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Abstract: Unmanned aerial vehicle edge networks (UENs) can reduce the cache load of the core
network and improve system performance to provide users with efficient content services. However,
the time-varying characteristics of content popularity in UENs lead to a low accuracy of popularity
prediction, and the capacity limitations of wireless channel conditions lead to a lower cache hit rate
than the rates of traditional fiber-optic-based cache strategies. Therefore, this paper proposes the
discrete artificial bee colony cache strategy of UENs (DABCCSU). First, the information–dynamics–
dissemination model of UENs (IDDMU) is established to deduce the coupling relationship between
the channel capacity and the service probability in IDDMU. The influence of the service probability
change on the content dissemination process is discussed, and the content popularity in UENs
is predicted by the state iteration matrix. Then, the discrete artificial bee colony cache (DABCC)
optimization algorithm is proposed. The action function of the artificial bee colony is designed as
a random action based on the historical cache strategy. The discrete cache strategy is used as an
optimization variable, and the popularity prediction result obtained by IDDMU is used to maximize
the cache hit rate. DABCC provides the optimal cache strategy for the UENs, and effectively improves
the cache hit rate. The simulation result shows that the accuracy of DABCCSU in content popularity
prediction is more than 90%, which achieves a good prediction effect. In terms of cache performance,
the average cache hit rate of DABCCSU is 91.62%, which is better than the 51.09% of the Least
Recently Used (LRU) strategy, 89.27% of the Greedy Algorithm (GA) and 54.26% of Binary Particle
Swarm Optimization (BPSO). In addition, the cache hit rate of DABCCSU under different cache
capacities is better than that of LRU, GA, and BPSO, showing a relatively stable performance. It
shows that DABCCSU can achieve excellent content popularity prediction, and it can also maximize
the cache hit rate under limited communication resources and cache resources to provide UENs with
the optimal content cache strategy, and provides users with high-quality content services.

Keywords: UAV edge network; popularity prediction; cache strategy; artificial bee colony

1. Introduction

As the important technologies of the next generation communication network, edge
networks (ENs) have attracted considerable research interest [1–7]. An edge network
caches the content on the edge server and allows users to download interesting content
from nearby edge servers. It can effectively cope with the rapid increase in wireless service
loads, significantly reducing cache loads and service delays of the core networks, and
solves the network congestion problem. Therefore, ENs have become a research hotspot in
the field of next generation communication networks.

An unmanned aerial vehicle (UAV) [8,9] has excellent flexibility, mobility, and a unique
line-of-sight (LOS) channel from which the UAV edge networks (UENs) [10,11] are derived.
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The UENs uses the UAV as a flight relay-assist edge network, which can effectively reduce
the cache load of the core network, improve the cache performance of the system, and
provide users with efficient content services. The popularity-based edge cache [12–14] is
a widely used cache method which uses a large amount of statistical data about content
requests to predict content popularity and actively caches high-popularity content from
the cloud database in the core network to meet the content needs of users. However, the
content popularity changes dynamically with the passage of time. Most popularity-based
cache strategies ignore the time variability of content popularity, which makes it difficult to
describe the regularity of changes in content popularity. In addition, unlike the edge nodes
of the traditional edge cache network that access the cloud database through optical fibers,
data transmission between the UENs and the cloud database is realized through wireless
communications. This reduced channel capacity seriously restricts the downlink rate
between them, limits the content data transmission, and results in a decrease in the cache
hit rate. Therefore, cache efficiency of the current popularity-based edge cache strategy is
reduced by the limited content transmission between the UENs and cloud database caused
by the wireless channel capacity and the low popularity prediction accuracy caused by the
time-varying content popularity.

Content popularity prediction aims to improve the cache efficiency of the edge cache
network. It needs to accurately capture the dynamic regularity of changes in content
popularity. Many scholars have conducted research in related fields [15–20]. Sajad et al. [15]
developed a probabilistic dynamics model for content popularity prediction considering
the spatial–temporal correlation of content popularity. Kong et al. [16] proposed a popu-
larity prediction method considering the contributions of different dynamic factors and
a popularity prediction method based on pattern matching from the micro and macro
levels. Fatma et al. [17] proposed a visual social convolutional neural network, which
takes the social and visual features of image content into a unified network to predict its
popularity. Li et al. [18] studied real data sets from social platforms and proposed a content
popularity prediction method based on deep neural networks. Yan et al. [19] solved the
content-popularity prediction problem based on the local and global user request states
by a machine learning algorithm. Gao et al. [20] proposed the spatial–temporal heteroge-
neous bassmodel and feature-driven heterogeneous bassmodel to predict the popularity
of a single tweet at the early and stable stages. However, studies noted above gave so
much attention to content popularity prediction that the coupling relationship between the
content popularity and content cache was ignored. Consequently, they have not solved the
cache strategy optimization problem.

