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Abstract: Azobenzene-containing polymers (azo-polymers) have been a subject of extensive investi-
gations during the last two and half decades, due to their remarkable ability to undergo pronounced
alignment and deformation under irradiation with light. The molecular ordering and deformation in
azo-polymers of various structures under irradiation with linearly polarized light was described in
a series of theoretical works, based on the effect of the reorientation of azobenzene moieties due to
the anisotropic character of the photoisomerization processes. In the present study, we generalize
the previous orientation approach to describe the photo-alignment and deformation of azo-polymer
networks under irradiation with elliptically polarized light. We demonstrate that, in general, the
light-induced ordering and deformation have a biaxial symmetry defined by the polarization ellipse.
Azobenzene chromophores have a tendency to align along the direction of light propagation, the
orientation in the other two directions being dependent of the aspect ratio of the polarization ellipse.
This causes deformation of azo-polymer networks along the direction of light propagation, the sign
of which (expansion/contraction) is defined by a chemical structure of network strands. Theoretical
results are in agreement with experiments and have a practical importance to predict the photo-
mechanical response of azo-polymers depending on their structure and on the polarization of light.

Keywords: photo-active materials; azobenzene-containing polymers; polymer networks; orientation
ordering; statistical physics

1. Introduction

The transformation of energy from one type into another is one of the important topics
nowadays. In particular, transformation of light energy into other types of energy is of a
special interest. In this respect, azobenzene-containing polymers (azo-polymers), which
are able to change their shape [1,2] and alignment [3,4] under irradiation with light, are
prospective materials for photo-controllable devices, which wirelessly convert the energy
of visible and ultraviolet light into mechanical force [5,6]. Quick and contactless control of
the light-induced movement opens up a fascinating potential for the use of azo-polymers
as light-driven sensors, actuators [7], artificial muscles [8], etc.

Using various combinations of the interfering laser beams provides a possibility to
create bizarre micro- and nano-scale patterns of alignment [9,10] and deformations [11,12]
on surfaces of glassy azo-polymers. Inscription of relief gratings [13,14] and alignment
patterns on surfaces of azo-polymer glasses serve as a basis to use these materials as
aligning layers in display and semiconductor technology, as data storage, for photonic
applications [15], in 4G optics technology [16], as novel ultrathin lenses [17], patterned
substrates [18], etc.

Incorporation of azo-chromophores into liquid crystalline (LC) polymers provides
a possibility for more unusual macroscopic photomechanical responses of such multi-
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component photosensitive materials [19,20]. As examples, one can mention a reversible
bending–unbending behavior [2,5] in monodomain LC azo-containing samples under
irradiation with ultraviolet and visible light. Imprinting of complex local director dis-
tributions into LC azo-polymers leads to fancy photo-responses: helical motions [21],
three-dimensional fingerprints in cholesteric LC azo-networks [22], a light-driven artificial
flytrap [23], and a caterpillar-like crawling and wave-like movement [24]. Interestingly,
some of these motions imitate nontrivial mechanical movements of living systems [23–25].

To forecast the photo-mechanical properties of azo-polymers, a series of theoretical
works was proposed by us [26–28] to explain the mechanism of light-driven mechanical
response. According to modern theoretical concepts, the light-induced ordering and de-
formation of azo-polymers is caused by the anisotropic character of photoisomerization
processes with respect to the polarization vector of light. Under irradiation with the lin-
early polarized light, azobenzene chromophores are transformed from the ground (rod-like)
trans-state to the excited (bent) cis-state. The probability of the trans–cis photoisomerization
depends on the orientation of the chromophore with respect to the polarization vector of the
light, E. Maximal probability of the trans–cis photoisomerization corresponds to the parallel
orientation of the long axis of the trans-isomer with respect to the vector E [29–31]. After
cyclic trans-cis-trans photoisomerization processes, an anisotropic steady state emerges
with preferable orientation of azo-chromophores in the plane perpendicular to the polariza-
tion vector of the light. Additionally, the appearance of bent cis-isomers under irradiation
with light is able to destroy the oriented state in LC azo-polymers (so-called dilution effect)
and significantly change the ordering in these multicomponent materials.

