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Abstract: 3D printing is more and more often used for the development and manufacturing of
electronic devices and components. These applications require knowledge about the dielectric
properties of the used materials—in particular minimal and stable values of relative permittivity
and dielectric losses. The paper deals with the testing of the relative permittivity and loss factor of
materials as follows: PLA (in three dye modifications), PET-G, and ABS and ASA in the frequency
range 1–100 MHz. It was found that relative permittivity varied between 2.88–3.48 and the loss factor
was in the range 0.03–4.31%. In terms of relative permittivity, all tested materials manifested a slight
decline with increasing frequency. Concerning loss factor PLA (colorless) and ABS were proven to be
more suitable for electrotechnical application due to the lower values and frequency dependences of
the loss factor. Different results were observed in PLA-Silver and PLA-Metallic green. These materials
showed a higher frequency dependency of loss factor with increasing frequency. The reasonable
influence of added dyes was found. A study of the internal structure of the tested materials has not
proven any significant defects (air gaps) that could affect the material’s dielectric properties.

Keywords: 3D printing; fused deposition modeling (FDM); loss factor; relative permittivity; ABS;
PLA; PET-G; ASA; dielectric properties

1. Introduction

3D printing is now widespread manufacturing technology that has found applica-
tions in many different branches, such as the automotive industry, aerospace, medical
instruments, spare parts manufacturing, and other sectors [1,2]. This technology is expand-
ing across these different areas, especially because of rapid prototyping, which provides
versatility and low production costs [3,4]. Another reason for the spread of fused de-
position modeling (FDM) technology is the existence of the open-source RepRap project
(self-replicating rapid prototype). This project has made the technology cheap and available
to the general public, while at the same time current 3D printers based on the RepRap
concept are capable of producing final products at a quality level comparable to those
produced by commercial 3D printers [5,6]. The application of 3D printing technology in
the manufacturing of electronic devices requires good information about the dielectric
properties of the used materials. These materials should have constant relative permittivity
and a low loss factor in the intended operating frequency range of the device, which means
that they should be high-quality dielectric materials.

FDM is one of the most widely used 3D printing methods. These manufacturing
methods are called additive manufacturing (AM) and can be defined as the process of
layering manufacturing materials into the shape of designed objects [7]. FDM technology is
a process based on the extrusion and deposition of filaments in multiple layers to create the
final 3D object. The layers are joined by pressing and melting the surface of the previous
layer during extrusion. When the molten material is extruded, it re-melts the portion of the
existing layer and sticks tightly [8,9].
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At present, FDM is more and more used for the development and manufacturing of
electrotechnical components and devices. The main reason for this effort is to provide
greater automation and flexibility of manufacturing with low production costs [10]. In
electronics manufacturing, this technology can be used in several areas such as structural
electronics [10,11], power electronics [12], high-frequency electronic applications [13,14],
sensors fabrication [15], and smart textile [16].

Structural electronics in particular is becoming more interesting as this technology
brings the possibility of automated production of electrical and electromechanical devices
using a direct implementation of electrical components in printed objects [10,17]. It brings
a more flexible, automated, and cheaper production [18].

Another technology sector that has recently undergone very rapid progressive devel-
opment is the IoT (Internet of things). In this regard, 3D printing is also being used by a
number of research laboratories in the production of dielectric components, for instance
for antennas [19,20]. Two types of antennas are being tested in this field. The first one
is based on a metalized structure that has been primarily printed from PLA. The second
one is printed directly with conductive filament. Both of the methods have achieved good
results with low production costs [21].

Another example of FDM application is smart textiles, which are defined as textiles
that are able to sense, react and adapt to environmental stimuli. The stimuli and reactions
can be magnetic, thermal, chemical, and electrical [22]. In this application, the use of
electronic components requires mechanical, chemical, and temperature resistance and for
this reason, it is necessary to ensure the encapsulation of their surfaces [23].

