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Abstract: In wind tunnels, the Mach number needs to be precisely monitored and controlled. It
is difficult to obtain the Mach number directly online, especially when the wind tunnel system is
operating in multiple modes. To deal with this problem, a Mach number prediction algorithm based
on the kernel partial least squares method is proposed for multi-mode wind tunnel systems. First, in
order to reflect real-time changes, the time-slice partial least squares regression method is adopted.
Then, in order to enable the model to represent information about the whole working mode divided
by key process variables, the mean-value partial least squares model is established and is compared
with the time-slice model. Then, considering that wind tunnel systems exhibit strong nonlinear
characteristics, the kernel partial least squares method, which is suitable for nonlinear systems, is
used to predict the Mach number. The results show that the mean-value model is better than the
time-slice model, the models for single modes show better prediction abilities than those for multiple
modes, and the kernel partial least square method is more suitable for wind tunnel systems than the
partial least square method.

Keywords: wind tunnel; multi-mode; nonlinear; PLS; KPLS

1. Introduction

Wind tunnels use power devices to drive controllable air flow in an annular pipe
designed according to certain requirements in order to carry out various aerodynamic tests
according to the relativity and similarity principle of motion [1].

Wind tunnel systems are essential for the research and design of aircraft. They are
also a requirement for the space industry and their use contributes significantly to scientific
developments [2]. With the emergence of various new aerospace vehicles, the requirements
of wind tunnel tests are increasing day by day. The wind tunnel has become the most
important piece of test equipment for the study of the aerodynamic characteristics of
aircraft. During wind tunnel system operation, the Mach number is a key performance
index; its stability has an important influence on the quality of the wind tunnel flow field.
Thus, many suggestions have been put forward on how to control this variable in a wind
tunnel system. If the control operation is appropriate, not only are the experimental results
more accurate, but costs can also be reduced and resources can be saved. This indicates the
need to be able to make fast and accurate predictions of the Mach number. In addition, a
high degree of Mach number accuracy is required in simulated aircraft flights. According
to standards in the field of aerodynamics, the control accuracy of the Mach number should
be limited to ±0.001 [3,4]. If the prediction accuracy of the Mach number does not meet
this requirement, the control accuracy will be reduced, which will have an adverse effect
on the wind tunnel experimental process. Therefore, scientific research on Mach number
predictions in wind tunnel flow fields is expected to continue in the aerospace industry for
a long time to come.

For current wind tunnel systems, although there are mechanical principles to express
the relationship between the Mach number and other process variables, it is difficult to
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obtain the former directly using these principles, especially with wind tunnel systems
operating in multiple modes. The Mach number of the wind tunnel flow field is typically
predicted by applying soft measurements to the actual wind tunnel process, the goal of
which is to obtain the desired target variables through statistical methods. Other researchers
recently analyzed and studied Mach number predictions. To solve the problem of a big data
set, Wang Xiaojun and Yuan Ping et al. established a wind tunnel Mach number prediction
model based on the random forest method. The random forest is an integrated modeling
method that uses a simple learning algorithm regression tree as a basic learning machine
to reduce the complexities of submodels [5]. In addition, Du Ning and Jiang Jingyan et al.
proposed an integrated neural network modeling method based on a feature subset for
wind tunnel Mach number predictions. Compared with a single neural network built
on the whole data set, the complexity of a neural network model is lower, which greatly
improves the testing speed of the model [6]. Due to the harsh working environment of wind
tunnel systems, the measured data records of wind tunnel process variables often contain
outliers or noise data. Such datasets are detrimental to most data-driven Mach number
predictors. Therefore, Zhao Hongyan et al. proposed an outlier detection framework based
on regression to improve the quality of Mach number predictions [7]. Recently, Guo Jin
et al. proposed a time-slice-based, partial least squares (PLS) model for Mach number
predictions in multi-mode wind tunnel systems [8]. For each model, a set of PLS models for
time slices were established offline. This method could predict the Mach number of a wind
tunnel flow field at every time point. On this basis, the predicted regression parameters
were subjected to variable analysis, and the variables with small variance in terms of the
regression parameters were selected for subsequent regression analysis, which further
improved the prediction accuracy.