To describe the light-induced orientation anisotropy appearing in azo-polymers under
irradiation with linearly polarized light, it was proposed to introduce a phenomenological
orientation potential acting on each azo-chromophore [26,27]:

U(θ) = V0 cos2 θ. (1)

Here θ is the angle built by the long axis of a chromophore and the light polarization E;
V0 is the strength of the orientation potential, which is proportional to the intensity of
light, I:

V0 = C · I. (2)

The use of the orientation potential in the form of Equations (1) and (2) was justified
recently [28,32] by considering explicitly the kinetic equations of angular-dependent pho-
toisomerization processes of chromophores in azo-polymers. It was shown [28] that the
proportionality constant C is related to the opto-mechanical parameters of azo-polymers,
such as quantum yields of the photoisomerization process, the absorption cross section of
azobenzene moieties and rotational diffusion coefficient of the azo-chromophores related
to the viscosity of the polymer material. Note that these material parameters can vary for
various azo-polymers and it was estimated that the proportionality constant C has typical
values in the range C ∼= 10−19–10−18 J·cm2/W, depending on the chemical structure of the
azo-polymers [26–28].

The orientation approach based on the potential (1) allows to describe in a sufficiently
simple way the main features of photo-ordering and deformation in azo-polymers avoiding
costly calculations related to explicit solutions of equations of photoisomerization. This
approach was successfully applied to describe the photo-mechanical properties of a broad
class of azo-polymers, including uncrosslinked amorphous polymers [26,28,33], crosslinked
isotropic polymer networks [27], and LC azo-containing polymer networks [32,34]. The
proposed orientation approach is able to explain various experimental facts. For example,
the mechanical stress provided by the orientation potential (1) is higher than the yield
stress for glassy azo-polymers [26,28,35], which explains the inscription of periodical
topographical structures onto glassy polymer films. Azo-polymers can display either
expansion or contraction along the polarization vector E, depending on their chemical
structure in agreement with experiments [2,36]. Photo-deformation of azobenzene networks
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depends on the cross-linking degree and on the amount of azobenzene chromophores [1,27].
The agreement of the theoretical approach based on the orientation potential (1) with
multiple observations demonstrates its great strength to describe the photo-ordering and
deformation in azo-polymers of various structures.

In the present study, we extend the orientation approach proposed earlier for lin-
early [26,27] and circularly [35] polarized light irradiation to describe the influence of
elliptically polarized light on photo-ordering and deformation in azo-polymers. Note that
the linearly and circularly polarized light irradiations represent particular cases of the light
wave with elliptical polarization. Thus, the present theory provides a generalization of the
orientation approach and includes the limiting cases considered earlier for linearly [26,27]
and circularly [35] polarized light.

Elliptical polarization appears on surfaces of azo-polymer glasses during inscription
of relief gratings and alignment patterns under irradiation with interfering beams of
special combinations [37–39]. A series of experiments on photo-deformation was carried
out under irradiation with unpolarized light [40,41], which can be treated as a circularly
polarized light in a first approximation. Therefore, it is practically important to understand
the features of ordering and deformation of azo-polymers under irradiation with light
of arbitrary polarization, i.e., with elliptically polarized light in general. Note that the
orientation potential (1) proposed for linearly polarized light is characterized by uniaxial
anisotropy with respect to the polarization vector E. As it is shown below, elliptically
polarized light induces biaxial ordering and deformation of azo-polymers in general. The
results of the present theory are important to forecast the photo-mechanical response of
azo-polymers depending on their structure and polarization of light.