Currently, many scholars have considered the differences in content popularity and
proposed some cache strategies based on content popularity prediction [21–26]. By discover-
ing the correlation between content blocks in information-centric networks, Zhang et al. [21]
proposed a block level cache and popularity prediction cache replacement method from the
perspective of users. Gao et al. [22] proposed a reinforcement learning model to obtain a
cooperative cache strategy based on maximum-distance-separable coding, which captured
the time-varying regularity of content popularity. Ji et al. [23] studied the joint content
cache and multihop delivery, introduced the distance-sensitive popularity parameter, and
proposed a relay-assisted multihop routing algorithm. Liang et al. [24] considered multidi-
mensional features such as historical and future popularity to predict content popularity,
proposed a popularity prediction model based on multiheads attention, and then designed
a cache strategy according to the prediction results. Chen et al. [25] proposed a popular-
ity prediction framework based on weighted clustering to overcome the sparsity of user
requests and considered the similarity of popularity evolution trends to improve cache
performance. Liu et al. [26] built a popularity evolution model by analyzing the popular-
ity characteristics of datasets, designed a data-driven popularity prediction method, and
proposed a popularity-based eviction and prefetching algorithm to solve the problems of
cache content and cache time. However, these studies did not consider the potential impact
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of wireless channel conditions on the content dissemination process or ignored the time
variability of content popularity, which reduces the cache efficiency of the system.

This paper proposes a DABCCSU. This strategy studies the time-variability of content
popularity in UEN based on the information dissemination dynamics model [27–29], which
can effectively solve the problem of low popularity prediction accuracy caused by the
time-varying of content popularity in the UENs. Working against the problem that the
cache hit rate of the traditional cache strategy decreases due to the capacity limitation
of the wireless channel condition, DABCCSU can maximize the cache hit rate based on
popularity prediction of the contents to provide the UENs with the optimal cache strategy,
thus improving cache performance. The specific contributions of this paper follow:

(1) An IDDMU is established. Based on this model, the content dissemination process
in UEN is analyzed, and the influence of channel capacity on content dissemination
results is discussed. Considering the heterogeneity of the dynamic equation, the
iterative equation of the state transition is analyzed based on a single user perspective.

(2) A DABCC optimization algorithm is designed. Based on the traditional continuous
artificial bee colony algorithm [30,31], the DABCC discretizes the feasible region and
redesigns the action function of the artificial bee colony.

(3) A discrete artificial bee colony cache strategy of UEN is proposed. To predict the
popularity of the cache content, the strategy obtains the state distribution of UEN
users regarding the cache content that is acquired from the user-state iteration matrix
of IDDMU. Then, the optimal cache strategy of UAVs is obtained by the DABCC
optimization algorithm.

The rest of this paper is organized as follows: In Section 2, the system model is introduced.
In Section 3, the cache optimization problem and DABCC algorithm are proposed. In Section 4,
the performance of the DABCC algorithm is evaluated, and the simulation results and analysis
are given. In Section 5, the conclusion of this paper is presented.

2. System Model

In this section, the channel capacity of UAVs in UEN is analyzed and the IDDMU is
established. Then, based on IDDMU, the content dissemination process in UEN is discussed
and the iterative matrix for predicting the popularity of cached content is derived.