In this paper, a Mach number prediction model which considers nonlinear and multi-
mode characteristics is established.

Kernel partial least squares (KPLS) is based on the partial least squares (PLS) method.
This approach has been widely used to deal with the nonlinear multivariable regression.
PLS was first proposed at the end of the 1980s. It is used to build regression models based
on component extraction [9]. It fully embodies correlations between independent and
dependent variables. With PLS, process data information and quality data information
are processed by projecting a high-dimensional data space into a low-dimensional feature
subspace. PLS has been used for statistical modeling, process monitoring, quality prediction
and control based on process data [10–13]. In 1995, Nomikos and Mac Gregor [14] proposed
the multi-way partial least squares method, using all process data as predictive variables
and establishing a regression relationship with the final product quality to achieve quality
predictions of batch production processes. Wangen and Kowalski [15], MacGregor [16],
and Wold [17] proposed the multi-block PLS and hierarchical PLS methods. By dividing
the unprocessed process variables into several less-associated subblocks, the score space
matrix consists of the score vectors of each subblock. Dayal and Mac Gregor [18] proposed
a recursive PLS method that updates the covariance matrix via exponential weighting.
This method was shown to work well for adaptive control and prediction model building.
Afterwards, Rosipal and Trego [19] introduced a kernel function into the PLS regression
method. This method can establish effective nonlinear relationships between the input and
the output variables, such that data sample information can be fully mined and that the
fitting and prediction accuracies of the model are effectively enhanced. The introduction
of kernel technology [20] effectively solves the problem resulting from industrial process
data with strong nonlinearity. Through nonlinear mapping, the KPLS method transforms
original nonlinear space into a high-dimensional linear one, thereby changing data from
nonlinear to linear.

Despite these achievements, few works have attempted to deal the multi-mode prob-
lem resulting from the different working conditions of wind tunnel systems. It is still a
challenge to analyze the multi-mode characteristics of wind tunnel systems. On the one
hand, if a statistical model for quality prediction is built for only one operating mode, when
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a new operating mode appears, the model will not adapt to it and will output incorrect
prediction data. On the other hand, if too many modes are mixed within a single model,
accuracy cannot be guaranteed. In order to solve multi-mode problems, various methods
have been proposed, such as establishing hierarchical models or specific models for specific
operational modes [21,22]. The focus of this work is to investigate the proper division of
modes for wind tunnel systems.

Therefore, in this paper, a KPLS-based Mach number prediction strategy is proposed
for a multi-mode wind tunnel flow system. The different modes are identified by analyzing
process knowledge in the wind tunnel, and the data of similar working conditions in each
mode are collected to form a three-dimensional matrix. After that, the PLS algorithm is
used to extract the relationship between the process variables and the Mach number of
each time slice along the time direction, obtaining a series of time-slice models. Then,
within each working mode, the regression coefficients of the time-slice models are averaged
to get the regression coefficient of the mean-value model. The time-slice PLS model and
mean-value PLS model are then used for Mach number predictions. In addition, since
wind tunnels have strong nonlinear characteristics, the KPLS method, which is suitable for
nonlinear systems, is used to predict the Mach number. Finally, the results are compared
with those from PLS. In this way, time-slice and mean-value models can be built using the
KPLS method. Furthermore, a multi-mode analysis is conducted using the PLS and KPLS
models, respectively.

The remainder of this paper is organized as follows: Firstly, in Section 2, the PLS model
based on time slices and mean value is introduced, as is the kernel transformation process of
the mean-value-based kernel partial least squares method. In Section 3, the structure of the
wind tunnel is introduced, and the specific prediction method for single-and multi-mode
wind tunnel Mach numbers using the time-slice PLS, mean-value PLS and mean-value
KPLS models are illustrated in detail, as is an effect comparison between them. Finally, the
conclusions are presented in Section 4.

