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Abstract: In this work, the computational particle fluid dynamics (CPFD) method is used to simu-
late the high-pressure visual fluidized bed experimental equipment independently designed and
developed by the experimentation of the fluidized reduction process of iron ore powder. A numerical
model for reducing iron ore fines in a three-dimensional fluidized bed is established, and the model
is verified by combining numerical simulation and experimental testing. Moreover, the influences of
different reducing factors on the reduction effect in the process of the fluidized reduction of iron ore
fines are simulated in detail. Via the CPFD simulation of the fluidized reduction of iron ore fines, the
optimal reduction pressure is found to be 0.2 MPa, and the optimal reducing gas is found to be H2.
Moreover, the optimal gas velocity is 0.6 m/s, and the optimal reduction temperature is 923 K. This
conclusion is consistent with the experimental measurements, so the simulation results can be used
to verify the reliability of the optimal operating conditions.

Keywords: fluidized bed; CPFD; simulation; iron ore fines; metallization rate

1. Introduction

The fluidized direct reduction process has the advantages of a large gas–solid contact
area, a uniform temperature and concentration, good heat and mass transfer conditions,
and high operating efficiency [1–3]. However, due to the complex multiphase flow system,
particles will be entrained by the airflow to cause material loss, and the particles will cause
wear and tear to the equipment [4–6]; consequently, the scale-up of industrial-scale fluidized
beds faces huge challenges. Experimental research and numerical simulation are the main
ways to study gas–solid two-phase flow, and experimental measurement data are the basis
of theoretical analysis. At present, relevant scholars have carried out large amounts of
experimental measurements and research on the internal flow mechanism of the fluidized
bed, such as the minimum fluidization velocity, bed height, and local particle aggregation
[7–9]. However, due to the limitation of the experimental conditions and the complexity and
uncertainty of gas–solid two-phase flow, it is difficult to obtain specific information at the
micro-level, such as the particle motion state and gas distribution [10–12], and experimental
measurement has the disadvantages of a large amount of engineering, a high cost, a long
cycle, and limited measurement methods. With the continuous development of computer
technology, numerical simulation has become an important means by which to study dense
gas–solid two-phase flow, and plays an increasingly important role in supplementary
experimental research [13–17]. Numerical simulation can be used to accurately calculate,
predict, and study gas–solid two-phase flow, and to more intuitively obtain the process
and details of the gas–solid flow on the particle and grid scales, which are difficult to
measure in an experiment. Moreover, this method is not limited by the measurement
means, and can yield rich micro-information about the core factors [18–20]. Furthermore,
numerical simulation can be used to directly calculate equipment of any scale, and can
provide prediction results for the development of new reaction equipment to aid in the
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optimal design of internals. Liang et al. [21] used the computational particle fluid dynamics
(CPFD) model to simulate a two-dimensional fluidized bed, and explored the influences
of various parameters in the simulation on the calculation results. The results showed
that when meshing, refinement near the wall can significantly improve the accuracy of
the results, and the solid-phase velocity in the tube can be better predicted. Lim et al. [22]
used the CPFD method to study the influence of particle interaction, determined the flow
characteristics of the fluidized bed according to the collision model and the change of
the normal stress parameters of the particles, and verified that CPFD simulation is more
effective and stable than previous computational fluid dynamics (CFD) in fluidized bed
analysis. Jia et al. [12] established a three-dimensional numerical simulation of circulating
fluidized bed combustion to simulate the pyrolysis and combustion of coke and volatile
substances from gas–solid flow, heat and mass transfer, and chemical reaction. This
method allows for the strong prediction of the combustion characteristics of a circulating
fluidized bed.

