditions for fungicides injected into oilfields),
and SY/T205273-2014 [26,27]. Finally, on the basis of GB/T510-2018 (petroleum products’
determination of freezing point), the freezing point of the annulus protective fluid is tested
with a BSY-179D cryogenic flow tester (Dalian Beigang, Dalian, China ), and its density is
tested with a mud hydrometer (NB-1).

2.3.2. Electrochemical Test

CorrTest CS305 electrochemical workstation (USA) is adopted. According to SY/T5273-
2014 standard, three traditional electrode systems are used to conduct an electrochemical
test of the corrosion inhibitor. Among them, P110ss steel (chemical composition seen in
Table 1) is selected as the working electrode (WE) with a test surface area of 0.785 cm2. The
reference electrode is a double salt bridge saturated calomel electrode (SCE), and the plat-
inum sheet as the counter electrode (CE). The saturated H2S aqueous solution (composition
of formation water is shown in Table 2) was titrated into the saturated CO2 aqueous solu-
tion as corrosive solution by titration method at a ratio of 1:2, and Thermo Scientific Dionex
multifunctional ion chromatograph (Thermo Fisher Scientific, Waltham, MA, USA) was
used to analyze water ion composition in formation water (Table 2). The electrochemical
test was performed at a temperature of 60 ◦C. The electrochemical polarization curve test
was compared with the open circuit potential ± 400 mV scan, and the scanning rate was
0.50 mV/s. The Tafel extrapolation method was used to fit the polarization curve measured
by the experiment to determine the corrosion rate and corrosion inhibition rate.

Table 1. Chemical composition of P110SS steel (wt.%).

C Si Mn P S Cr Mo Ni Nb Ti V Fe

0.27 0.26 0.60 0.009 0.003 0.50 0.60 0.25 0.05 0.02 0.005 BaL

Table 2. Chemical composition of simulated formation water (mg/L).

Compounds Ca2+ Mg2+ Cl− SO42− HCO3− Na+/K+

Content (mg/L). 292.72 138.8 37,443.03 32.04 1868.2 31,489.37

2.3.3. HTHP Test

The self-designed HTHP autoclave made of C276 alloy with a volume of 8 L is used
for weight-loss test, as shown in Figure 3. The corrosion gas includes 1.5 MPa H2S and
3 MPa CO2, and the total pressure is 40 MPa.
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Four test pieces of P110ss steel are used for each group of experiments, and then
the surface of the sample is polished using the silicon carbide sandpaper with 300 #,
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600 #, 800 #, and 1200 # to remove surface scratches [22]. The surface of samples is cleaned
with deionized water, absolute ethanol, and petroleum in turn, and dried out with cold
air. The samples are then taken off and dried for 2 h, and an electronic balance with an
accuracy of 0.1 mg was used for weighing. Before the experiment, N2 gas is injected into
the autoclave for 4 h to remove the oxygen. The simulated formation water is added
into the HTHP autoclave, and N2 gas is injected into autoclave for another 40 min for
deoxygenation. HTHP autoclave is heated to 160 ◦C after sealing, 1.5 MPa H2S and 3 MPa
CO2 are introduced successively, and then N2 gas is added to keep the total pressure at
40 MPa. What’s more, the entire experimental duration was 168 h. After the experiment, the
samples are taken out and dried with cold air. The samples used for weight-loss analysis
need be immediately washed with deionized water, then dipped in the film removal
solution (3% hydrochloric acid and 1% hexamethylene tetramine). The corrosion products
on the surface of the sample need be wiped with a degreased cotton ball, then cleaned with
distilled water and absolute ethanol in turn. In addition, the samples need to be dried by
cold air to be weighed. The weighing results need be accurate to 0.1 mg, and the average
corrosion rate V shall be calculated using Equation (1) [28,29].

V = 87600
∆m

ρS∆t
(1)

where V is the average corrosion rate (mm/y); ∆m is the weight loss of test samples before
and after corrosion (g); ρ is the density of steel (g/cm3); S is the surface area of test samples,
(cm2); ∆t is the corrosion time (h).

Finally, the surface morphology of corrosion product film was analyzed by FEI Quanta
450 scanning electron microscope (FEI, Hillsboro, OR, USA).