2. Model and Main Equations

A polymer network is modelled as an ensemble of network strands between cross-
links (network junctions), see Figure 1a. A network strand is represented as a freely jointed
polymer chain built from N Kuhn segments. It is assumed that each Kuhn segment contains
an azobenzene chromophore in a side chain. Orientation distribution of azobenzenes
around the polymer backbones is characterized by the distribution function W(α), where α

is the angle between the long axis of the azobenzene denoted by a vector k and the Kuhn
segment (Figure 1a). The function W(α) is determined by the chemical structure and the
length of spacers between the backbones of polymer chains and the chromophores. Below
it will be shown that photo-deformation of an azobenzene-containing polymer network
is prescribed by structural parameters, related to the second moments of the distribution
function W(α).
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Figure 1. Model of an azobenzene-containing polymer network under irradiation with elliptically
polarized light (a). Orientation of an azobenzene in the frame of references related to the elliptically
polarized light (b). α is the angle built by the long axis of the chromophore denoted by a vector k
and the Kuhn segment.
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Application of the elliptically polarized light to the azo-network induces a cyclic
trans–cis photo-isomerization of chromophores. This process is accompanied by alignment
of the chromophores with respect to the frame of references related to the elliptically
polarized light. To describe the orientation ordering of chromophores in the steady state
under irradiation with elliptically polarized light, an orientation potential can be introduced
similarly to linearly polarized light.

The characteristic feature of elliptical polarization is that a tip of the electric field vector
of light describes an ellipse in the plane normal to the direction of the light propagation. Let
us assume that the principal axes of the ellipse described by the tip of the electric field vector
are directed along the x- and y-axes and the light propagates along the z-axis (Figure 1a).
The elliptically polarized light can be represented as a superposition of linearly polarized
waves, both propagating along the same z-axis but having the orthogonal electric vectors:

Ex(t) = Ex,0 cos ωt and Ey(t) = Ey,0 sin ωt. (3)

Here Ex,0 and Ey,0 are the magnitudes of the electric field vectors for the two linearly
polarized waves; ω is the angular frequency of the light. The vectors Ex,0 and Ey,0 define
the main semi-axes of the polarization ellipse (Figure 1a). The intensities of the two linearly
polarized light waves, Ix and Iy, can be related to the total intensity of the elliptically
polarized light, I:

I =
c

4π

〈
E2
〉
=

c
4π

〈
E2

x + E2
y

〉
= Ix + Iy, (4)

where c is the speed of light in a vacuum.
Representation of the elliptically polarized light as a superposition of two linearly

polarized light waves allows to introduce an orientation potential, which reorients azoben-
zene chromophores in the steady state under irradiation with elliptically polarized light.
The influence of both linearly polarized light waves can be described by the orientation po-
tential according to Equations (1) and (2), so that the orientation potential of a chromophore
under action of the elliptically polarized light, Uelp, can be written as a superposition of
two contributions:

Uelp(θx, θy) = CIx cos2 θx + CIy cos2 θy, (5)

where θβ (β = x, y, z) are the angles between the long axis of a chromophore and the β-axes.
For further calculations, it is convenient to introduce the two Euler angles, Ω = (θz, ϕ), as
presented in Figure 1b, which define the angles θβ as follows:

cos θx = sin θz cos ϕ and cos θy = sin θz sin ϕ. (6)

Alternatively, the potential (5) can be rewritten as a function of the total light intensity I:

Uelp(Ω) = CI
[
wx cos2 θx + wy cos2 θy

]
, (7)

where the dimensionless parameters wx = Ix/I and wy = Iy/I are the relative contributions
of the linearly polarized waves to the total light intensity of the elliptically polarized light
(wx + wy = 1). They are related to the aspect ratio of the polarization ellipse, see Figure 1a.
The orientation potential in the form of Equation (7) for the elliptically polarized light
reproduces two limiting cases: for the linear polarization (wx = 1 and wy = 0) it is reduced
to the relationship (1) introduced above; for the circular polarization (wx = wy = 1/2) it
reproduces the results of previous work [35]:

Ucirc(Ω) =
1
2

CI sin2 θz. (8)

Note that the circularly polarized beam reorients chromophores along the direction of
light propagation [35].
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Now, the introduced orientation potential Uelp allows us to derive the orientation
distribution function of azobenzenes under the influence of the elliptically polarized light
in the steady state:

f (Ω) = Z−1 exp[−Uelp(Ω)/kT], (9)

where the normalization constant Z has a form:

Z =
∫

dΩ exp[−Uelp(Ω)/kT]. (10)

Here the integration runs over the Euler angles: dΩ = sinθzdθzdϕ, where θz ∈ [0, π]
and ϕ ∈ [0, 2π].