At present, there is a vacancy in the simulation of the influences of the mass transfer,
heat transfer, and chemical reaction processes in the fluidized bed on the gas–solid two-
phase movement at high temperatures [23–25]. Because there are no unified and reliable
chemical reaction kinetic parameters that can accurately simulate changes in gas compo-
sition, the complex physical and chemical processes and reaction kinetic models in the
fluidized bed cause significant differences between the gas composition determined by the
simulation and experimental results [26–28]. However, in theory, it is difficult to verify the
rationality of the parameters of the numerical model and the reliability of the prediction re-
sults [29–31]; to a large extent, they must be verified and determined via experimental data.
Only a chemical reaction kinetic model with a wider application scope and higher reliability
can more accurately predict the changes of the gas composition [32–34]. Therefore, in view
of these problems, this study takes numerical simulation and experimental measurement as
the main content, which is then supplemented by theoretical analysis, to carry out numeri-
cal simulation research on the state of reduced iron ore powder in a pressurized fluidized
bed. Coupled with the gas–solid flow and reaction dynamics characteristics, a numerical
model of reduced iron powder in a pressurized circulating fluidized bed is established to
reveal the flow and reaction characteristics of the fluidized reduction of iron powder, and
to explore the influences of the operating parameters on the gasification results. Barracuda
software is used to calculate and study the influences of the temperature field, chemical
reaction, reduction pressure, and linear gas velocity on the reduction effect in the fluidized
bed reactor. By comparing the metallization rate measured in the experiment with the
simulated metallization rate, the influences of different factors on the reduction of ore
powder in the experiment are verified. The optimal operation conditions of the simulated
fluidized reduction of iron ore powder are obtained via comprehensive analysis, which
provides a theoretical basis for understanding the flow law of the fluidized bed, optimizing
the process and operation, and broadening its industrial application range.

2. Experimental Steps and Protocols

The reduced iron ore powder used in this experiment was Newman ore from Australia,
the shielding gas was N2, and the reducing gases were H2, CO, and a mixture of H2 and CO.
The main device was a pressurized visible fluidized bed (Figure 1) with double stainless-
steel tubes as the reactor, and the inner tube was a fluidized bed. First, N2 was introduced
into the fluidized bed to discharge all the air and raise the pressure to 0.5–0.6 MPa to check
the air tightness of the device. After heating the fluidized bed to the set temperature, the
N2 valve was closed, and the reducing gas was introduced. The gas was regulated by
a flowmeter and gas mass flow controller to allow the gas to enter the bed to reach the
required linear speed and control the inlet flow of the gas. The experiment was initiated
after the pressure stabilized to the set pressure value. A quantitative amount of fine
mineral powder particles (500 g) was placed into the fluidized bed and reacted with the
reducing gas for the set time, and then the experiment was stopped. After cooling to room
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temperature, the mineral powder in the fluidized bed was removed, and the samples were
analyzed by the potassium dichromate volumetric method and the ferric chloride titration
method to determine the contents of metallic iron (MFe) and total iron (TFe) and calculate
the metallization rate η. The higher the metallization rate, the better the quality of the
reduced mineral powder. To reduce the experimental error, the measurement was repeated
twice, and the average value was taken as the final experimental result. The experimental
scheme is shown in Table 1.

Figure 1. Experimental setup: (a) fluidized bed reactor; (b) flow chart. 1. Gas mixing and preheating
chamber; 2. Gas mixing hole; 3. Fluidized bed; 4. K-type thermal couple; 5. Pressure sensor; 6.
Gravity filter; 7. Feeding and sampling port; 8. Pressure seal cap; 9. Temperature change recorder;
10. Gas analyzer; 11. H2 gas analysis recorder; 12. CO2 gas analysis recorder; 13. CO gas analysis
recorder; 14. Pressure change analysis recorder; 15. Computer; 16. Gas dryer; 17. Gasholder; 18.
Pressure display; 19. N2 gas cylinders; 20. CO/CO2 gas cylinders; 21. H2 gas cylinders; 22. Gas mass
flowmeter; 23. Booster pump; 24. Gas valve.

Table 1. Experimental scheme.