3. Results and Discussion
3.1. Additive Research
3.1.1. Compatibility Test of Additives

Table 3 exhibits the compatibility results for the formation water and active additives.
Figure 4 displays the compatibility of the formation water and active additives. It can be
seen that only the YC-12 corrosion inhibitor dissolves in the formation water and produces
a milky white flocculent. After being placed in a water bath at 60 degrees Celsius for
30 min, obvious stratification occurs, indicating that the YC-12 corrosion inhibitor has
poor compatibility with formation water. Inorganic salts in the formation water reduce the
solubility of long chain carboxylic acid in the carboxylic acid composite corrosion inhibitor,
resulting in it having a lower solubility than the other two corrosion inhibitors, including
Z-05 and CT2-19C. Therefore, the other two corrosion inhibitors have good compatibility
with formation water.
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Table 3. Results of the compatibility of the injected water with additives.

Additives Type Phenomenon
(30 min, 60 ◦C)

Evaluation
Results

Acetone oxime homogeneous good dispersion

Deoxidizer Anhydrous
sodium sulfite homogeneous good dispersion

Sodium
D-isoascorbate homogeneous good dispersion

XJ-4 homogeneous good dispersion

Bactericide BN-45 homogeneous good dispersion

BN-42 homogeneous good dispersion

IU-3 homogeneous good dispersion

YC-12
carboxylic acid

compound
corrosion inhibitor

milky white flocs good dispersion

Corrosion inhibitor Z-05 Imidazolines homogeneous good dispersion

CT2-19C Quaternary
ammonium salts homogeneous good dispersion

3.1.2. Deoxidizer Selection Test

Figure 5 displays the dissolved oxygen amounts of different deoxidizers in the for-
mation water and the deoxidization rates of different deoxidizers. It can be seen that
anhydrous sodium sulfite and sodium D-isoascorbate have good deoxygenation effects.
Generally, organic fungicides such as acetone oxime can be charged onto the surface of
the solution. The addition of salt water polymerizes the organic substances, reducing
their solubility and affecting their deoxygenation performance. It is recommended to use
anhydrous sodium sulfite and sodium D-isoascorbate for the next step of collaborative
experimental evaluation.
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3.1.3. Bactericide Selection

The bactericides are usually divided into oxidizing and non-oxidizing bactericides [30–32].
Due to the corrosion of oxidizing bactericide on steel, non-oxidizing bacteria XJ-4 modified
quaternary ammonium salt bactericide, BN-45 glutaraldehyde composite bactericide, BN-42
glutaraldehyde bactericide, and IU-3 quaternary ammonium salt bactericide are selected for
bactericide testing.

Figure 6 exhibits the bactericidal effect of different concentrations of bactericides on
saprophytic bacteria, iron bacteria, and sulfate reducing bacteria. It can be seen that the
bactericides BN-45 and BN-42 have a good bactericidal effect. Therefore, BN-45 and BN-42
bactericides are used with deoxidizers and corrosion inhibitors to assess synergy in the
next step.
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Figure 6. Sterilization rate of bactericides of different concentrations against bacteria. (a) saprophytic
bacteria; (b) iron bacteria; (c) sulfate reducing bacteria.

3.1.4. Corrosion Inhibitor Selection

Figure 7 displays the self-corrosion current density and corrosion inhibition rate of
P110ss steel in the formation water containing three corrosion inhibitors. Compared with
other corrosion inhibitors, the self-corrosion current density of the CT2-19C corrosion
inhibitor is the smallest, and its corrosion inhibition rate is 94.13%. Therefore, the CT2-19C
corrosion inhibitor is used with deoxidizers to assess synergy in the next steps.
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corrosive water with three corrosion inhibitors YC−12, Z−05 and CT2−19C.

3.2. Protection Fluid Evaluation
3.2.1. Compatibility Experiment

The most important evaluation index of the annular space between the closed produc-
tion tubing and the oil casing is the anti-corrosion performance of the production tubing
and casing materials [33,34]. Therefore, the annular space between the closed production
tubing and oil casing fluid should contain the corrosion inhibitor as the core, and the
compatibility evaluation experiment of active additives such as deoxidizers, bactericides,
and corrosion inhibitors should be carried out. Table 4 shows the compatibility test scheme
and results of various additives. Figure 8 displays the compatibility results of each additive,
and the muddying of the solution can be seen in groups one, five, and six. On this basis,
the additive synergy evaluation experiment is carried out for groups seven and eight.
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Table 4. Compatibility scheme and results of additives.