Using the distribution function (9), the components of the order parameter tensor [42]

can be calculated:
^
Sβγ = (3

〈
kβkγ

〉
− δβγ)/2. Here kβ,γ are the components of the vector k

(Figure 1b) and δβγ is the Kronecker delta. Since the distribution function (9) is invariant
with respect to the transformation kβ → −kβ, which follows from Equation (7), all non-

diagonal components of
^
Sβγ vanish and the order parameter tensor takes a diagonal form:

^
Sβγ =

Sxx 0 0
0 Syy 0
0 0 Szz

. (11)

Thus, the principal axes of the order parameter tensor coincide with the principal axes
related to the polarization ellipse of elliptically polarized light. A characteristic feature of
the order parameter tensor is that its trace, i.e., the sum of diagonal elements, is always
equal to zero. Below we discuss the results of the numerical analysis of the light-induced
ordering and deformation of azo-networks and show that they have biaxial symmetry
under irradiation with the elliptically polarized light.

3. Light-Induced Orientation Order

For definiteness, we will assume in the present and following sections that the po-
larization ellipse is prolate along the x-axis, i.e., Iy ≤ Ix (in other words, wy ≤ wx and
0 ≤ wy ≤ 1/2). As it was mentioned above, the limiting cases wy = 0 and wy = 1/2 cor-
respond to linearly and circularly polarized light irradiation, respectively. Note that the
results of the present section are rather general and illustrate the ordering behavior of
azobenzene chromophores not only in cross-linked azo-networks but also in other azo-
polymer systems consisting of long polymer chains (linear polymers in glassy state, in
polymer melts and solutions, etc.).

Figure 2a,b shows the components of the order parameter tensor Sββ as functions of
the dimensionless parameter V0/kT, which is proportional to the intensity of the light I,
according to Equation (2): V0 = CI. As example, at typical value C = 10−18 J·cm2/W, the scale
of the parameter V0/kT = 1 corresponds to the light intensity I = 4 mW/cm2. The values
of wy are chosen close to the limiting cases for linearly polarized light (wy = 0.1 and 0.25,
Figure 2a) and for circularly polarized light (wy = 0.35 and 0.45, Figure 2b). In Figure 2a,b,
as well as in all figures below, the lines illustrate the results of theoretical calculations and
the different symbols are used only to denote the results for different quantities and at
different parameters. One can see in Figure 2a,b that at the absence of light, I = 0, the system
of azo-chromophores is isotropic (Sxx = Syy = Szz = 0) and it becomes biaxial anisotropic
(Sxx 6= Syy 6= Szz), when the light is switched on, I > 0. Biaxial ordering of azo-polymers
under irradiation with light was observed in a series of experiments [29,43–45].

In both cases, presented in Figure 2a,b, the azobenzenes are aligned along the direction
of light propagation (Szz > 0) and demonstrate the ordering aside the x-axis (Sxx < 0) at
I > 0. This result is general and can be understood from the following considerations. The
orientation potential (5) can be rewritten in the following form:
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Uelp(θx, θz) = C(Ix − Iy) cos2 θx + CIy sin2 θz. (12)
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Here the first contribution corresponds to the influence of the linearly polarized
light with the polarization vector along the x-axis (Ix − Iy > 0) and the second term is
equivalent to the influence of circularly polarized light of intensity Iy, which propagates
along the z-axis. Both these contributions reorient the azo-chromophores along the direction
of light propagation (z-axis) and aside the axis with maximal polarization of elliptically
polarized light (i.e., aside the x-axis). The magnitudes of Sxx and Szz increase with increasing
light intensity.