2.1. UAV Edge Network

The UEN is shown in Figure 1, which includes the cloud database, M UAVs, and
N users, where K contents are transmitted among users. The UAV set is represented by
S = {s1, s2, · · · , sm, · · · , sM}, where sm represents the m-th UAV. The cache capacity set
of UAVs is Ca = {Ca1, Ca2, · · ·Cam, · · ·CaM}, where Cam represents the cache capacity of
UAV sm. The user set of the UEN is U = {u1, u2, · · · , ur, · · · , uR}, where ur represents the
r-th user in the UEN, and all users obey the Poisson distribution. Owing to power limita-
tions, each UAV has a specific coverage. Users within the UAV’s coverage are divided into a
subset of U, and each user can only communicate with the UAV corresponding to the subset.
Therefore, in this paper, the user set U is divided into M subsets U1, U2, · · ·Um, · · ·UM,
where Um = {um,1, um,2, · · · , um,n, · · · , um,Nm} represents the user subset within the cover-
age of sm, and um,n represents the n-th user within Um. It is assumed that the UAV set, and
the user set in the UEN are stable, and the content set F = { f1, f2, · · · , fK} is updated in
real time. fk = {θk, Lk} represents the k-th content, where θk ∈ (0, 1) is the reject probability,
which represents the average probability that the user is not interested in the content fk,
and Lk (bits) is the size of the content fk.
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In the UEN, the cloud database stores all the contents. Any UAV can function as an
edge server in the UEN and cache the high-popularity content from the cloud database
according to the popularity prediction. Suppose that the channel capacity between any UAV
and the cloud database is C0. When user um,n needs to download the content fk of interest, if
sm has cached the content, um,n directly downloads it from sm. Otherwise, um,n downloads
content fk from the cloud database. This paper mainly studies the cache strategy of the
UAV edge server, thus it does not consider the case where users directly obtain content
from the cloud database. The UAVs, which work in different frequency bands, update
the cache contents from the cloud database in real time by wireless communication. One
UAV communicates with the cloud database and all users under its coverage in the same
frequency band. Different users covered by the same UAV use time-division duplexing
(TDD) technology to communicate with the UAV. The frame structure of UEN is shown in
Figure 2, in which the vertical axis shows the frequency band division of different UAVs,
and the horizontal axis shows the frame of one UAV. Frame j(j = 0, 1, 2 · · ·) is the j-th frame,
and the frame length is ∆t. Since the cache time of the UAVs and the download time of
the users occupy the main part of a frame, the uplink time of the UAV and the user can
be flexibly designed, which is not the focus of this paper. This paper mainly considers
the downlink part of a frame. One frame is divided into sub-frame 1 and sub-frame 2,
each of which is ∆t/2 in length. Sub-frame 1 is divided into multiple time slots and one
UAV transmits data to different users in different time slots. During sub-frame 1, users
download content from the UAV based on interest, word of mouth, etc. During sub-frame
2, the cloud database predicts the popularity of all content according to the download
requests of users in the UEN, designs a cache strategy based on the prediction results, and
caches the relevant content to the UAVs. The UAVs in UEN work in different frequency
bands and users communicate with UAV in TDD mode. Therefore, this paper ignores the
interference between different UAVs and users covered by the same UAV. Assuming that
the wireless channel between UAV and user is a LOS channel, the channel capacity is:

Cm,n = Bm log

(
1 +

Pmr−ξ
m,n

N0

)
(1)

where Bm is the working bandwidth of sm, Pm is the transmission power of sm, rm,n is the
spatial distance between sm and um,n, N0 is the Gaussian noise, and ξ is the path loss.
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2.2. Information Dissemination Dynamics Model of UEN

The IDDMU is shown in Figure 3. According to the user’s behavior on the content fk,
the four states of the user regarding the content fk in UEN are defined as follows:
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S: Never informed on the content fk. The user may receive recommendations from
surrounding users at any time as a potential target.

E: Received the recommendation about content fk from other users. In this state, there
is a certain probability that the user is interested in the content fk and downloads it from
sm, or is not interested in it and chooses to ignore it.

I: Interested in the content fk. The user downloaded the content fk from sm and
recommends it to the surrounding users.

R: Lost interest in content fk. The user does not recommend content fk to surround-
ing users.

Sm,k(t), Em,k(t), Im,k(t), and Rm,k(t), respectively, represent the number of correspond-
ing state users regarding content fk covered by sm at time t, then Sm,k(t)+ Em,k(t)+ Im,k(t)+
Rm,k(t) = Nm. According to the IDDMU, the dissemination dynamic equations of content
fk are obtained as follows:

dSm,k(t)
dt

= −
Nm

∑
n=1

αm,nSm,k(t)
Im,k(t)

Nm
(2)

dEm,k(t)
dt

= −

θk +

Nm
∑

n=1
βm,n

Nm

Em,k(t) +
Nm

∑
n=1

αm,nSm,k(t)
Im,k(t)

Nm
(3)

dIm,k(t)
dt

= −γk Im,k(t) +

Nm
∑

n=1
βm,n

Nm
Em,k(t) (4)

dRm,k(t)
dt

= θkEm,k(t) + γk Im,k(t) (5)

The specific definition of the transition probability in Equations (2)–(5) is as follows:
Contact Probability αm,n: indicates the probability that um,n contacts with other users,

calculated as:

αm,n = δ× ϕm,n (6)



Processes 2022, 10, 1838 6 of 16

In Equation (6), δ is the average probability of successful communication between users
and ϕm,n = 1− e−λRπR2

m,n is the probability of other users in the vicinity of um,n, where λR is
the user density of the whole UEN, and Rm,n is the communication range of um,n.

Service Probability βm,n: To ensure that the content fk can be well presented, the
channel capacity between sm and um,n must meet certain requirements. Therefore, βm,n
represents the probability that the channel capacity between the two meets the quality of
service (QoS) requirements:

βm,n = p
(
Cm,n ≥ C∗m,n

)
(7)

where C∗m,n is the minimum channel capacity required for undistorted transmission between
sm and um,n.