Group Corrosion
Inhibitor Deoxidizer Bactericide Phenomenon

(30 min, 60 ◦C)
Evaluation

Results

1 CT2-19C Sodium
D-isoascorbate muddy poor

2 Anhydrous
sodium sulfite homogeneous good

3 BN-45 homogeneous good

4 BN-42 homogeneous good

5 Sodium
D-isoascorbate BN-45 muddy poor

6 Sodium
D-isoascorbate BN-42 muddy poor

7 Anhydrous
sodium sulfite BN-45 homogeneous good

8 Anhydrous
sodium sulfite BN-42 homogeneous good
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3.2.2. Collaborative Evaluation Experiment

According to the compatibility test results of active additives, group 7 and group 8 are
evaluated synergistically in an aqueous solution with a temperature of 60 ◦C and a H2S:
CO2 ratio of 1:2.

Deaeration Rate Experiment

Two groups of deoxidization performance tests are carried out to determine the
impact of other additives, including corrosion inhibitors and bactericides, on deoxidization
performance. Group one: corrosion inhibitor CT2-19C (5000 ppm) + bactericide BN-42
(2 g/L) + deoxidizer anhydrous sodium sulfite (3 g/L); group two: CT2-19C (5000 ppm)
+ bactericide BN-45 (2 g/L) + anhydrous sodium sulfite (3 g/L). Figure 9 displays the
deoxidation effects in groups 1 and 2. It can be seen that the oxygen content of the two
groups of reagents in the solution is controlled below 1 ppm and the deoxidation rate
is about 95%, indicating that the deoxygenation effect on the solutions is good in the
two groups. In terms of the deoxidization performance, the corrosion inhibitor CT2-
19C, bactericides BN-42 and BN-45, and the deoxidizer anhydrous sodium sulfite have
good synergy.
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Corrosion Inhibition Rate Experiment

According to the compatibility test results, for system one: the corrosion inhibitor
CT2-19C (5000 ppm) + bactericide BN-42 (2 g/L) + deoxidizer anhydrous sodium sulfite
(3 g/L); System two: CT2-19C (5000 ppm) + bactericide BN-45 (2 g/L) + anhydrous sodium
sulfite (3 g/L) are carried out in the corrosion inhibition test.

Figure 10 shows the self-corrosion current density and corrosion inhibition rate of
P10ss steel in system one and system two. For group one, it can be seen from Figure 10a
that the self-corrosion current is significantly reduced and the corrosion inhibition rate
is at 93.41% when the corrosion inhibitor CT2-19C is added, indicating that corrosion
inhibitors can greatly slow down the corrosion of P110ss steel. For group two, when the
corrosion inhibitor CT2-19C and the deoxidizer anhydrous sodium sulfite were added,
the self-corrosion current was greater than that of the corrosion inhibitor CT2-19C alone,
implying that the addition of a deoxidizer intensifies the corrosion of P110ss steel. For group
three, when the corrosion inhibitor CT2-19C and the fungicide BN-42 were added, the self-
corrosion current was greater than that of the corrosion inhibitor CT2-19C alone, indicating
that the bactericide weakens the corrosion inhibition of the inhibitor. For group four,
compared with the corrosion inhibitor, the corrosion current increases significantly when
the corrosion inhibitor CT2-19C, bactericide BN-42, and deoxidizer anhydrous sodium
sulfite are added, indicating that the deoxidizer and bactericide weaken the corrosion
inhibition performance of the inhibitor.

Processes 2023, 11, x FOR PEER REVIEW 10 of 16 
 

 

the corrosion inhibitor. According to the experimental results, system two provides better 

corrosion mitigation than system 1. Therefore, the formulation of the water-based annular 

protective liquid needs to be designed according to system two in the next step. 

5.7342

0.3677

12.868

32.905

45.638

0

10

20

30

40

50

Ic
o

rr
(1

0
-5

A
/c

m
2
)

（a）

Blank Group2 Group3 Group4Group1

  

Figure 10. Self-corrosion current density and inhibitor efficiency of P110ss steel corroded in system 

one and 2. (a) System one; (b) system two. 

3.2.3. Composition Design of Annulus Protection Fluid 

Ratio Design of Corrosion Inhibitor 

P110ss steel is tested under corrosion inhibitors of 5000 ppm, 10,000 ppm, 20,000 

ppm, and 30,000 ppm by autoclave, and the suitable concentration of inhibitors is selected. 