No. Reduction Temperature/K Type of Reducing Gas Reducing Pressure/MPa Linear Velocity/m/s

1 923 H2 0.2 0.6
2 1023 H2 0.2 0.6
3 1123 H2 0.2 0.6
4 923 H2 0.1 0.6
5 1023 H2 0.1 0.6
6 1123 H2 0.1 0.6
7 1023 H2 0.1 0.6
8 1023 CO 0.1 0.6
9 1023 H2 + CO 0.1 0.6
10 1023 H2 0.2 0.6
11 1023 CO 0.2 0.6
12 1023 H2 + CO 0.2 0.6
13 1023 H2 + CO 0.1 0.6
14 1023 H2 + CO 0.2 0.6
15 1023 H2 + CO 0.4 0.6
16 923 H2 + CO 0.1 0.6
17 923 H2 + CO 0.2 0.6
18 923 H2 + CO 0.4 0.6
19 1023 H2 + CO 0.1 0.4
20 1023 H2 + CO 0.1 0.6
21 1023 H2 + CO 0.1 0.8
22 1023 H2 0.2 0.4
23 1023 H2 0.2 0.6
24 1023 H2 0.2 0.8
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The metallization rate is calculated as follows:

η = MFe /TFe (1)

where η is the metallization rate, MFe is metallic iron (g), and TFe is total iron (g).

3. Mathematical Models
3.1. Governing Equations

In Barracuda Virtual Reactor 17.4.0 software, large eddy simulation (LES) was used
for the turbulence model of the gas field, the MP-PIC method was used for particles in
the solid phase, the normal stress of particle collision and the gas–solid heterogeneous
reaction were calculated based on the Euler grid, and the properties of discrete particles
were interpolated to the Euler grid. The solution was then interpolated back to the particles,
and this process was realized by the interpolation operator. In order to make the grid
size of the fluid phase larger than that of the particle phase, the total number of grids
was finally determined to be 69,584 by grid-independence analysis when dividing the
fluidized bed grid model, and the grid size was 3.1579 × 3.1707 × 3.1098, which had
the least effect on the pressure and temperature variations in the simulation. The drag
force between the gas and solid was calculated by the Wen-Yu model, and the “calculated
particles” with the same properties were packaged. Chemical reactions were combined
with the complex hydrodynamics calculations of gas–solid fluidized beds. The setting
of an “equivalent particle size” was adopted for the method based on CPFD, and small
particles clustered to form large particles, which were replaced by equivalent particles
when solving the drag force. The calculation method and fluidization phenomenon of large
particles were revealed, and the thermal conductivity effect brought by agglomeration was
simultaneously simulated. The fluidized bed model in the simulation was established and
simplified according to the reaction principle presented in Figure 1. The main part was a
cylinder with a height of 0.78 m and a diameter of 0.30 m. The system grid is presented in
Figure 2. The main air intake was located at the bottom of the entire system. The origin
was set at the center of the bottom of the riser, and the z-axis was opposite to the direction
of gravity. An overview of the main governing equations is provided in Table 2.

Figure 2. Grids: (a) Overall Grid; (b) Grid 1; (c) Grid 2.
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Table 2. Governing equations [35–38].

Equation Equation Expression

Continuity equation ∇
(
ρgagug

)
+ ∂

∂t
(
ρgag

)
= δ

.
ms,−

∫ ∫ ∫
f dms

dt dTsdusdms = δ
.

m
Momentum equation −a∇p +∇τg + ρsagugg + F = ∇

(
ρsagugug

)
+ ∂

∂t
(
ρgagug

)
Component transport equation δ

.
mg,i + δ

.
ms,i +∇

(
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)
= ∇

(
ρgagYg,iug

)
+ ∂
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(
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)
Energy conservation equation ∂
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(
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)
= ag

(
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)
+ ϕ−∇

(
agq
)
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.
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.
qD

Particle equation of motion A = dus
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(
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)
+ g− 1

asρs
∇τ − ∇p

ρs
+ Fs

Particle collision model τs =
10Ps aβ

s
max[(acp−as),δ(1−as)]