Further applications of 3D printing technology include the development and produc-
tion of insulating components in electrical equipment. In particular, the development and
production of biosensors and biocomponents using FDM is developing rapidly [24]. The
same trends are evident in the field of capacitive sensors. Here, FDM brings the possibility
of easily manufacturing very specific insulating electrode housings or electrode holders.
An example of RF (radio frequency) electronic applications is the photomultiplier socket
made by 3D printing, presented in Figure 1.
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Figure 1. Example of the FDM application to RF electronic—photomultiplier socket made by 3D
printing.

3D printing enables the creation of dielectric insulators of different shapes, and this
process was used in a similar way in our work to develop a capacitive probe for measuring
ice thickness. The evaluation of the capacitance of the developed sensor was performed
by measuring the resonant frequency of the oscillator circuit to which the sensor was
connected. These probe parts had to be made of a high-quality insulator with constant
relative permittivity and a low loss factor in the frequency range of 3 to 10 MHz, which
was the intended operating frequency range of the measuring device. For this reason, it is
necessary to select suitable materials with appropriate dielectric properties.
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For the above-described purposes, 3D printing materials must be studied in terms
of their dielectric properties (e.g., electrical conductivity, permittivity, loss factor). The
most commonly used materials for 3D printing are PET-G (polyethylene terephthalate
glycol), PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), and ASA (acrylonitrile
styrene acrylate) [25,26]. Most recently published studies are focused on evaluating and
comparing the mechanical [27,28] and thermal properties [29]. On the other hand, the
studies aimed at the dielectric properties of materials processed by 3D printing are in the
absolute minority. One of the points of interest in this area is studying how the printing
settings change dielectric properties. This topic has been studied on PLA, ABS, and PET-G
materials by Veselý et al. [7]. The authors tested the dielectric properties of these materials
with printing resolutions of 50, 100, 150, and 200 µm in the low-frequency band (up to 100
kHz). They observed the drop-down of the relative permittivity with the increasing of
printing layers (lower printing resolution) and the contemporary influence of the printing
resolution on the loss factor was not significant. The permittivity and loss factor of printing
materials are to some extent described in the range of low frequencies (50–100 Hz, and
sporadically at 100 kHz) and at the band of ultra-high frequencies (1 GHz and higher).
The frequency range of 3 to 10 MHz that is necessary to know for the development of our
capacitive probe for measuring ice thickness has not been published yet. Dichtl et al. [3]
studied the properties of PLA at frequencies from 1 to 3 GHz, but performed only two
measurements (1 and 75 MHz) at higher frequencies. Deffenbaugh et al. [30] measured
the dielectric properties of several 3D printing materials, including ABS in the 1 MHz to
11 GHz range, but in the 1 to 100 MHz range, he only performed three-point measurements
at 1, 2, and 100 MHz.

It is important to realize that to replace missing values by the simple extrapolation
of the known frequencies to the region frequencies that are distant from the exact tested
ones is misleading because each relaxation process causes a drop in permittivity and a local
increase in the loss factor in the dielectric material related to its time constant. The typical
course of this phenomenon is shown in Figures 2 and 3, where the drop in permittivity and
increase in the loss factor due to the relaxation process with the time constant τ are shown.
The dependencies were calculated by using the generally known Debye relations [31]. This
influence is the most obviously pronounced at the angular frequency corresponding to
the inverse value of the time constant. The phenomenon can be manifested in areas one
decade-wide above and below this frequency. Polarization does not occur in more remote
areas.
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Figure 3. Frequency dependence of the loss factor tgδ: τ—time constant of relaxation process,
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permittivity for high frequencies with respect to the relaxation frequency.

Therefore, it was not possible to deduce the properties of dielectrics in the field of high
frequencies (HF) from the results of available publications and, moreover, the values of
dielectric properties of the basic materials under the same condition published in different
sources differ by tens of percent [32,33]. This phenomenon is probably caused by the
manifestation of many relaxation processes in the materials themselves and especially by
the presence of other composite admixtures. Therefore, it is necessary to become more
acquainted with the properties of the materials used for 3D printing. This paper is focused
on the comparison of dielectric properties such as loss factor and relative permittivity of
the applied materials which have not been studied extensively yet. The secondary objective
of this study was testing to verify that no significant defects (air gaps) had formed in the
internal structure of the printed ABS, ASA, PETG, and PLA materials as a result of the
deposition of individual layers during printing, which could affect the dielectric properties
of the samples.