On the other hand, the two terms in Equation (12) contribute in opposite directions
to the ordering of chromophores with respect to the y-axis: the first contribution reorients
the chromophores along the y-axis, whereas the second one leads to the orientation of
chromophores along the direction of light propagation, i.e., aside the y-axis. Thus, the
ordering with respect to the y-axis is determined by the interplay between the linearly
and circularly polarized beams and the value Syy can be of different signs. At wy close to
1/2 the contribution from the circularly polarized beam provides the main effect: Syy is
negative and decreases with increasing light intensity (Figure 2b). At small wy the value
Syy demonstrates nonmonotonic dependence as a function of light intensity (Figure 2a): Syy
is positive at small light intensities due to the contribution of the linearly polarized beam,
but at high light intensities the contribution from the circularly polarized beam provides
the main effect and Syy becomes negative.

At small light intensities, the Taylor series for the distribution function (9) can be
used at small values of the parameter V0/kT ≤ 1, and we obtain the following asymptotic
behavior of the component Syy:

Syy ∼=
V0

5kT
(
1/3− wy

)
at V0/kT ≤ 1. (13)

It can be seen that the initial slope of the dependence Syy(V0/kT) changes the sign at
critical value wy = 1/3: the slope is positive at wy < 1/3 and negative at wy > 1/3. Therefore,
the order parameter Syy demonstrates nonmonotonic behavior as a function of V0/kT at
wy < 1/3 (as shown in Figure 2a), whereas Syy is negative and decreases monotonically as a
function of V0/kT at 1/3 ≤ wy ≤ 1/2 (as presented in Figure 2b).

The components of the order parameter tensor as functions of the parameter wy, which
is related to the aspect ratio of the polarization ellipse, are shown in Figure 3 at different
values of the parameter V0/kT, which is proportional to the intensity of light. One can see
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that at any values 0 < wy < 1/2 the biaxial ordering is observed with Sxx 6= Syy 6= Szz. At
limiting cases wy = 0 and wy = 1/2 one can see uniaxial ordering: an ordered structure
under linearly polarized light with Sxx < 0 (Szz = Syy) and an ordered structure under
circularly polarized light with Szz > 0 (Sxx = Syy). As it was discussed above, Sxx < 0 and
Szz > 0 at any values of wy, whereas the value Syy changes the sign: it is positive at small
values of wy and it is negative at high values of wy close to 1/2. The value wy, at which
Syy = 0, decreases with increasing intensity of light.
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The biaxial photo-ordering is accompanied by the light-induced deformation of azo-
containing polymer networks.

4. Light-Induced Deformation of Azo-Containing Polymer Networks

The relationship between the biaxial orientation order and the deformation of Gaussian
networks consisting of long polymer strands (N>>1) was analyzed in detail by us in ref. [34].
The extension ratios of an initially isotropic polymer network along the x,y,z-axes can be
written in the following form [34]:

λx =

 〈
l2
x
〉2〈

l2
y

〉
〈l2

z 〉

1/6

, λy =


〈

l2
y

〉2

〈l2
x〉〈l2

z 〉


1/6

and λz =

 〈
l2
z
〉2

〈l2
x〉
〈

l2
y

〉
1/6

, (14)

where 〈lβ
2〉 (β = x,y,z) are the averaged projections of Kuhn segments on the x,y,z-axes. In

turn, the orientation distribution of the Kuhn segments is related to the ordering of the
azobenzene chromophores attached to them [34]:

〈
l2
β

〉
=

l2

3
[
1 + 2qSββ

]
. (15)

Here l is the length of the Kuhn segment, Sββ are the components of the order param-
eter tensor for azo-chromophores considered in the previous section, and the structural
parameter q is defined by the orientation distribution of azobenzenes around the Kuhn
segments [34]:

q =
3
〈
cos2 α

〉
W − 1

2
. (16)

Here the averaging over the angle α is done with respect to the distribution function
W(α). The structural parameter q changes in the range [−1/2, 1]. The value q = −1/2
describes azo-networks with orientation of the chromophores perpendicular to the back-
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bones (α = 90◦), whereas the value q = 1 corresponds to the main-chain polymers with the
chromophores lying parallel to the backbones (α = 0◦). Depending on the structure, the
polymer network can demonstrate different photo-mechanical behavior.