According to Equations (1) and (7), the value of βm,n depends on the working band-
width of sm, the transmission power, and the space distance between sm and um,n. The
specific derivation process of the expression is as follows:

Substituting Equations (1)–(7), leads to:

p
(
Cm,n ≥ C∗m,n

)
= p

(
Bm log

(
1 +

Pmr−ξ
m,n

N0

)
≥ C∗m,n

)
(8)

Then, making certain transformations to the right side of the Equation (8) leads to:

p
(
Cm,n ≥ C∗m,n

)
= p

rm,n ≤

 Pm

N0

(
2

C∗m,n
Bm − 1

)


1
ξ

 (9)

All users in the UEN obey the Poisson distribution, thus Equation (9) can be expressed as:

p
(
Cm,n ≥ C∗m,n

)
=

P
2
ξ

m

R2
mN

2
ξ

0

(
2

C∗m,n
Bm − 1

) 2
ξ

(10)

where Rm is the coverage range of the UAV s. Thus:

βm,n =
P

2
ξ

m

R2
mN

2
ξ

0

(
2

C∗m,n
Bm − 1

) 2
ξ

(11)

Reject Probability θk: indicates the average probability that the user is not interested in
the content fk.

Recovery Probability γk: indicates the average probability that users who have down-
loaded content fk lose interest in it.

Considering the heterogeneity of ordinary differential equations (Equations (2)–(5)), it
is difficult to calculate the specific result of the solution. Therefore, from the perspective
of a single user, this paper defines pS

k,n(t), pE
k,n(t), pI

k,n(t), and pR
k,n(t) as the probability

that um,n is in corresponding states with respect to the content fk at time t, and obtains the
iterative equation of the state probability of um,n:

pS
k,n(t + 1) =

(
1− pI

k,nαm,n

)l
pS

k,n(t) (12)

pE
k,n(t + 1) =

(
1−

(
1− pI

k,nαm,n

)l
)

pS
k,n(t) + (1− θk − βm,n)pE

k,n(t) (13)

pI
k,n(t + 1) = βm,n pE

k,n(t) + (1− γk)pI
k,n(t) (14)
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pR
k,n(t + 1) = θk pE

k,n(t) + γk pI
k,n(t) + pR

k,n(t) (15)

where l represents the degree of um,n. Converting Equations (12)–(15) into matrix form
leads to:


pS

k,n(t + 1)
pE

k,n(t + 1)
pI

k,n(t + 1)
pR

k,n(t + 1)

 =



(
1− pI

k,nαm,n

)l
0 0 0(

1−
(

1− pI
k,nαm,n

)l
)

1− βm,n − θk 0 0

0 βm,n 1− γk 0
0 θk γk 1




pS
k,n(t)

pE
k,n(t)

pI
k,n(t)

pR
k,n(t)

 (16)

The state iteration matrix Pk,n(t) is defined as:

Pk,n(t) =



(
1− pI

k,nαm,n

)l
0 0 0(

1−
(

1− pI
k,nαm,n

)l
)

1− βm,n − θk 0 0

0 βm,n 1− γk 0
0 θk γk 1

 (17)

According to Pk,n(t), the proportion of um,n in each state at time t + 1 can be predicted as:

Statek,n(t + 1) =
Nm

∑
n=1

Pk,n(t)Statek.n(t) (18)

Statek,n(t) =
(

pS
k,n(t), pE

k,n(t), pI
k,n(t), pR

k,n(t)
)T

(19)

Among the above four states, only um,n in state E may apply to the UAV for down-
loading content fk. Therefore, the cache strategy of UEN is obviously affected by Em,k(t)
and βm,n. Consequently, the prediction popularity of content fk at time t is defined as:

Dm,k(t) = Em,k(t)×

Nm
∑

n=1
βm,n

Nm
(20)

3. Discrete Artificial Bee Colony Cache Strategy of UEN

Based on the content popularity analysis above, this section describes the cache
strategy of the UEN and proposes a cache optimization problem. Then, aiming at the
optimization problem, DABCCSU is proposed.

3.1. Content Cache

Considering that the content popularity differs among users under different UAV
coverage, the UAVs have different cache strategy.

Suppose that ak,m(t) represents the cache of the content fk by sm at time t. If sm caches
the content fk, then am,k(t) = 1, otherwise am,k(t) = 0. In different cases, sm has the
following four processing methods for content fk:

(1) am,k(t) = 1 and am,k(t− 1) = 1, sm retains the content fk.
(2) am,k(t) = 1 and am,k(t− 1) = 0, sm caches the content fk from the cloud database.
(3) am,k(t) = 0 and am,k(t− 1) = 1, sm deletes the content fk.
(4) am,k(t) = 0 and am,k(t− 1) = 0, sm does not process the content fk.