Particle energy transfer model msCV
dTs
dt =

NP

∑
j=1

Qij + Qsg + Qradi + Qreac

Volume fraction of particles in unit grid
∫ ∫ ∫

f VpdρsdVpdus= εs

Local fluid wall heat transfer coefficient h f w =
{(

0.46Re0.5
L Pr0.33 + 0.46

) k f
L

}
W

m2K +

(
1− e−10(

θp
θcp

)
)(

0.46Re0.5
p

k f
dp

)
W

m2K

Diluted phase heat transfer coefficient hp =
{(

0.37Re0.6
L Pr0.33 + 0.1

) k f
dp

}
W

m2K

Drag coefficient
D = 8

3 Cd
2ρ f rp|u f−up|

ρprp

Cd =


24
Re θn0

f Re < 0.5
24
Re θn0

f (c0 + c1Ren1 ) 0.5 ≤ Re < 1000
C2θn0

f Re ≥ 1000

3.2. Chemical Reactions

All elemental reactions and reaction rates can be determined for the many chemical
reactions present in a fluidized bed. However, the large number of coupled reactions in
large-scale industrial reactors cannot be calculated within hundreds of seconds of simu-
lation time [39–41]. The reduction reaction system between the particles and gas phase
considered in this study is similar to that considered by Parisi et al. [36]. The reduction
process of Fe2O3 actually includes Fe2O3→Fe3O4→FeO→Fe [36]. In the simulation, the
intermediate process was omitted, and the chemical reaction was directly reduced from
Fe2O3 to Fe. Because the water–gas shift reaction (WGSR) = reaction (3) − reaction (2), the
water–gas reaction is not linearly independent and implicit in the system, and its reaction
rate is not listed. The reaction of the reduction of ore powder is as follows:

Fe2O3 + 3H2 = 2Fe + 3H2O (2)

Fe2O3 + 3CO = 2Fe + 3CO2 (3)

To incorporate this chemistry in CPFD, cell mean chemistry calculations were used.
The homogeneous reaction rate was obtained by the Arrhenius equation, which is written
as k = Ae−Ea/RT [42]. The average properties of particle phases in the chemical rate
equation were calculated by interpolating the discrete calculated particle properties into
the grid [43–45]. The reaction rates in each grid cell were calculated by solving a set of
ordinary differential equations of the above form. In the implicit solution, the mass of the
solid phase involved was contained in the mass of the gas phase.For reactions (1) and (2),
the consumption rates of H2 and CO per unit volume are [46], respectively, as follows:

RH2 = 3.0as

 pH2 −
pH2O
KeH2

RTSrp

kH2

(
1 + KeH2

)
KeH2

(1− f )
2
3 (4)

RCO = 3.0as

 pCO −
pCO2
KeCO

RTSrp

kCO(1 + KeCO)

KeCO

(1− f )
2
3 (5)
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where the chemical equilibrium constants and reaction rate constants of H2 and CO are,

respectively, given by the following: KeH2 = e
−1589.6+16.21Ts

Ts , KH2 = 19.5e
−62700

RTs , KeCO =

e
22890−24.36Ts

RTs , and KCO = 27.9e
−62700

RTs . The generation or consumption rate of other substances
in the reaction system was obtained by using the stoichiometric coefficients of reaction
(Equations (2) and (3)).

3.3. Simulated Experimental Conditions

According to the experimental conditions, in the simulation, the gas phase was N2,
CO, and H2, and the solid phase was iron ore powder and silica sand. The particle size
distribution of the ore powder is shown in Figure 3. The initial setup was the same as the
experimental setup, as presented in Figure 4. Particles were filled above the inlet boundary
with a volume fraction of 0.56, and the other input parameters are listed in Table 3. First,
the temperature of the fluidized bed reactor was heated to the set value, after which N2
was introduced and the mineral powder was added, and the reducing gas was finally
introduced to reduce the mineral powder. The gas in the experiment was introduced from
the bottom of the fluidized bed to fluidize the particles and reduce the mineral powder
under high-temperature conditions. The solid phase was not allowed to be discharged from
the reactor, and atmospheric pressure boundary conditions were specified at the outlet.
The simulation time required 2500 s to eliminate the initial oscillation and achieve complete
mass dynamic balance and the mineral powder composition reaction.

Figure 3. Particle size distribution.

Table 3. Input parameters in the CPFD simulation.