2. Materials and Methods
2.1. Tested Materials

In our study, we tested four types of the most commonly used materials for 3D
printing: PLA, PETG, ABS, and ASA [25,26]. The PLA samples were made in three
color modifications: colorless, silver, and metallic green. The reason why these color
modifications were tested was to study the impact of the color dye additions on the
dielectric properties of the materials. The PETG, ABS, and ASA samples were prepared in
the colorless version only. The tested samples were printed as square plates with a side
length of 70 mm and thickness of 2.5 mm (Figure 4).

The samples were prepared by a Prusa i3 MK3S+ 3D printer (Prusa Research, Prague,
Czech Republic). This 3D printer is based on the FDM technology in RepRap concept.
3D printing was set to achieve the maximum density of the printed object. The setting of
the printing parameters (resolution and fill density) determines the final density of the
printed objects. The samples were printed at a resolution of 50 µm and a fill density of 100%.
These printing settings should ensure the maximal possible homogeneity and density of
the internal structure of the samples. The fill angle parameter was left at the default setting
(45◦). The filaments with a diameter of 1.75 mm manufactured by FilamentPM company
(Czech Republic) were used for printing the samples. The samples’ parameters, including
the printing settings, are summarized in Table 1.
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Table 1. Samples’ properties and printing settings.

Sample
Identification Material Color

Printing Temperature [◦C]
1st Layer/Subsequent Layers Filament

Manufacturer
Filament
Diameter

Hot end Bed

PLA
PLA

colorless
215/210 60/60

FilamentPM 1.75 mm
PLA-Silver silver

PLA-Metallic green metallic green

PET-G PET-G
colorless

230/240 90/90

ABS ABS 255/255 110/110

ASA ASA 260/260 110/110

2.2. Measuring of Dielectric Properties

The specific capacitor methodology was used to measure the dielectric parameters
of the samples, in which the complex impedance of the capacitor was used to determine
the complex permittivity of the sample dielectric. In the frequency range up to several
hundred MHz, with the appropriate design of the measuring circuit, it can be analyzed
as a lumped-parameters circuit. However, the parasitic parameters of the interconnection
network between the measuring capacitor and the complex impedance analyzer must
always be considered. At higher frequencies (usually 0.3 to 1 GHz), where the dimensions
of the measuring circuit and its individual elements are comparable to the wavelength of
the measuring signal, the circuit must be designed as a circuit with distributed parameters.
The dielectric sample is placed in a circuit in which the electromagnetic wave is excited
and the dielectric properties of the circuit are derived from the changes in the properties of
the circuit caused by the measured sample [34].

The complex impedance samples were measured by the Agilent E4991A RF Impedance/
Material analyzer. Probe 16453A, which is normally supplied by the manufacturer, was not
used as the measuring capacitor. The probe is only suitable for measuring thin samples.
The manufacturer guarantees a measurement accuracy of only tens of percent for samples
with a thickness of a few millimeters [35]. Therefore, a measuring probe of our own design
was used with electrodes that were significantly larger in surface area (approximately
100 times), and this had an impedance with our measured samples that corresponded to
the area in which the analyzer could achieve maximal accuracy.

The testing device is shown in Figure 5. It consisted of the above-mentioned Agilent
analyzer and the measuring probe with the analyzed sample.
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The tested relative permittivity and the loss factor were evaluated in the frequency
range of 1–100 MHz (at approximately 200 measuring points). The circuit diagram of the
measuring is shown in Figure 6. The measuring device provides the circuit parameters—
total capacitance (Cp) and its quality factor (Q). The relation between these two parameters
describes Equation (1). The loss factor (tgδ) is then calculated from the data (Q) according
to the following relation (2).