Thus, the cache of all contents by sm can be defined as a K-dimensional vector
Am(t) = [am,1(t), am,2(t), · · · , am,K(t)].

In the ideal situation without considering constraint conditions such as cache capacity,
the cache strategy of UAVs should contain all the content with non-zero popularity in
the next frame. However, with the growth of content requirement in UEN, the limited
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cache capacity of UAVs cannot meet the cache capacity demand of the ideal cache strategy.
Moreover, the backhaul capacity between UAVs and cloud database also causes UAVs to
be unable to cache content at will. Therefore, this paper defines the cache hit rate of sm as:

hm(t) =

K
∑

k=1
Dm,k(t)am,k(t)

K
∑

k=1
Dm,k(t)

(21)

As shown in Equation (21),hm(t) is actually the ratio of the user contentment of the cache

strategy of sm to the user contentment of the ideal cache strategy, where
K
∑

k=1
Dm,k(t)am,k(t)

represents the user contentment of the cache strategy of sm and is a value based on the

weighted sum of popularity. Similarly,
K
∑

k=1
Dm,k(t) indicates the user contentment in the

ideal situation. If and only if am,k(t) = sgn(Dk(t)), then hm(t) = 1, where sgn(·) is the
signum function.

3.2. Cache Optimization Problem

The cache strategy needs to meet the user’s content requirements to the maximum
extent, that is, to maximize the cache hit rate. The total cache hit rate of UAVs is given
in Equation (22):

H(t) =
M

∑
m=1

hm(t) (22)

The cache capacity of sm is limited; as a result, it is impossible to cache all contents in
the network at will:

K

∑
k=1

am,kLk ≤ Cam, m = 1, 2, · · · , M (23)

In addition, due to the limitation of channel capacity between the cloud database and
the UAVs, it is difficult for sm to achieve a sharp variation in the cache content within one
frame. This is shown in Equation (24):

K
∑

k=1
am,k(t)(1− am,k(t− 1))Lk ≤ Cd

m = 1, 2, · · · , M
(24)

where am,k(t)(1− am,k(t− 1)) processing methods for content fk, and Cd = 1
2 C0∆t repre-

sents the upper limit of bit data transmitted between the UAVs and the cloud database.
The cache optimization problem of the entire UEN can be obtained from

Equations (22)–(24):
max

A
H(t)

s.t.(23)(24)
(25)

where A is an M × K matrix, which represents the cache strategy of the entire UEN.
Equation (23) represents the cache capacity constraint of the UAV, and Equation (24)
represents the constraint of the channel capacity between UAVs and the cloud database.

3.3. Cache Strategy Optimization

The DABCCSU proposed in this paper includes two parts. First, based on the ID-
DMU established in this paper, the content popularity prediction in UEN is obtained by
the iteration matrix Equation (17), which was discussed in Section 2.2. Second, based on
the prediction results, the DABCC algorithm is proposed to manage the cache optimiza-
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tion problem defined in Equation (25), and then the optimal cache scheme of the UEN
is obtained.

The cache optimization problem Equation (25) proposed in this paper contains discrete
variables. It is a non-convex integer non-linear programming (INLP) problem and also an
NP-complete problem. An exact algorithm such as the enumeration algorithm can obtain
the optimal solution of the problem, but its complexity is exponential. Heuristic algorithms
such as simulated annealing algorithms can easily fall into local optimal solutions. There-
fore, based on the traditional artificial bee colony algorithm, this paper proposes a discrete
artificial bee colony cache (DABCC) optimization algorithm.

The cache optimization of UAVs is independent and simultaneous without influence
on other UAVs. In other words, the cache strategy of one UAV is only constrained by
channel conditions and the cache strategy in the previous frame. Based on this, the
optimization problem Equation (25) can be decomposed into the cache optimization of a
single UAV sm, as given in Equation (26):

max
Am

hm(t)

s.t.
K
∑

k=1
am,kLk ≤ Cam

K
∑

k=1
am,k(t)(1− am,k(t− 1))Lk ≤ 1

2 C0∆t

(26)

The optimization problem above can be transformed into a profitability function:

fm(t) = hm(t)− λmax
(

K
∑

k=1
am,k(t)Lk − Cam, 0

)
− µmax

(
K
∑

k=1
am,k(t)(1− am,k(t− 1))Lk − 1

2 C0∆t, 0
) (27)

where max(·) is a comparison function that outputs the larger of the two parameters. λ
and µ are regularization coefficients that are generally large numbers to ensure that the
profitability of feasible solutions is greater than infeasible solutions, thus helping eliminate
infeasible solutions in time.