Figure 4a,b shows the elongation ratios as functions of the parameter V0/kT, which is
proportional to the intensity of the light, for a polymer network with preferable orientation
of azo-chromophores along the Kuhn segments (q = 1). The values of the parameter wy are
chosen in the ranges 0 < wy < 1/3 and 1/3 < wy < 1/2, as in Figure 2a,b. One can see that the
biaxiality of the orientation ordering leads to the biaxial photo-deformation: λx 6= λy 6= λz.
Alignment of the azo-chromophores and the Kuhn segments along the direction of light
propagation (Szz > 0) is accompanied by the expansion of the azo-network along this
direction: λz > 1. The ordering of azo-chromophores aside the x-axis (Sxx < 0) leads to the
contraction along the x-axes: λx < 1. Non-monotonical behavior of the order parameter Syy
as a function of light intensity at 0 < wy < 1/3 results in the similar behavior for elongation
with respect to the y-axis.
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An opposite photo-mechanical behavior is observed if the azo-chromophores are
distributed perpendicularly to the Kuhn segments (q = −1/2), as it is shown in Figure 5.
Figure 5a,b illustrates the dependences of elongation ratios λx,y,z on the parameter V0/kT at
wy = 0.1 (a) and wy = 0.4 (b) for an azo-network with q = −1/2. It can be seen from Figure 5
that in this case the azo-network contracts with respect to the direction of light propagation
(λz < 1) and expands with respect to the x-axis (λx > 1). Variation of the parameter q, which
can be achieved by variation of the chemical structure and lengths of spacers, leads to the
change of photo-mechanical response, as presented in Figure 6. At positive values of q,
azo-networks demonstrate an expansion with respect to the direction of light propagation
(λz > 1), whereas a contraction with respect to this direction is observed (λz < 1) at negative
values of q. Thus, depending on the chemical structure, azo-polymers can demonstrate
either expansion or contraction with respect to the direction of the propagation of light in
agreement with experiments [2,36].

Finally, we discuss briefly the influence of the amount of azo-chromophores on the
light-induced elastic deformation of azo-networks. In the considerations above, it was
assumed that all Kuhn segments contain azo-chromophores in side chains. If some Kuhn
segments do not contain azobenzene chromophores, they are not influenced by the light
and are characterized by isotropic orientation distribution, for which the averaged value
〈lβ

2〉 is given by 〈lβ
2〉 = l2/3 (β = x,y,z). Taken into account the contributions from these

segments, we can generalize Equation (15) and rewrite it in the following form:

〈
l2
β

〉
=

l2

3
[
1 + 2φqSββ

]
, (17)
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where φ is the number fraction of the Kuhn segments incorporating azobenzene side chains
with respect to the total number of Kuhn segments in a network strand. According to
Equation (17), the change of the number fraction φ is equivalent to the reduction of the
parameter q. It can be seen from Figure 6 that the increase of the absolute value of the param-
eter q increases the magnitude of photo-deformation. Correspondingly, one can conclude
that increase of the amount of azo-chromophores should amplify the photo-mechanical
response of azo-polymers. The last result is in agreement with experimental data [1]. Thus,
variation of the chemical structure of azobenzene-containing polymer networks allows to
achieve target photo-mechanical properties necessary for practical applications.
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5. Conclusions

The theory of light-induced ordering and deformation of azo-polymer networks
under irradiation with elliptically polarized light is developed. An orientation potential,
that aligns azobenzene chromophores perpendicular to the polarization of a light beam,
has been proposed to describe photo-ordering in a steady state of cyclic trans-cis-trans
angular-dependent photoisomerization. It has been shown that a biaxial photo-ordering
and deformation appear under irradiation with elliptically polarized light. Azobenzene
chromophores are oriented along the direction of light propagation and aside the direction
of the maximal intensity of the light beam. The orientation order parameter with respect to
the direction with minimal intensity of elliptically polarized light can be positive or negative,
depending on the ratio between the maximal and minimal light intensity. Depending on
the orientation distribution of azobenzenes around polymer backbones, the azo-network
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either expands or contracts with respect to three principal axes related to the light beam of
elliptical polarization. The results of the theory are useful for practical application to create
azobenzene polymers with demanded photo-mechanical response under irradiation with
light of specific polarization, depending on their chemical structure.
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