Q = ω Cp R, (1)

tgδ = 100
1

ω Cs R
= 100

Cp

Q Cs
, (2)

where: Q—capacitance quality factor [-], Cp—total capacitance of the measured system
[F], R—parallel loss resistance of the sample [Ω], tgδ—loss factor of the sample [%], and
Cs—capacitance of the measured sample [F]. The value of the relative permittivity was
determined proportionally from the capacitance of examined sample and the capacitance
of the Teflon standard. Conversion was performed using Equation (3):

εr= εt
Cs ts

Ct tt
, (3)

where: Ct—capacitance of the Teflon control sample [pF], εr—relative permittivity of the
measured sample [-], εt—relative permittivity of Teflon (2.1), ts—sample thickness [mm],
and tt—Teflon standard thickness (1 mm). The parasitic capacitances of the interconnection
network Cpar and the parasitic inductance of the network Lpar were automatically compen-
sated by the impedance analyzer E4991A. Compensation was performed on the basis of
impedance analysis of the interconnection network with the sample disconnected, and a
short-circuit or open circuit at its terminals. Compensation led to a transfer of the measur-
ing interface from the terminals of the measuring instrument to the sample terminals, thus
eliminating the influence of parasitic parameters of the interconnection network [36].
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Figure 6. Block diagram of measuring.

2.3. Data Processing

The raw data were used for the evaluation of the relative permittivity and loss fac-
tor. The measurement interval of the loss factor was divided into three intervals (1–19.9,
20–59.9, and 60–100 MHz) for a more precise description of the measured material parame-
ters. The relative permittivity data did not show such large changes in the measured range
(1–100 MHz) and for this reason, the data were not divided into multiple intervals. The
average and standard deviations of the relative permittivity and loss factor were calculated
for each interval.

2.4. Testing of the Presence of Defects in the Internal Structure of Samples

The internal structures of PLA (colorless), PETG, ABS, and ASA material samples were
tested. The aim was to verify the absence of significant defects (air gaps) in these samples
as a consequence of the layering of individual filaments during the printing process. These
defects could subsequently significantly affect the dielectric properties of the final samples.

Sample preparation consisted of deep and rapid freezing of individual samples in a
bath of liquid nitrogen. The deep-frozen samples were fixed and broken by a fast impact.
The break was performed in the plane of the diagonal of the samples, in the same direction
that the individual filaments deposited during printing (fill angle 45◦). Some of the samples
prepared by this method were subsequently ground (water-cooled grinding). The two
prepared break surfaces, the ground and pure break surfaces, were subsequently studied
under a microscope.

3. Results

The results are presented in the following figures (Figures 7–10). All statistically
processed data are presented in Tables 2 and 3. The graphs in Figures 7 and 8 express the
frequency relations of the relative permittivity of the tested materials. Figure 7 describes
the frequency dependence of the relative permittivity of the colorless materials (PLA, PETG,
ABS, and ASA). It can be seen that the values of permittivity in the interval 1–100 MHz
amounted to 2.9–3.48. The curves of ASA and PETG were practically identical and the
difference between these two materials was approximately 0.1 in the entire measuring
range. The second pair of results included the measurements of ABS and PLA, which
displayed very similar behavior, with mutual differences at only 0.06. Throughout the
frequency range, the value of permittivity changed insignificantly with a practically linear
shape in all the curves and a slight tendency to decrease with the increasing frequency was
recorded. The graph in Figure 8 expresses the comparison of the frequency dependence
of PLA materials with a different color. It can be seen that the relative permittivity values
were in the range of 2.88 to 3.47. According to the graph (Figure 8), PLA and PLA-Silver
had almost identical curves. The only difference was the fact that PLA (colorless material)
had lower frequency dependence. Out of the PLA materials, PLA-Metallic green achieved
higher values over the entire frequency range. The approximate difference between PLA
and PLA-Metallic green was estimated at 0.36. The average value of PLA was estimated to
be 3.00, PLA-Silver 2.99, and PLA-Metallic green 3.36 (Table 2). The relative permittivity of
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PLA and PLA-Silver was found to be practically identical, but PLA-Metallic green differed
in its absolute permittivity value, with the slope of the curve being the same (with a slight
drop in relative permittivity with a higher frequency).
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PLA-Metallic green).