The test design scheme is shown in the following Table 5. 

Table 5. Experimental scheme for corrosion inhibitor concentration selection. 

Group 
Inhibitor Con-

centration (ppm) 

Temperature 

(°C) 

H2S Partial 

Pressure 

(MPa) 

CO2 Partial 

Pressure 

(MPa) 

Total Pres-

sure 

(MPa) 

Time 

(h) 

1 5000 

120 1.5 3 40 168 
2 10,000 

3 20,000 

4 30,000 

Figure 11 displays the corrosion rate of P110ss steel under different concentrations of 

corrosion inhibitors. It can be seen that the corrosion rate of P110ss steel in the gas–liquid 

two-phase system is significantly reduced at the corrosion inhibitor of 30,000 ppm [34]. 

The corrosion rate in the liquid phase environment can be reduced to 0.0729 mm/y, and 

the corrosion inhibition rate can reach more than 95%. The corrosion rate in the gas phase 

environment can reach 0.0723 mm/y, which meets the oilfield corrosion control require-

ments (lower than 0.076 mm/y), and the corrosion inhibition effect is good. Therefore, 

30,000 ppm of the CT2-19C corrosion inhibitor is used for the applicability evaluation. 
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For group one, it can be seen from Figure 10b that the self-corrosion current decreases
significantly and the corrosion inhibition rate is at 93.41% when the corrosion inhibitor
CT2-19C is added, implying that the corrosion inhibitor CT2-19C can greatly slow down
the corrosion of P110ss steel. For group two, compared with the corrosion inhibitor,
the corrosion current increases significantly when the corrosion inhibitor CT2-19C and
deoxidizer anhydrous sodium sulfite are added, indicating that the deoxidizer has an
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inhibiting effect on the corrosion inhibition. For group three, compared with adding the
corrosion inhibitor CT2-19C alone, the corrosion current increases significantly when the
corrosion inhibitor CT2-19C and bactericide BN-45 are added, implying that the bactericide
has an inhibitory effect on the corrosion inhibition performance of the corrosion inhibitor.
For group four, compared with adding the corrosion inhibitor CT2-19C alone, the corrosion
current decreases when the corrosion inhibitor CT2-19C, bactericide BN-45, and deoxidizer
anhydrous sodium sulfite are added, indicating that the addition of the deoxidizer and
bactericide can significantly improve the corrosion inhibition performance of the corrosion
inhibitor. According to the experimental results, system two provides better corrosion
mitigation than system 1. Therefore, the formulation of the water-based annular protective
liquid needs to be designed according to system two in the next step.

3.2.3. Composition Design of Annulus Protection Fluid
Ratio Design of Corrosion Inhibitor

P110ss steel is tested under corrosion inhibitors of 5000 ppm, 10,000 ppm, 20,000 ppm,
and 30,000 ppm by autoclave, and the suitable concentration of inhibitors is selected. The
test design scheme is shown in the following Table 5.

Table 5. Experimental scheme for corrosion inhibitor concentration selection.

Group
Inhibitor

Concentration
(ppm)

Temperature
(◦C)

H2S Partial
Pressure

(MPa)

CO2 Partial
Pressure

(MPa)

Total
Pressure

(MPa)

Time
(h)

1 5000

120 1.5 3 40 168
2 10,000
3 20,000
4 30,000

Figure 11 displays the corrosion rate of P110ss steel under different concentrations of
corrosion inhibitors. It can be seen that the corrosion rate of P110ss steel in the gas–liquid
two-phase system is significantly reduced at the corrosion inhibitor of 30,000 ppm [34]. The
corrosion rate in the liquid phase environment can be reduced to 0.0729 mm/y, and the
corrosion inhibition rate can reach more than 95%. The corrosion rate in the gas phase envi-
ronment can reach 0.0723 mm/y, which meets the oilfield corrosion control requirements
(lower than 0.076 mm/y), and the corrosion inhibition effect is good. Therefore, 30,000 ppm
of the CT2-19C corrosion inhibitor is used for the applicability evaluation.
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Figure 11. P110ss steel corrosion rate at different concentrations of corrosion inhibitor. (a) Liquid
phase; (b) gas phase.