2. Methodology
2.1. The Time-Slice and Mean-Value PLS Regression Model

The measured process variable data forms a three-dimensional matrix,
_
X(I × Jx × K),

according to the direction of the batch, variable and time. I refers to the number of
batches, Jx refers to the number of process variables and K refers to the sample times
within each batch. K time slice matrices are obtained by decomposition along the time
axis. The measured values of the quality variable at the first time point are collected

into matrix
_
Y(I × Jy). After normalization, X(I × Jx × K) and Y(I × Jy) are obtained.

The correlation between process variables and related variables can be abstracted from
X(I × Jx × K) and Y(I × Jy). X is decomposed along the time axis to obtain k time-slice
matrices, i.e., Xk(I × Jx)(k = 1, 2, . . . , K). By applying PLS to Xk and Y, the time-slice PLS
model [23] is achieved:

Xk = Tk(Pk)
T + Ek (1)

Y = Uk(Qk)
T + Fk (2)

The above model can be abbreviated to regression form as

^
Yk = XkΘk (3)

where Tk and Uk are the score matrices, Pk and Qk are the loading matrices, Ek and Fk are
the residual matrices, Θk is the regression parameter matrix and k = 1, 2, . . . , K, and K is
the total number of time slices. When a single quality variable y(I × 1) is considered, the
regression model is

^
yk = Xkβk (4)

where βk is the regression parameter.
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Under certain working conditions, to avoid the effect of noise, the mean-value model
can be obtained by averaging the regression parameters from the time-slice models [23].

^
yk = Xk

¯
β = Xk

K

∑
k=1

βk (5)

where
¯
β is the mean regression parameter of all the regression coefficients in working

condition k = 1, 2, . . . , K.

2.2. The Time-Slice and Mean-Value KPLS Regression Model

In order to solve nonlinear problems in the wind tunnel system, KPLS is introduced
based on a kernel function. Process data are first projected to the partition of the high
dimensional space in a nonlinear way and are then studied in a high dimensional space,
which makes it easier to achieve linear division than in a low dimensional space. The
core of the kernel partial least squares method is based on the nonlinear mapping of the
data in the initial input space to the feature space with a random level. On this basis, a
linear partial least squares regression model is created from the inside of the feature space.
KPLS can effectively measure the regression coefficient in a high-dimensional feature space
according to the nonlinear kernel function [24].

In KPLS, an appropriate mapping function should be constructed to project the input
independent variables into a feature space.

f : x ∈ Rn → f (x) ∈ F (6)

where Rn is n-dimensional Euclidean space. Through the constructed mapping function
f , the data of the original space are projected into high-dimensional feature space F. The
mapping function is constructed to realize the projection of the data from the original
space to a high-dimensional feature space. There is no need to find the expression of the
actual relationship of the mapping function; rather, only the appropriate kernel function
should be selected to realize the map, because the inner product in the feature space can be
represented by the following equation:

〈 f (x), f (z)〉 = k(x, z) (7)

where x and z represent two vectors in the initial space. Usually, the kernel function is
different, as is the computational form. The expression of the Gaussian kernel function is:

k(x, z) = exp(
‖ x− z ‖2

2σ2 ) (8)

The expression for the polynomial kernel function is:

k(x, z) = (〈x, z〉+ c)d (9)

By introducing the kernel function, the non-linear data in the low-dimensional space
are transferred to the high-dimensional feature space, where the mapped data can be
linearly operated such that the PLS method can be applied.

In this work, by projecting the normalized process variable and quality variable

matrices Xk and Y into the selected kernel space, thereby obtaining
~
Xk and

~
Y, regression

coefficients
~
βk are obtained by applying PLS modeling to the projected data.

Similarly, the mean-value model can be obtained by averaging the regression parame-
ters of the time-slice models.

^
~
yk =

~
Xk

¯
~
β =

~
Xk

K

∑
k=1

~
βk (10)



Processes 2022, 10, 1718 5 of 12

where
¯
~
β is the mean regression parameter of all the regression coefficients in working

condition k = 1, 2, . . . , K.