Parameters Numerical Value

Gravitational acceleration 9.81 m/s2

Diameter of mineral powder 7.5 × 10−5~1.5 × 10−4 m
Mineral powder density 4216.81 kg/m3

Adhesive diameter 5 × 10−3~1 × 10−2 m
Drag model Wen-Yu

Non-dimensional exponent, β 3
Non-dimensional constant, a 10−8

Turbulence model Large eddy simulation (LES) turbulence
Maximum momentum of particle collision 40%

Time step 0.001 s
Total time 2500 s
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To study the effects of the reduction temperature, the type of reducing gas, the re-
duction pressure, and the linear velocity of the reducing gas on the fluidized reduction of
iron ore fines, experiments, and simulations were combined to investigate these factors.
These four factors are, respectively, represented by A, B, C, and D. A represents the re-
duction temperature, and A1, A2, and A3 are 923 K, 1023 K, and 1123 K, respectively. B
represents the type of reducing gas, and B1, B2, and B3, respectively, represent H2, CO,
and an H2:CO mixed gas with a ratio of 0.6:0.4. C represents the reduction pressure, and
C1, C2, and C3 represent the atmospheric pressures of 0.1 MPa, 0.2 MPa, and 0.4 MPa,
respectively. Finally, D represents the linear velocity of the reducing gas, and D1, D2, and
D3 are, respectively, 0.4 m/s, 0.6 m/s, and 0.8 m/s (see Table 4). In the experiment, the
reduction effect was analyzed by measuring the metallization rate of the ore powder, and
the optimal experimental operating conditions of the fluidized bed reduction were obtained
via optimization analysis.

Table 4. Levels of each factor.

A Reduction
Temperature /K

B Reduction Gas
Type

C Reduction
Pressure/MPa

D Gas Linear
Velocity/m/s

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
923 1023 1123 H2 CO Mixture 0.1 0.2 0.4 0.4 0.6 0.8

4. Conclusion and Analysis

For different indicators, the degrees of influence of different factors are different, and
the comprehensive optimal solution can be obtained via the comprehensive analysis of the
four factors. Via the comprehensive analysis of the metallization rate and bonding ratio
in the experiment, the optimal experimental operating conditions were determined to be
a temperature of 923 K, a pressure of 0.2 MPa, a linear velocity of the reducing gas of 0.6
m/s, and the use of pure H2 as the reducing gas. For the specific research process and
conclusion of the experiment, please refer to the paper published by the research group [47].
Figure 5 presents the initial fluidization process of the iron ore powder. The ore powder
was reduced to iron to a certain extent, and the composition remained unchanged.
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4.1. Metallization Rate

Figure 6 exhibits the changing trends of the metallization rates of the three groups of I,
II, and III. Figure 6a is the simulation result of the metallization rate, and Figure 6b is the
experimental measurement value of the metallization rate. By comparing the simulation
data with the experimental data, it can be seen that the simulation results of the CPFD
method can adequately verify the variation trend of the metallization rate observed in
the experiment. Within 1800 s, the metallization rate increased with time, and after 1800
s, the metallization rate exhibited an almost stable trend and no longer changed. Since
the chemical reaction rate set by the simulation is in a more ideal state, while the real
experiment requires a heated reaction time to reduce the iron ore powder, the simulated
value of the metallization rate in the first 600 s is in the ideal state of linear growth, while
the real experimental measured value has a lower growth rate than the simulated result.
Moreover, the reaction time is long enough for the powder to be mostly reduced under
the simulated experiment, which leads to the metallization rate under the simulated result
being larger than the metallization rate in the experimental result.

Figure 6. Metallization rate.
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The experimentally measured value of the metallization rate at 1200 s was compared
with the simulated calculated value, as shown in Table 5. The comprehensive analysis
shows that under the same conditions, the simulated values of the metallization rate were
in good agreement with the change trend of the experimentally measured values. Therefore,
the simulated metallization rate can provide reference values for the optimization of the
experimental operating conditions, and can be used to verify the accuracy of the experi-
mental results. However, there was an error in the simulation result, and the calculated
value was higher than the experimental value. The reason for this is that the simulation
result was in an ideal state, which ignored the fact that some particles were blown away
and the energy loss in the experiment. Moreover, the setting of the chemical reaction rate
could not completely reflect the real situation. As the particle composition in the ideal state
was without impurities, most of the mineral powder could be reduced over a sufficiently
long amount of time, which caused the metal content in the simulation result to be greater
than the experimentally measured value. When the metallization rate in the simulation
tended to be stable, the particles under the simulation were mostly reduced, resulting in a
higher metallization rate.

Table 5. Experimental scheme and results.