Table 2. Statistical evaluation of the measured data of the relative permittivity (εr).

Sample Identification

1–100 MHz

εr

aver. [-] 1 st. dev. [-] 2

PLA 3.00 0.05

PLA-Silver 2.99 0.07

PLA-Metallic green 3.36 0.05

PETG 3.30 0.05

ABS 2.95 0.04

ASA 3.19 0.06
1 aver. [-] means average value of the relative permittivity. 2 st.dev. [-] means standard deviation of the relative
permittivity.

Table 3. Statistical evaluation of the measured data of the loss factor (tgδ).

Sample
Identification

1–19.9 MHz 20–59.9 MHz 60–100 MHz

tgδ tgδ tgδ

aver. [%] 1 st. dev. [%] 2 aver. [%] 1 st. dev. [%] 2 aver. [%] 1 st. dev. [%] 2

PLA 0.51 0.12 0.15 0.09 0.07 0.03

PLA-Silver 1.38 0.43 2.28 0.15 3.13 0.45

PLA-Metallic
green 0.75 0.08 0.80 0.07 1.63 0.65

PETG 1.74 0.17 1.24 0.12 1.04 0.03

ABS 0.77 0.13 0.38 0.10 0.21 0.02

ASA 1.88 0.05 1.62 0.11 1.34 0.06
1 aver. [%] means average value of the loss factor. 2 st.dev. [%] means standard deviation of the loss factor.
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The frequency dependence of the loss factor of all tested materials is summarized in
the following graphs (Figures 9 and 10). The graph in Figure 9 describes the frequency
dependence of the loss factor of the colorless materials. According to this graph, the loss
factor was in the interval of 0.03–2.21%. PLA and ABS curves were practically identical in
shape over the entire frequency range, with absolute value differences of approximately
only 0.2%. The trend in the relation between these two materials is the slow drop in loss
factor values with increasing frequency. The other two materials (PETG and ASA) put
together the second group of materials with a very similar frequency dependence of the
loss factor. The only difference in the trend between these two materials was observed in
the frequency range 1–10 MHz, where the ASA curve displayed a mild drop compared
to PETG. However, in the rest of the frequency range, the trend for both materials was
declining. The differences in absolute values between PETG and ASA were estimated at
0.32%.

Figure 10 compares the loss factor frequency dependency of the PLA materials with
different color pigmentation. The loss factor values ranged from 0.03 to 4.31% in the
frequency interval studied. PLA-Silver and Metallic Green curves showed a similar overall
shape with a slightly increasing absolute value of the loss factor in the higher frequency
region. The maximal increase was observed in the range of 70–100 MHz. However, these
two curves differed substantially in their shape in the 1–20 MHz interval. Here, the
relatively significant and linear increase in the loss factor was found in PLA-Silver as
compared to PLA-Metallic green. Both of the curves had similar and parallel shapes from
the 20 MHz frequency. On the other hand, the PLA curve showed a drop in the frequency
dependence of the loss factor with increasing frequency.

The average values of the relative permittivity of tested materials in the related fre-
quency range are summarized in Table 2. Directly measured data were statistically pro-
cessed (average and standard deviation) and in this manner, the tabulated data were
provided for potential practical use. In the range of 1–100 MHz, the average values were
estimated in the interval of 2.99 (PLA-Silver) to 3.36 (Metallic green). The relative permit-
tivity values of the PLA and PLA-Silver were almost identical (Table 2), and the differences
between the PLA (colorless material) and PLA-Metallic green were estimated at 0.36.

Values of the loss factor in the assessed frequency intervals are summarized in Table 3.
The tested frequency range was divided into three intervals: 1–19.9, 20–59.9, and 60–
100 MHz. Directly measured data were then statistically processed (average and standard
deviation). The colorless materials achieved maximum loos factor values in the frequency
range 1–19.9 MHz and minimum values in the range 60–100 MHz (Table 3). On the other
hand, the colored PLA materials showed minimum values in the range of 1–19.9 MHz
and a maximum in the interval of 60–100 MHz. The maximal difference between the loss
factors of the three types of tested PLA materials was observed between the PLA (colorless)
and PLA-Silver, which reached 0.87% (1–19.9 MHz), 2.13% (20–59.9 MHz), and 3.06%
(60–100 MHz). Naturally, the data in Tables 2 and 3 fully correspond to the data in the
graphs (Figures 7–10).