3. Illustration and Discussions
3.1. Process Description of a Wind Tunnel System

The structure of a continuous transonic wind tunnel is shown below in Figure 1. This
example is a continuous transonic wind tunnel built in China at the end of 2012. It is a
low-noise variable density flowback tunnel using dry air as the experimental medium. The
design of this tunnel adopted many technical elements to improve the quality of the flow
field and the operation efficiency.
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Figure 1. Structure of a wind tunnel system.

When the wind tunnel is ready for use, all the main exhaust valves are closed, the
main pressure regulating valve is opened, and the wind tunnel flow field is rapidly formed.
After the wind tunnel has run for a given period, the total air pressure in the stable section
reaches a target value via the action of the controller. At this point, high-pressure gas is
constantly entering the tunnel from a gas storage tank. In order to better stabilize the flow
field, the main exhaust valve starts to work, and the gas is emptied over time through the
action of a controller, so that the total gas pressure in the stable section is stabilized near
the target value. After a period, the static pressure of the test section also reaches the target
value. The Mach number then stabilizes at the experimentally specified value. Then, after
the attitude of the aircraft model changes according to the predetermined rules, and the
wind tunnel flow field is restored to the set conditions, the experimental data are obtained.
At the end of such pneumatic experiments, the gas flow field is made to be static through
the use of a control gate.

The working conditions in wind tunnel systems are complex and varied. Generally
speaking, they are determined by the model, jet groove, opening/closing ratio and total
pressure control mode. Among the various working conditions of wind tunnel systems such
as the J7 model, 28 mm jet groove, an opening and closing ratio of 2% and negative pressure
mode are selected for investigation in this paper. Under the same working conditions,
many factors, such as the attack angle step, the speed setting value and so on, will affect
Mach number predictions. A data block of 1800 r speed is taken as an example, and the
working modes are divided according to different attack angle steps. Mode 1 has an attack
angle step of 2, and mode 2 has an attack angle step of 1.
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Since the attack angle step in the wind tunnel is 2 in data blocks 1, 2, 3, 4, they can be
categorized as a single working mode, hereafter Mode 1. Similarly, data blocks 5, 6, 7, 8, 9
are considered as a single working mode, Mode 2. For convenience, data blocks 1, 2, 4 are
collectively referred to as training data 1, data block 3 as test data 1, and data blocks 5, 6, 8,
9 collectively as training data 2. Data block 7 will be referred to as test data 2. The different
operating modes are shown in Table 1.

Table 1. Operating modes.

Data Blocks Mach Number Speed Initial Attack Angle Target Attack Angle Attack Angle Step Mode

1 0.7813 1800 −4 −2 2

Mode 1
2 0.7831 1800 −2 0 2
3 0.7803 1800 0 2 2
4 0.7726 1800 2 4 2

5 0.7684 1800 4 5 1

Mode 2
6 0.7647 1800 5 6 1
7 0.7613 1800 6 7 1
8 0.7581 1800 7 8 1
9 0.7539 1800 8 9 1

3.2. Mach Prediction Based on PLS Model

Firstly, mode 1 is considered. Using training data 1, the PLS model is established
and the regression parameters are obtained. The time-slice and mean-value models are
used to predict the Mach number (Ma) of test data 1, respectively; Figure 2a shows the
predicted results. It can be seen that the predictions of the time-slice PLS model have a lot
of fluctuations caused by noise in the process variables. In contrast, the mean-value PLS
model can handle this problem well and the predictions are much smoother than those of
the former model. Similarly, both models are used to predict the Mach number in mode 2;
Figure 2b shows the predicted results. Again, the mean-value model has better prediction
results than the time-slice model. The prediction errors of both models are shown in
Figure 3a,b for Modes 1 and 2; the superiority of the mean-value model is clearly visible.
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(b) Mode 2.

Next, Modes 1 and 2 are combined for modeling and predictions to find out whether
the two modes show significant differences. Using training data 1 and 2, the regression
parameters of the time-slice and mean-value models are obtained successively. Then,
the Mach numbers are predicted for test data 1 and 2; the predicted results are shown
in Figure 4a,b. Similarly, the mean-value model yields better prediction results than the
time-slice model. The prediction errors of both models are shown in Figure 5a,b for test
data 1 and 2. Once again, the superiority of the mean-value model is clearly visible.
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Figure 4. Multimode Mach number prediction results of the time-slice PLS and mean-value models.
(a) Test data 1. (b) Test data 2.