No. Reduction
Temperature/K

Type of
Reducing Gas

Reducing
Pressure/MPa

Linear
Velocity/m/s

Metallization
Rate /%

Simulated
Metallization Rate/%

1 1123 H2 0.1 0.6 76.45 86.45
2 1023 CO 0.1 0.6 60.46 68.46
3 1023 H2 + CO 0.1 0.6 63.15 70.15
4 923 H2 + CO 0.2 0.6 80.04 99.13
5 923 H2 + CO 0.4 0.6 81.65 99.81
6 1023 H2 + CO 0.1 0.4 51.88 58.88
7 1023 H2 + CO 0.1 0.8 60.19 69.19
8 1023 H2 0.2 0.4 56.87 62.87

4.2. Reduction Temperature

Factor A (reduction temperature): The initial temperatures of the gas and solid phases,
the inlet temperature, and the wall heating temperature were simulated according to the
experimental conditions, and the fluidization effect was judged by the time required for
the reaction to reach equilibrium. Table 6 shows the simulation experimental scheme
and results to study the reduction temperature. Figure 7 presents the fluid temperature
distribution of simulation experiments 1, 2, and 3, and the cross-section temperature field
distribution of simulation experiments 2. The superimposition on the right is the change
of the average temperature of simulation experiments 1, 2, and 3 over time. Figure 8
shows the changes in the compositions of the three groups of experimental gases with time,
which reveals that the time required for the ore powder to be completely reduced to iron
to reach the equilibrium state in these experiments was approximately 1215 s, 990 s, and
1240 s. When gases of different compositions are blown into the fluidized bed from the
inlet, the mineral powder is continuously reduced to Fe by the reducing gas, and when the
mineral powder is completely reduced, no chemical reaction occurs in the fluidized bed,
and the gas in the fluidized bed is detected as the composition set by the initial conditions.
When the temperature exceeded a certain value, the higher the temperature, the poorer the
reduction effect of the ore powder as compared to that at a low temperature. According to
the simulation results, the shortest time required to reach the equilibrium occurred when
the reduction temperature was 1023 K. When the mineral powder with a lower temperature
was added to the bed, it took a period of time to increase the temperature, and the reduction
effect of the mineral powder gradually increased with the reduction reaction. When the
temperature reached a certain level, the reduction effect was optimal. The higher the energy
of iron whiskers produced by reduction on the particle surface, the greater the physical
adsorption, and the more likely the agglomeration between high-energy iron whiskers,
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resulting in bonding/loss of flow and a decrease in the metallization rate [47]. Therefore,
the best choice for the reduction temperature was determined to be 1023 K. The simulation
conclusion is consistent with the experimental conclusion, so this method can simulate the
effect of the reduction temperature on fluidized ironmaking.

Table 6. Experimental scheme and results.

No. Reduction
Temperature/K

Type of Reducing
Gas

Reducing
Pressure/MPa

Linear
Velocity/m/s

Simulation
Equilibration

Time/s

1 923 H2 0.2 0.6 1215
2 1023 H2 0.2 0.6 990
3 1123 H2 0.2 0.6 1240
4 923 H2 0.1 0.6 1255
5 1023 H2 0.1 0.6 1105
6 1123 H2 0.1 0.6 1305
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Figure 8. Changes in gas composition over time. (a) Experiments 1. (b) Experiments 2. (c) Experi-
ments 3.

4.3. Types of Reducing Gases

Factor B (type of reducing gas): Different components of the reducing gas have a great
influence on the reduction effect. Table 7 shows the simulation experimental scheme and
results of studying the components of the reducing gas, and Figure 9 presents the changes in
the simulation results of the gas components in simulation experiments 7, 8, and 9 over time.
In the three experiments, the time required for the ore particles to be completely reduced to
the equilibrium state was roughly 1375 s, 1675 s, and 1580 s, respectively. The simulation
results show that the higher the H2, the shorter the equilibrium time, and the better the
fluidization reduction effect. Therefore, pure H2 was determined to be the best reducing
gas. When pure H2 was used as the reducing gas in the experiment, the reduction effect
was good and the metallization rate was high. According to the preceding analysis, when
the temperature exceeds a certain value, the lower the temperature, the more conducive the
reaction. The CO reduction of iron ore is an exothermic reaction, while the H2 reduction
of iron ore is an endothermic reaction. When a certain temperature is reached, the high
temperature is conducive to particle bonding/loss of flow, and CO will precipitate carbon
powder and adsorb around the ore powder, thus affecting the reaction. The chemical
reaction rate settings in the simulation were consistent with the real experimental results.
This method can simulate the effect of the reducing gas on fluidized smelting.