The next parameter examined was tested to verify that no significant defects (air gaps)
had formed in the internal structure of the samples as result of the deposition of individual
layers during printing, which could affect the dielectric properties of the samples. The
results are shown in Figure 11, which summarizes microscope images of the break surfaces
of each of the tested materials ABS, ASA, PETG, and PLA (colorless). Figure 11A,C,E,G
show the break surfaces of ABS, ASA, PETG, and PLA (colorless). Figure 11B,D,F,H display
the ground break surfaces of ABS, ASA, PETG, and PLA materials (colorless). From these
individual cuts, it is obvious that no significant defects (air gaps) of the internal structure
were presented in the tested materials.
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Figure 11. Images of break surfaces of ABS, ASA, PETG, and PLA (colorless) taken with a microscope:
(A) ABS—break surface, (B) ABS—grinded break surface, (C) ASA—break surface, (D) ASA—grinded
break surface, (E) PETG—break surface, (F) PETG—grinded break surface, (G) PLA (colorless)—break
surface, (H) PLA (colorless)—grinded break surface.

4. Discussion

The presented data show that the relative permittivity values varied between 2.88–
3.48 and the loss factor values ranged from 0.03–4.31%. These results mean that all the
materials tested showed a very slight decrease in relative permittivity with increasing
frequency. Indeed, comparing the relative permittivity of PLA materials, the PLA colorless
and PLA-Silver had almost identical frequency dependence over the entire measurement
range. On the other hand, PLA-Metallic green had an approximately 0.36 higher relative
permittivity values over the entire frequency range, but the general shape of the curves was
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the same for both materials. The difference was probably caused by pigment dye added to
the PLA-Metallic green.

According to the measured data, the loss factor of these colorless materials was
determined to be in the range of 0.03–2.21%, and the PLA color materials (PLA-Silver
and Metallic green) were in the range of 0.71–4.31%. The colorless materials showed
significantly lower interval variation and much lower frequency dependence. The lowest
values of the loss factor and its minimal frequency dependence were observed in colorless
PLA, which made this material the most suitable for electrical applications among those
tested here. The second one which appears to be useful for these applications is the ABS.
Similar to the PLA, ABS achieved the low-frequency dependence of the loss factor, but the
absolute values were rather higher. On the other hand, the PETG and ASA were proven
to have the highest loss factor values in terms of colorless materials in the range of 1–5
(PET-G) and 5–100 MHz (ASA). The frequency dependence of PETG and ASA was minimal
in the entire frequency range. Both colored PLA materials had the least suitable parameters
in terms of use for electrical applications. The significant frequency dependence of the loss
factor over the entire measuring range was proven. These results are in concordance with
the above-mentioned ones of Dichtl et al. [3] and Deffenbaugh et al. [30]. The higher values
of the loss factor in the range 20–100 MHz were observed in PLA-Silver (Table 3): 2.28%
(20–59.9 MHz) and 3.13% (60–100 MHz). Another difference between PLA (colorless) and
the colored PLA samples is the trend of the loss factors curves. For PLA and similarly for
other colorless materials, the declining trend of the loss factor values was more frequent,
but the colored materials achieved the opposite trend.