The differences between the results in Figures 2 and 4 should be clarified by the RMSE
values of the predictions, which are listed in Table 2. By comparing the RMSE values in
Table 2, it can be seen that the accuracy of the Mach number prediction obtained using the
mean-value PLS model is better than that obtained using the time-slice PLS model. Further,
the prediction results of the multi-mode model are worse than those of the single-mode
model. In other words, during the modeling process, if the working modes are finely
divided by analyzing the attack angle step or other key process variables, the prediction
accuracy should improve.
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Table 2. RMSE values obtained by using the time-slice PLS and mean-value PLS models.

Simulations Time-Slice Model Mean-Value Model

Test data 1 using model of mode 1 0.0023 0.0012
Test data 2 using model of mode 2 0.0012 0.0007

Test data 1 using multimode model 0.0034 0.0019
Test data 2 using multimode model 0.0020 0.0016

3.3. Mach Predictions Based on KPLS Model

As it is known above that the mean-value model has a better effect, mean-value KPLS
model will be further used for the Mach number prediction below. In order to further
improve the effect of mean-value KPLS model, the original training data and some data in
the test data block will be taken as a new training data set, and the mean-value KPLS model
is set up, then the rest data in the test data block are used as the test data to verify the model
prediction effect. Since the training data contain the information of the test data block and
the test data used is a part of the test data block, the prediction model established will
have better prediction effect. By the way, the predicted effect of KPLS is greatly influenced
by multiple choice kernel functions. But now one can only choose the best performing
kernel function by trying multiple kernels. It is still a challenge to find a systematic way of
selecting the kernel function.

Firstly, the prediction results of mode 1 are obtained. Training data 1 and the first
150 sample points of test data 1 are used as the training data, and the mean-value KPLS
model is established. The rest data of test data 1 are used as the test data. Figure 6a
shows the predicted results of the mean-value KPLS model which are compared with
those of mean-value PLS model. It can be seen that the mean-value KPLS model has
better prediction results. Similarly, the prediction results of mode 2 are obtained. And
the predicted results are presented in Figure 6b. The same conclusion can be drawn that
the mean-value KPLS model has better prediction results. Besides, the prediction errors
of both the mean-value PLS model and the mean-value KPLS model have been shown in
Figure 7a,b for mode 1 and 2, respectively, and the superiority of the mean-value KPLS
model is clearly represented.
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(a) Mode 1. (b) Mode 2.

Afterwards, mode 1 and mode 2 are combined for modeling and prediction. This can
test whether the two modes have so significant difference that modeling respectively is
necessary. Firstly, training data 1, training data 2 and the first 150 sample points of test
data 1 are used as the training data, and the mean-value KPLS model is established. The rest
data of test data 1 are used as the test data. The prediction results are shown in Figure 8a
and compared with those of the mean-value PLS model. Similarly, the prediction results
of data block 2 are shown in Figure 8b. From Figure 8a,b, the predictions of the mean-
value KPLS model are much better than those of the mean-value PLS model. Besides, the
prediction errors of both the models have been shown in Figure 9a,b for test data 1 and 2,
respectively, and the superiority of the mean-value KPLS model is clearly represented.
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Figure 8. Multimode Mach number prediction results of the mean-value PLS and mean-value KPLS
models. (a) Test data 1. (b) Test data 2.
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Figure 9. Multimode Mach number prediction errors of the mean-value PLS and mean-value KPLS
models. (a) Test data 1. (b) Test data 2.

The RMSE values of the predictions are listed in Table 3. According to values shown
in Table 3, it can be clearly seen that the mean-value KPLS model has a better prediction
effect than the mean-value PLS model. It can be concluded that for a wind tunnel system
with strong nonlinear characteristics, the use of the mean-value KPLS model is more
appropriate than mean-value PLS modeling. Additionally, the prediction results of the
multi-mode model are worse than those of the single-mode model, which is consistent
with the prediction regarding the use of the time-slice PLS model and the mean-value PLS
model in Section 3.2. That is, if the working modes are finely divided by analyzing key
process variables, the prediction accuracy of the model will improve.
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Table 3. RMSE values obtained using the mean-value PLS and mean-value KPLS models.