The DABCC algorithm follows the definition of the traditional artificial bee colony
algorithm and regards the feasible solution as the honey source. The total number of
artificial bees is NBee, which is divided into leader bees, follower bees, and scouter bees.
Generally, the number of leader bees and follower bees accounts for half, respectively, i.e.,
NBee/2. In some cases, scouter bees evolve from leader bees and follower bees. Specific
definitions follow:

Honey Source: The honey collection coordinate of the artificial bee colony
Hbj(j = 1, 2, · · · , Nbee/2) represents the honey source of the j-th leader bee. The actions of
the artificial bee colony are all centered on the honey sources. In fact, the honey sources are
a series of K-dimensional vectors that represent the feasible solution of the optimization
problem Equation (26). Artificial bees collect honey at the honey sources and constantly
explore nearby honey sources. They compare the profitability of different honey sources by
the profitability function and update the optimal honey source in real time. At the initial
time, i.e., t = 0, since there is no reference honey source, the honey source coordinates are
randomly generated:

am,k(t = 0) =
{

0, rand(0, 1) < 0.5
1, otherwise

(28)

The honey source coordinates generated by Equation (28) are completely random,
which increases the convergence time and calculation cost of the algorithm to a certain
extent. Therefore, in the non-initial frame, the DABCC algorithm generates the honey
source coordinates based on the cache strategy of the previous frame:
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am,k(t) =
{

1− am,k(t− 1), k = k̂
am,k(t− 1), otherwise

(29)

where k̂ represents an integer randomly extracted from 1 to K. To ensure the difference
between the honey source coordinates, this paper randomly extracts two different integers
to execute Equation (29). In general, due to the constraint of channel conditions, the Ham-
ming distance between the honey source generated by Equation (29) and the optimal honey
source is smaller than that generated by Equation (28), which reduces the convergence time
of the DABCC to a certain extent.

Leader Bee: A leader bee occupies a honey source, explores the nearby honey-source
coordinates by the action function, and compares it with the best honey-source coordinates
in its memory. When a honey source with a higher profitability is found, the leader bee
updates memory and shares it with its follower bee. The leader bee will randomly compare
the profitability of the honey source with another leader bee in one iteration. The action
function of the leader bee is defined as ϕ

(
Hbj, Hbj′

)
, where Hbj and Hbj′ represent the

coordinates of the two paired bees; ϕ(·) retains the same components of the two honey
sources and sets the different components to 1 in the form of roulette with the probability
calculated by Equation (30):

Pr(k) = sm,k(t)/
K

∑
k=1

sm,k(t) (30)

where sm,k(t) = (Dm,k(t)/Lk)
Q and Q is the weight factor of a positive integer. When

Q = 1, sm,k(t) represent the popularity gain of a unit content cache bit fk. As Q increases,
the content with the higher popularity gain of unit cache bit becomes more easily cached.
The action function can effectively avoid the blind movement of the leader bee and makes
it easier to move in the direction of high profitability.

Follower Bee: A follower bee follows a leader bee and explores the nearby honey
source. When a better honey source is found by a follower bee, the optimal honey source of
its paired leader bee is replaced and the two sides exchange roles. The follower bee selects
whether to move using the probability shown in Equation (31). If the follower bee chooses
to move, one component of its coordinate is randomly extracted and moved around based
on Equation (29):

Pmj = f̂ j/ f̂max. (31)

where f̂ j represents the profitability of j-th leader bee and f̂max represents the largest
profitability of all leader bees. This action of follower bees reduces the calculation cost and
ensures the exploration in the direction of high profitability.

Scouter Bee: When the optimal honey source of one leader bee and its follower bee
do not change after a certain number of iterations, they are transformed into scouter bees
to explore the honey source randomly generated by Equation (28) and redistribute to the
leader bee and the follower bee to prevent the DABCC algorithm from falling into the local
optimal solution.

The iterative process of DABCC algorithm is shown in Algorithm 1:
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Algorithm 1 DABCC

Initialization: at initial time t = 0, obtain αm,n of each user; obtain θk and γk of each content in
the initial content set F. Calculate βm,n according to the channel conditions between sm and um;
Set Nite, Nlim, NBee, λ and µ. Generate initial honey source Hb1~HbNBee by Equation (28).
repeat:

if t 6= 0
Predict the popularity of content according to Equations (17)–(19).
Detect α̂m,n, θ̂k, γ̂k and β̂m,n;
if α̂m,n 6= αm,n or θ̂k 6= θk or γ̂k 6= γk or β̂m,n 6= βm,n

Update relevant parameters.
end
if ∃ f̂k /∈ F
add f̂k to F.

end
Obtain Pr(k) of each content by Equation (30).

end
Match the leader bees and follower bees randomly.
for i = 1:Nite

for j = 1:NBee/2

Leader bee Hbj moves according to ϕ
(

Hbj, Hbj′
)

.