Table 7. Experimental scheme and results.

No. Reduction
Temperature/K

Type of Reducing
Gas

Reducing
Pressure/MPa

Linear
Velocity/m/s

Simulation
Equilibration

Time/s

7 1023 H2 0.1 0.6 1375
8 1023 CO 0.1 0.6 1675
9 1023 H2 + CO 0.1 0.6 1580

10 1023 H2 0.2 0.6 1050
11 1023 CO 0.2 0.6 1305
12 1023 H2 + CO 0.2 0.6 1155
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Figure 9. Changes in gas composition over time. (a) Experiments 7. (b) Experiments 8. (c) Experi-
ments 9.

4.4. Reduction Pressure

Factor C (reduction pressure): Table 8 shows the experimental plan and results of
the reduction pressure study, and Figure 10 presents the fluid temperature and particle
temperature distributions of simulation experiments 13, 14, and 15. The overlay on the
right shows the average temperatures of the three groups of experiments. Figure 11 exhibits
the simulation results of gas changes in the three groups of experiments. It can be seen
from the figure that the time required for the three groups of reactions to reach equilibrium
was roughly 1625 s, 1115 s, and 1050 s, respectively. According to the experimental analysis,
it can be seen that when the pressure was higher, the gas density in the bed was higher,
and the contact between the gas and the solid was more sufficient, which accelerated the
reduction rate of the solid. However, the higher the pressure, the higher the gas velocity.
Before the set heating temperature was reached, the gas flowed out from the gas outlet,
thereby reducing both the fluid temperature and the particle temperature in the fluidized
bed. The higher the outlet pressure, the lower the temperature, and the better the reduction
effect. However, when the pressure was 0.2 MPa and 0.4 MPa, the time required for the
balance of the ore powder was very similar. Considering the cost and the reduction effect,
the best reduction pressure was selected as 0.2 MPa. This method can simulate the effect of
the reduction pressure on fluidized ironmaking.

Table 8. Experimental scheme and results.

No. Reduction
Temperature/K

Type of Reducing
Gas

Reducing
Pressure/MPa

Linear
Velocity/m/s

Simulation
Equilibration

Time/s

13 1023 H2 + CO 0.1 0.6 1625
14 1023 H2 + CO 0.2 0.6 1115
15 1023 H2 + CO 0.4 0.6 1050
16 923 H2 + CO 0.1 0.6 1605
17 923 H2 + CO 0.2 0.6 1105
18 923 H2 + CO 0.4 0.6 1055
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Figure 11. Changes in gas composition over time. (a) Experiments 13. (b) Experiments 14. (c) Experi-
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4.5. Linear Gas Velocity

Factor D (linear gas velocity): Table 9 shows the experimental plan and results of the
Linear Gas Velocity study, and Figure 12 shows the distributions of the fluid temperature
and particle temperature in simulation experiments 19, 20, and 21, as well as the cross-
sectional distribution of the fluid temperature in simulation experiment 20. Figure 13
presents the variations of the gas composition in the three groups of experimental beds. It
can be seen from Figures 12 and 13 that when the gas velocity was 0.4 m/s, the ore powder
was not completely reduced, and the gas velocity was 0.6 m/s and 0.8 m/s. When the gas
velocity was 0.6 m/s, the ore powder was completely reduced and the reaction reached
the equilibrium state after 1580 s, whereas when the gas velocity was 0.8 m/s, the reaction
required 1875 s. Therefore, the best gas velocity was determined to be 0.6 m/s. With the
increase of the linear gas velocity, the upward drag force of the gas on the particles also
increases, the load of the particles decreases, the spacing of the particles increases, the
tightness of the particles in the bed decreases, the porosity increases, the gas and particles
fully contact and react, and adhesion/loss of flow does not easily occur. Furthermore, with
the increase of the linear gas velocity, the temperature of normal-temperature gas decreases,
the particle temperature and cell fluid temperature decrease, and the effective gas–solid
reduction temperature and reduction effect decrease. A large temperature decrease in a
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fluidized bed is not conducive to the reduction of ore powder. Considering the optimal
reduction linear velocity of 0.6 m/s, it can be concluded that the method can simulate the
influence of the linear gas velocity on fluidized smelting.