Simulations Mean-Value PLS Model Mean-Value KPLS Model

Test data 1 using model of mode 1 6.5299 × 10−4 1.8465 × 10−4

Test data 2 using model of mode 2 4.9279 × 10−4 2.5062 × 10−4

Test data 1 using multimode model 0.0011 2.0297 × 10−4

Test data 2 using multimode model 8.6771 × 10−4 3.6643× 10−4

4. Conclusions

In this paper, a Mach number prediction method for wind tunnel flow fields is in-
troduced. By applying KPLS, the nonlinear characteristics of the wind tunnel flow are
well handled, and satisfactory prediction results are obtained by proper mode analysis
and division. First, the time-slice PLS and mean-value PLS models are used to predict the
Mach number in a multi-mode wind tunnel system. By avoiding the influence of process
noises, the mean-value PLS model provides better prediction results than the time-slice PLS
model in either single- or multi-mode modeling. Additionally, models for single modes
show better prediction abilities than those for multiple modes, which shows the necessity
of mode division according to key process variables. In order to further improve the pre-
diction accuracy, a mean-value KPLS modeling algorithm which is suitable for nonlinear
systems is adopted. Compared with the prediction effect of the PLS model, it was found
that mean-value KPLS model has better prediction effect in either single or multi-mode
modeling. Again, the models for single modes show better prediction abilities than those
for multiple modes.

This is a trial work for Mach number predictions in a multi-mode wind tunnel flow
system, which is novel and unusual in the field of wind tunnel flow control. The application
of the proposed method combined with various advance control algorithms is underway,
and as a result, the control accuracy of the Mach number will be improved.

Author Contributions: Conceptualization, P.Y. and L.Z.; methodology, P.Y. and L.Z.; software, L.Z.;
validation, L.Z.; formal analysis, P.Y. and L.Z.; investigation, P.Y. and L.Z.; resources, P.Y.; data
curation, P.Y.; writing—original draft preparation, P.Y. and L.Z.; writing—review and editing, P.Y.
and L.Z.; visualization, P.Y.; supervision, P.Y.; project administration, P.Y.; funding acquisition, P.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61503069)
and the Fundamental Research Funds for the Central Universities (N150404020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ju, X.F.; Wang, X.L.; Gao, Y. Wind tunnel flow field model predictive control based on multi-model. Control Eng. China 2018, 25,

1830–1835.
2. Zhang, T.F.; Mao, Z.Z.; Yuan, P. Modeling of wind tunnel system based on nonlinear block-oriented model. Control Theory Appl.

2016, 33, 413–421.
3. Yu, F.; Yuan, P.; Mao, Z.Z. Recursive identification of stagnation pressure in wind tunnel system. In Proceedings of the 35th Chinese

Control Conference, Chengdu, China, 27–29 July 2016.
4. Du, N.; Long, X.H.; Zhao, L. A neural network based model predictive control for wind tunnel. In Proceedings of the 26th Chinese

Control and Decision Conference, Changsha, China, 14 July 2014.
5. Wang, X.J.; Yuan, P.; Mao, Z.Z.; Du, N. Wind tunnel Mach number prediction model based on random forest. Acta Aeronaut.

Astronaut. Sin. 2016, 37, 1494–1505.
6. Du, N.; Jiang, J.Y.; Yu, W.S.; Chen, L. Application of Ensemble Neural Network in the Prediction of Mach Number in 2.4 m

Transonic Wind Tunnel. Ordnance Ind. Autom. 2015, 34, 56–58.



Processes 2022, 10, 1718 12 of 12

7. Zhao, H.; Yu, D.; Wang, Y.; Wang, B. Enhancing the Prediction of Mach Number in Wind Tunnel with a Regression-Based Outlier
Detection Framework. IEEE Access 2021, 9, 27668–27677. [CrossRef]

8. Guo, J.; Zhang, R.; Cui, X.C.; Huang, X.; Zhao, L.P. Mach number prediction and analysis of multi-mode wind tunnel system.
In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6895–6900.