The follower bee explores the near honey source by Equations (29) and (31).
Update the roles of leader bee and follower bee and the best honey source.
Record the iterations Nnone where the profitability has not improved.
if Nnone = Nlim

Transform the leader bee and its follower bee into scouter bees for movement.
end

end
Update the best profitability f̂max and its honey source coordinate Hbmax.

end
Output the cache strategy Am(t) = Hbmax;
t = t + 1;

until cache task finished.

In the initial frame, the DABCC algorithm initializes the parameters αm,n, θk, and γk of
each content in the content set F and calculates βm,n according to the channel conditions of
sm. It then sets the iteration times of the algorithm Nite, the maximum iteration times of
artificial bees Nlim, the honey source dimension K, the punishment factor λ, µ, the number
of artificial bees NBee, and the initial honey source Hb1~HbNBee . When the current frame
is not the initial frame, the DABCC algorithm first predicts the popularity of the contents
according to Equations (??)–(??), and then detects whether each parameter in the network
changes to update it. Next, the DABCC algorithm adds the newly generated content to the
content set and executes the action function of the artificial bee. Finally, the algorithm loops
into the next frame until the whole cache task ends.

4. Results and Discussion

This section describes the simulation and performance evaluation for the proposed
DABCCSU. In this paper, a 5 km×5 km UEN is generated by MATLAB software to simulate
the dissemination of 1000 contents, where users obey the Poisson distribution, and the
communication range is 1 km. The generation and dissemination of contents happens
randomly. θk and γk of each content are randomly generated between 0 and 1; δ = 0.8
and αm,n can be obtained by Equation (6). The path loss ξ = 2 and βm,k is fixed at 0.5 by
Equation (11) to facilitate comparison. The parameters are shown in Table 1:
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Table 1. Simulation parameters.

Parameter Value

K 1000
θk, γk Rand (0, 1)
βm,n 0.5
Rm,n 1 km

ξ 2
Cd 1 Gbits

λ, µ 1 × 1012

Q 1
NBee 100
Nite 500
Nlim 10

4.1. Content Popularity Prediction by DABCCSU

The prediction results of content popularity by DABCCSU are shown in Figure 4,
where the abscissa represents time and the ordinate represents popularity. The two curves
are the predicted real content popularities. The sub-graphs (a), (b), and (c) correspond to the
situation of UEN corresponding to the number of users N = 100, 300 and 500, respectively.
In sub-graph (a), due to the small number of users, the dissemination of content shows
randomness, that is, the popularity fluctuates in the early stage and there is a certain
amount of error between the prediction result and the real popularity such that the average
popularity prediction accuracy is 90.94%. The trend of prediction popularity curves in
sub-graphs (b) and (c) is more obvious, and the error between the prediction result and the
real popularity is less than sub-graph (a). The average popularity prediction accuracies in
sub-graphs (b) and (c) are 92.57% and 93.34%, respectively. Compared with the predicted
results of DABCCSU and the real popularity, both trends increase rapidly and then decrease
to zero, which conforms to the dissemination content regularity in the network. Once the
content is generated, it quickly attracts the interest of surrounding users, and the request
for content increases significantly. As the content spreads to saturation, users gradually
lose interest in the content, and the popularity of the content rapidly drops to zero. The
increased number of users weakens the randomness of content dissemination, making the
prediction results more consistent with statistical regularity. Therefore, with an increased
number of users, the prediction results of DABCCSU are more accurate.
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4.2. DABCC Optimization Algorithm

This paper compares the cache performance of the DABCC optimization algorithm
with some common cache algorithms:

(1) Least Recently Used (LRU) Algorithm [32]: Its core idea is that if a content has recent
high-frequency requests, it also has a greater probability of being requested currently.
When the cache capacity is insufficient, content with a low historical request frequency
is preferentially discarded.

(2) Greedy Algorithm (GA): The principle of the GA is to preferentially cache the con-
tent with largest Dm,k(t)/Lk until the cache capacity or channel load reaches the
upper limit.

(3) Binary Particle Swarm Optimization Algorithm (BPSO): BPSO is derived from the
particle swarm optimization algorithm, and the value range of its particles is only 0
or1. The number of iterations of the BPSO algorithm in this paper is set to 500 and the
number of particles is set to 100. Other parameters are the same as DABCC.