Differences between colored and colorless materials are probably caused by the addi-
tives pigment dyes which significantly influenced the dielectric parameters of the materials.
It is known that conductive pigment dyes cause a decrease in the high-frequency resistance
of the material. This is caused by the influence of the contact resistance of connecting grains
of the dye. Due to their inhomogeneous distribution, the current tracks are not continuous
and at low concentrations of the conductive substance, its effect on the DC resistance is sig-
nificantly smaller. Non-conductive dyes cause an increase in the loss factor of the composite
dielectric due to their own losses. Dyes contained in plastic materials increase the loss
factor and cause other polarization processes, especially at frequencies of the order of tens
and hundreds of MHz. Pure materials (without dyes) showed polarizations with a time
constant in the range of milliseconds which led to a slight increase in relative permittivity
and a strong increase in loss factor (tgδ) in the low frequency ranges (hundreds of Hz
to kHz) [31]. The influence of dielectric properties of the 3D printing materials has been
described by Veselý et al. [25] and Balakrishnan et al. [37] as well. Balakrishnan et al. [37]
observed the significant influence of the pigment dyes on conductivity of PLA materials. A
similar effect of the pigment dyes on the properties of the materials for 3D printing was
studied by Castro et al. [38] and Wittbrodt et al. [6]. They proved that pigmentation had a
significant influence on a material’s mechanical properties.

According to the tested break surfaces of ABS, ASA, PETG, and PLA (colorless), the
presence of significant defects (air gaps) in the internal structure of the samples formed
during their printing, which could affect their dielectric properties, was not proven.

5. Conclusions

3D printing is a widespread and rapidly developing technology that provides rapid
prototyping and low-cost production, and for this reason its application is found in many
different areas. Currently, 3D printing is more and more frequently used for the develop-
ment and manufacturing of electrotechnical components and devices. These applications
require knowledge about the dielectric properties of the used materials proceeded by 3D
printing technology.

The paper dealt with the comparison of dielectric properties such as relative permittiv-
ity and a loss factor of PLA, PET-G, ABS, and ASA materials. The PLA materials samples
were prepared in three different color sets for the comparison of the pigment dye on the
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above-mentioned material properties. The parameters were measured in the frequency
range of 1–100 MHz and the results were as follows:

1. The absence of polarization phenomena was proven for the tested colorless materials
in the range of 1–100 MHz. This absence of the polarization phenomena was mani-
fested by the insignificant frequency dependence of the dielectric properties of these
materials;

2. The values of relative permittivity varied between 2.88–3.48 and the values of loss
factor were in the range of 0.03–4.31%;

3. In terms of relative permittivity, all the tested materials showed minimal frequency
dependence in the entire measuring range with a slight tendency to decrease in the
higher frequency range. The minimal values of relative permittivity reached ABS
(2.95), PLA (3.00), and PLA-Silver (2.99), which proved nearly identical parameters.
On the other hand, PLA-Metallic green reached a value of 0.36 higher than PLA. This
phenomenon was probably caused by added pigment dye;

4. In terms of the loss factor, PLA and ABS appeared to be more suitable for electrotech-
nical application due to lower values and lower frequency dependencies of the loss
factor in all studied frequency ranges. The values of the loss factor of PLA and ABS
were estimated at: 0.51%, 0.77% (1–19.9 MHz); 0.15%, 0.38% (20–59.9 MHz), and
0.07%, and 0.21% (60–100 MHz);

5. PET-G and ASA showed higher values and frequency dependence of the loss fac-
tor, and, for this reason, these two materials were less useful for electrotechnical
application;

6. The loss factor of PLA-Silver and PLA-Metallic green had significant frequency de-
pendence, which was evident at higher frequencies. This increase was most evident
in the upper part of the frequency range (70–100 MHz). In these intervals, PLA-Silver
and PLA-Metallic green reached the maximum values of loss factor (4.31% and 3.24%).
Due to these facts, these materials were inferior for electrotechnical applications;

7. Significant differences were observed between PLA (colorless), PLA-Silver, and PLA-
Metallic green, considering the loss factor. They can be caused by pigment dye which
increases the values and frequency dependence and brings limitations for the use of
these materials in electrical applications;

8. PLA and ABS were more suitable for electrotechnical applications. They reached the
smallest values of relative permittivity and loss factor, and at the same time, they
proved the minimal frequency dependence of the tested parameters on the studied
frequency range;

9. The presence of significant defects (air gaps) in the internal structure of the printed
samples of ABS, ASA, PETG, and PLA, which would affect their dielectric properties,
were not proven.

Further research could focus on the effect of 3D printing technology on the electrical
strength of processed materials and their aging caused by high electric field strength.
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