Table 9. Experimental scheme and results.

No.
Reduction
Tempera-

ture/K

Type of
Reducing

Gas

Reducing
Pres-

sure/MPa

Linear
Velocity/m/s

Simulation
Equilibra-

tion
Time/s

19 1023 H2 + CO 0.1 0.4 —-
20 1023 H2 + CO 0.1 0.6 1580
21 1023 H2 + CO 0.1 0.8 1875
22 1023 H2 0.2 0.4 —-
23 1023 H2 0.2 0.6 1055
24 1023 H2 0.2 0.8 1400
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5. Conclusions

In this study, a combination of numerical simulation and experimental testing was
used to carry out numerical simulation research on the thermal state of reduced iron ore
powder in a pressurized fluidized bed with the help of Barracuda software. Coupling
the characteristics of gas–solid flow and the reaction kinetics, a numerical model of the
reduction of iron ore fines in a pressurized circulating fluidized bed was established to
reveal the flow and reaction characteristics of the fluidized reduction of iron ore fines. The
effects of the operating parameters, namely the reduction pressure, reduction temperature,
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reducing gas type, and linear gas velocity, on the gasification results were explored. The
simulation results reveal the following:

(1) The change trends of the metallization rate in the fluidized reduction of iron ore
powder simulated by the CPFD method were consistent with the experimental values;

(2) The CPFD method simulated the effects of the reduction temperature, linear gas
velocity, gas composition, and reduction pressure on the results of the fluidized reduc-
tion of iron powder, which were consistent with the experimental results. This indicates
that the model selection was reasonable, and lays a foundation for further numerical
simulation work;

(3) Based on the CPFD method, the optimal operating parameters were determined to
be a reduction temperature of 1023 K, a reduction pressure of 0.2 MPa, H2 as the reducing
gas, and a gas velocity of 0.6 m/s. The optimal operating parameters in the experimental
test were a reduction temperature of 1023 K, a reduction pressure of 0.2 MPa, H2 as the
reducing gas, and a gas velocity of 0.6 m/s. The simulation conclusion is consistent with
the experimental test conclusion, which verifies the reliability of the experimental data.
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Nomenclature

a Pre-exponential factor
A Particle acceleration
αg,αs Gas and solid phase volume fraction
Cv Specific heat capacity
dp Particle size, m
Dg Gas phase turbulent diffusion coefficient
Ea Apparent activation energy
F Force source, N
Fs Frictional stress between particles
g Gravitational acceleration, m/s2

h f w Local fluid wall heat transfer coefficient
hp Dilute transfer heat coefficient
hg Enthalpy of mixture
k f Thermal conductivity of a fluid
k Rate constant
L Bubble hole length, m
m Particle mass, kg
δm˙g,i Mass change of gas component i produced by homogeneous reaction
δm˙s Change in gas mass per unit volume, kg/m3

δm˙s,i Mass transfer of gas component i from a heterogeneous reaction
ρg,ρs Gas and solid phase density, kg/m3

P Average pressure, Pa
Pr Prandtl number
q Energy transfer between gas phase and solid phase
q˙D Energy changes due to component diffusion
.

Q Heat of reaction, J
Qij Thermal conductivity between particles
Qradi Radiation heat transfer between particles and walls
Qreac Heat of reaction
Qsg Convective heat transfer between particles and gases
R Molar gas constant
Re Reynolds number
Sh Energy transfer between gas phase and solid phase
T Thermodynamic temperature
VP Particle volume, m3

ug,us Gas and solid phase velocity, m/s
Yg,i Mass fraction of gas components
τg Gas phase stress tensor
τs Particle collision stress
ϕ Viscous dissipation
εs Volume fraction of particles in unit grid
θp Wall particle volume fraction
θcp Dense packing value fraction
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