This paper describes the cumulative cache hit rate of the DABCC and reference
algorithm in different periods when K = 1000 and the content size is averagely distributed
between 0 and 100 Mbits. Figure 5 shows four curves: the cumulative cache hit rates for
the DABCC, LRU, GA, and BPSO algorithms, where the abscissa is the time period and the
ordinate is the cache hit rate. According to Figure 5, the cumulative cache hit rate of the
DABCC is 91.62%, which is much higher than 51.09% for LRU and 54.26% for BPSO and
slightly higher than 89.27% for GA. This is because the LRU relies on the historical content
request, which makes it difficult to capture the time-variant content popularity. Although
the GA considers the time-variant problem of content popularity, it easily falls into the
local optimal problem solution. The BPSO converges easily to the local optimal solution,
and with the randomness of the search of the algorithm becoming stronger, the local search
ability of the BPSO at the later stage of the iteration is weakened. The DABCC effectively
avoids this dilemma, resulting in the best cache performance among the four algorithms.
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In addition, this paper discusses the cache hit rate of each algorithm under different
cache capacities, as shown in Figure 6. The abscissa represents the cache capacities, which
are 0.5, 1, and 2 Gbits. The ordinate is the cache hit rate, and the bar graph represents the
average cache hit rate of DABCC, LRU, and GA under different cache capacities. According
to Figure 6, the average cache hit rate of the DABCC is higher than that of the other
two algorithms regardless of the cache capacity, which conforms to the three algorithms
analyzed in this paper. Under any cache capacity, the cache hit rate of the LRU algorithm
is only slightly higher than 50%, and cache hit rate of BPSO is about 54%, which are far
lower than the other two algorithms. In the case of 0.5 Gbits cache capacity, the DABCC
can also achieve an average cache hit rate of 89.83%, which is better than GA’s 58.64%. In
the case of 2 Gbits cache capacity, the cache hit rate of the DABCC can reach 94.65%, which
is slightly better than GA’s 93.48%, indicating that the DABCC is more stable in different
cache capacities. The LRU has a low cache hit rate because it is difficult to capture the
time-variant popularity of the content. The BPSO has a low cache hit rate because of the
randomness of particle motion and the lack of local exploration ability in the later stage.
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The cache hit rate of the GA is seriously limited by cache capacity. In the case of low cache
capacity, the cache hit rate is low owing to the large size content and limited cache capacity.
As the cache capacity increases, these restrictions no longer affect the cache efficiency; thus,
its cache hit rate can also reach a high level. The DABCC can flexibly design the cache
strategy according to the cache capacity, to achieve the maximum cache hit rate under a
limited cache capacity. Therefore, the cache hit rate of DABCC is the highest among the
three algorithms.
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Figure 6. Cache hit rate under different cache capacities.

Figure 7 shows the cache hit rate of DABCC for different iteration times, where the
abscissa is the value of Nite and the ordinate is the cache hit rate. The five curves in Figure 7
represent the situation when NBee = 20, 40, 60, 80, and 100 respectively. It can be understood
from Figure 7 that in the case of different NBee, the cache hit rate of DABCC gradually
increases with the increase in the value of Nite. When the value of Nite is large, the cache hit
rate tends to be flat. In addition, when NBee is low, the cache hit rate is significantly lower
than when NBee is high. This phenomenon is in line with the expected results. With the
increase in Nite, DABCC gradually approaches the optimal solution, and the cache hit rate
rapidly increases. When Nite reaches a certain value, the cache hit rate rises slowly. Because
the optimal cache strategy is obtained after a certain number of iterations, the increase
in Nite has little impact on the cache hit rate after that. The increase in NBee improves the
efficiency of exploring honey sources in one iteration, resulting in a significantly lower
cache hit rate when the NBee is lower than when NBee is higher under the same iteration
number. Therefore, DABCC proposed in this paper can achieve a cache hit rate of more
than 90% with limited Nite and NBee, which proves DABCC has efficient cache performance.
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5. Conclusions

This paper proposes the discrete artificial bee colony cache strategy of UAV edge
network (DABCCSU). The coupling relationship between the popularity and edge cache is
derived according to the time-variant characteristics of content popularity in the UEN. In
addition, DABCCSU also includes the DABCC optimization algorithm that maximizes the
cache hit rate based on the content popularity prediction and provides an optimal cache
strategy for the UEN. Simulation results show that the prediction accuracy of DABCCSU
is over 90%, and the cache performance has an average cache hit rate of 91.62%, which
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is better than the LRU and GA strategies. In addition, DABCCSU has a more stable
performance under different cache capacities. DABCCSU is expected to be widely used
in UAV emergency communication networks or UAV networks in remote areas. In the
future, on the basis of this paper, we will continue to study the cache strategy of UENs
based on space–air–ground integrated networks, NOMA, intelligent reflect surface, and
other technologies.
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