Ratio Design of Deoxidizer

Figure 12 exhibits the measured results of dissolved oxygen in an annular protective
solution with different concentrations of the deoxidizer. It can be seen that when the
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dosage of oxygen absorber exceeds 3 g/L, the dissolved oxygen content in the annular
protective liquid is controlled within 0.3ppm of the oilfield water quality control index
(SY/T5889-2010), which has excellent deoxidation performance. With the increase in the
oxygen scavenger fill concentration, the oxygen removal rate increases, but when the
oxygen removal concentration increases from 3 g/L to 4 g/L, the increase in the oxygen
removal rate is not large, the effect is not obvious, and the cost is slightly controlled. The
recommended dosage of oxygen absorber is 3 g/L.
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Figure 12. Results of dissolved oxygen in annular protective solution under different concentrations
of oxygen absorber.

Ratio Design of Bactericide

Table 6 shows the bactericidal performance of BN-45 at different doses in a water-based
annular protective solution. The experimental results display that the dosage of fungicide
BN-45 is 2 g/L, which can achieve a good bactericidal effect.

Table 6. Bactericidal properties in different doses of water-based annular air protection solution.

Number BN-45 Dosing
(g/L)

Saprophytic
Bacteria

(CFU/mL)

Iron Bacteria
(CFU/mL)

Sulfate Reducing
Bacteria

(CFU/mL)

1 0 2.52 × 103 2.52 × 103 0.61 × 104

2 1 2.56 5.05 × 102 0.64 × 102

3 1.5 0 2.59 × 10 2.02 × 10
4 2 0 0 0

3.2.4. Physical and Chemical Properties Test

The water-based annular protective liquid including CT2-19C (30,000 ppm) + anhy-
drous sodium sulfite (3 g/L) + BN-45 (2 g/L) obtained from the above clear water ratio to
test the physical and chemical properties of water-based annular protective liquid is used,
as shown in Table 7.

Table 7. Physical and chemical properties of water-based annular protective fluid.

Density (g/cm3) Freezing Point (◦C) pH

1.02 −2.01 7.73

3.2.5. Water-Based Annular Protective Fluid Formulated by Formation Water

It can be known that clear water-based annular protective liquid includes CT2-19C
(30,000 ppm), anhydrous sodium sulfite (3 g/L) and BN-45 (2 g/L) from the above, it is
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necessary to further design the formula of water-based annular protective fluid prepared
by field formation water (Table 2).

Table 8 and Figure 13 show the compatibility test scheme and results between various
additives and formation water diluted with different proportions of clear water. clear
water It can be seen that Group nine and Group eleven have good compatibility, and 50%
formation water + 50% clear water + 30,000 ppmCT2-19C + 3 g/LD sodium isoascorbate
+ 2 g/LBN-45 is recommended. If the site conditions cannot be diluted, it is necessary to
further screen organic deoxidizers that are easy to dissolve, compatible and environmen-
tally friendly.

Table 8. Compatibility test scheme and results between various additives and formation water
diluted with different proportions of clear waterclear water.

Group Formation
Water Water Corrosion

Inhibitor Deoxidizer Bactericide Phenomenon
(30 min,60 ◦C)

Evaluation
Results

1 100% CT2-19C Anhydrous sodium
sulfite precipitate Poor

2 Sodium D-isoascorbate precipitate Poor

3 Anhydrous sodium
sulfite BN-45 precipitate Poor

Sodium D-isoascorbate BN-45 precipitate Poor

4 75% 25% Anhydrous sodium
sulfite precipitate Poor

5 Sodium D-isoascorbate precipitate Poor

6 Anhydrous sodium
sulfite BN-45 precipitate Poor

7 Sodium D-isoascorbate BN-45 precipitate Poor

8 50% 50% Anhydrous sodium
sulfite precipitate poor

9 Sodium D-isoascorbate homogeneous Good

10 Anhydrous sodium
sulfite BN-45 precipitate Poor

11 Sodium D-isoascorbate BN-45 homogeneous Good
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Figure 14. Corrosion rate of P110ss steel immersed in solution added with water-based annular 

protective liquid. (a) Liquid phase; (b) gas phase. 
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Figure 13. Compatibility test between various additives and formation water diluted with different
proportions of clear water.