9. Geladi, P.; Kowalshi, B.R. Partial least squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [CrossRef]
10. Kourti, T.; MacGregor, J.F. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab.

Syst. 1995, 28, 3–21. [CrossRef]
11. Wang, X.Z. Data Mining and Knowledge Discovery for Process Monitoring and Control; Springer: Berlin/Heidelberg, Germany, 1999.
12. Gurden, S.P.; Westerhuis, J.A.; Bro, R.; Smilde, A.K. A comparison of multiway regression and scaling methods. Chemom. Intell.

Lab. Syst. 2001, 59, 121–136. [CrossRef]
13. Wang, H.W. Partial Least Squares Regression Method and Its Application; National Defense Industry Press: Beijing, China, 1999.
14. Nomikos, P.; MacGregor, J.F. Multi-way partial least squares in monitoring batch processes. Chemom. Intell. Lab. Syst. 1995, 30,

97–108. [CrossRef]
15. Wangen, L.E.; Kowalski, B.R. A multiblock partial least squares algorithm for investigating complex chemical systems. J. Chemom.

1988, 3, 3–20. [CrossRef]
16. MacGregor, J.F.; Jackle, C.; Kiparissides, C. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994, 40,

826–838. [CrossRef]
17. Wold, S.; Kettaneh, N.; Tjessem, K. Hierarchical multiblock PLS and PC models for easier interpretation and as an alternative to

variable selection. J. Chemom. 1996, 10, 463–482. [CrossRef]
18. Dayal, B.S.; MacGregor, J.F. Recursive exponentially weighted PLS and its application to adaptive control and prediction. J. Process

Control 1997, 7, 169–179. [CrossRef]
19. Rosipal, R.; Trejo, L.J. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2001, 2,

97–123.
20. Zhang, X.; Kano, M.; Li, Y. Locally weighted kernel partial least squares regression based on sparse nonlinear features for virtual

sensing of nonlinear time-varying processes. Comput. Chem. Eng. 2017, 104, 164–171. [CrossRef]
21. Wang, D.H.; Han, C.H. Real-time monitoring for a process with multiple operating modes. Control. Eng. Pract. 1999, 7, 891–902.

[CrossRef]
22. Chen, J.; Liu, J. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 1999, 38, 1478–1488.

[CrossRef]
23. Lu, N.Y.; Gao, F.R. Stage-based process analysis and quality prediction for batch processes. Ind. Eng. Chem. Res. 2005, 44,

3547–3555. [CrossRef]
24. Jia, R.D.; Mao, Z.Z.; Wang, F.L. KPLS model based product quality control for batch processes. CIESC J. 2013, 64, 1332–1339.

http://doi.org/10.1109/ACCESS.2021.3058096
http://doi.org/10.1016/0003-2670(86)80028-9
http://doi.org/10.1016/0169-7439(95)80036-9
http://doi.org/10.1016/S0169-7439(01)00168-X
http://doi.org/10.1016/0169-7439(95)00043-7
http://doi.org/10.1002/cem.1180030104
http://doi.org/10.1002/aic.690400509
http://doi.org/10.1002/(SICI)1099-128X(199609)10:5/6&lt;463::AID-CEM445&gt;3.0.CO;2-L
http://doi.org/10.1016/S0959-1524(97)80001-7
http://doi.org/10.1016/j.compchemeng.2017.04.014
http://doi.org/10.1016/S0967-0661(99)00038-6
http://doi.org/10.1021/ie980577d
http://doi.org/10.1021/ie048852l

	Introduction 
	Methodology 
	The Time-Slice and Mean-Value PLS Regression Model 
	The Time-Slice and Mean-Value KPLS Regression Model 

	Illustration and Discussions 
	Process Description of a Wind Tunnel System 
	Mach Prediction Based on PLS Model 
	Mach Predictions Based on KPLS Model 

	Conclusions 
	References