3.2.6. Corrosion Experiment of Water-Based Annular Protective Liquid

According to the ratio design results of the above water-based annular protective fluid,
the formula of the formation water-based annular protective fluid is system one: clear water +
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corrosion inhibitor CT2-19C (30,000 ppm) + deoxidizer anhydrous sodium sulfite (3 g/L) +
bactericide BN-45 (2 g/L); system two: 50% formation water + 50% clear water + corrosion
inhibitor CT2-19C (30,000 ppm) + deoxidizer D-sodium isoascorbate (3 g/L) + bactericide
BN-45 (2 g/L).

The effect of water-based annular protective liquid is evaluated by using an HTHP
autoclave to carry out weight-loss tests, and the corrosion evaluation results of P110ss in a
gas–liquid two-phase environment are obtained. Test conditions: total pressure of 40 MPa,
temperature of 160 ◦C, H2S partial pressure of 1.5 MPa, CO2 partial pressure of 3 MPa,
test time of 72 h, in a corrosion solution. As can be seen in Figure 14, both system one and
system two have good corrosion inhibition effects (≤0.076 mm/y) in the gas and liquid
phases, and the effect of system one is better than that of system two.
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Figure 15 displays the macro- and micro-morphology of P110ss in the water-based
annular protective solution. The water-based annular protective solution design includes
system one: clear water + corrosion inhibitor CT2-19C (30,000 ppm) + deoxidizer anhydrous
sodium sulfite (3 g/L) + bactericide BN-45 (2 g/L); system two: 50% formation water + 50%
clear water + corrosion inhibitor CT2-19C (30,000 ppm) + deoxidizer D-sodium isoascorbate
(3 g/L) + bactericide LBN-45 (2 g/L). It can be seen that the water-based annulus protective
liquid is uniformly and continuously covered on the surface of the sample in both the gas
and liquid phases after the addition of system 1 [34]. According to the results obtained,
the surface of the P110ss steel is smooth, and no obvious traces of corrosion are observed
(Figure 15a–d). When system two was added to the solution, the surface of the P110ss steel
sample in the gas–liquid two-phase was relatively flat, and slight local corrosion traces
were observed. According to the EDS results (Figure 16), the corrosion products contain
a large amount of Ca. It is inferred that the corrosive pitting is caused by the scaling of
corrosion media, such as CO2 and H2S, with the formation water containing high Ca ions.
Because formation water contains calcium ions, the long-term use of water-based annulus
protection fluid prepared from formation water may lead to under-deposit corrosion. In
order to reduce the risk of under-deposit corrosion, it is recommended to use water-based
annulus protection fluid prepared with clear water.
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Figure 16. EDS results of corrosion products of P110ss steel in formation water-based annular
protective fluid.

4. Conclusions

In this paper, the single-agent screening, compatibility, and synergy evaluation of
active additives in a water-based annular protective fluid were successively carried out
through electrochemical testing, the ratio of a water-based annular protective liquid was
optimized, two sets of water-based annular protective fluid formulas were formed, and
then the protective effect of the new water-based annular protective liquid was evaluated by
simulating the field working conditions of a high-temperature autoclave, so the following
conclusions were obtained:

(1) The formula of one clear water-based annular protective liquid includes clear water, a
corrosion inhibitor CT2-19C (30,000 ppm), bactericide BN-45 (2 g/L), and deoxidizer
anhydrous sodium sulfite (3 g/L), and the other contains 50% formation water, 50%
clear water, retarder CT2-19C (30,000 ppm), bactericide BN-45 (1 g/L), and deoxidizer
D-sodium isoascorbate (3 g/L).

(2) Annular protective fluid prepared by formation water is easy to scale because formation
water contains Ca2+ and Mg2+ ions, and the risk of long-term use is greater. The produced
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wells are recommended to use water-based annular protective liquid prepared with clear
water, including CT2-19C corrosion inhibitor (30,000 ppm) + anhydrous sodium sulfite
(3 g/L) + BN-45 bactericide (2 g/L).

(3) The density of water-based annular protective liquid prepared with clear water is
1.02 g/cm3, and its freezing point is −2.01 ◦C. The water-based annular protective
liquid controls the dissolved oxygen content in the injected water within 0.3 ppm.

(4) The corrosion inhibition rate of clear, water-based annulus protection fluid exceeds
90%, and the corrosion rate of steel in the gas phase is lower than the oilfield corrosion
control index (0.076 mm/y). The water-based annular protective fluid meets the
anti-corrosion requirements of actual production and working conditions, so it can be
popularized and applied in sour gas field production.
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