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Abstract: Hydraulic fracture networks, especially fracture geometry, height growth, and proppant
transport within the networks, present a critical influence on productivity evaluation and optimization
of fracturing parameters. However, information about hydraulic fracture networks in post-fractured
formations is seldom available. In this study, the characteristics (density and orientation) of hydraulic
fractures were obtained from field observations of cores taken from conglomerate hydraulic fracturing
test site (CHFTS). A large number of fractures were observed in the cores, and systematic fracture
description was carried out. The fracture analysis data obtained includes fracture density, fracture
depth, fracture orientation, morphology, fracture surface features, apertures, fill, fracture mechanical
origin (type), etc. Our results show that 228 hydraulic fractures were intersected in a span of 293.71 m
of slant core and composed of irregularly spaced single fractures and fracture swarms. One of
the potential sources of the observed fracture swarms is near-wellbore tortuosity. Moreover, for
regions far away from the wellbore, reservoir heterogeneity can promote complex hydraulic fracture
trajectories. The hydraulic fractures were mainly cross-gravel and high-angle fractures and align with
maximum horizontal stress (SHmax) ± 15◦. The fracture density, orientations, and types obtained from
the core fracture description provided valuable information regarding fracture growth behavior. For
the near-wellbore area with a transverse distance of less than 25 m from the hydraulically-fractured
wellbore, tensile fractures were dominant. While for the area far away from the wellbore, shear
fractures were dominant. Our results provide improved understanding of the spatial hydraulic
fracture dimensions, proppant distribution, and mechanism of hydraulic fracture formation. The
dataset acquired can also be used to calibrate numerical models and characterize hydraulic fracture
geometry and proppant distribution.

Keywords: CHFTS; slant coring well; hydraulic fracture characteristics; fracture swarms; hydraulic
fracture formation mechanism

1. Introduction

Tight conglomerate reservoirs are unable to obtain natural productivity due to their
poor physical properties and hydraulic fracturing is thus strongly demanded. Conglom-
erate reservoirs are characterized by strong heterogeneity and large horizontal stress
difference, which brings great challenges to the process of fracturing [1]. The primary
challenge is to define artificial fracture morphology in conglomerate formations.

The artificial fracture propagation mode during the rock failure process in conglom-
erate reservoirs mainly comprises three types: penetrating through gravel, bypassing
gravel, and embedding in gravel, but the mechanism of artificial fracture propagation is
deeply understood. Former studies regarding the mechanical characteristics and fracture
propagation mechanism of conglomerate reservoirs were carried out through physical
experiments on surface rocks and finite element simulation based on different materials.
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While these techniques provided many useful insights, the verification of results through
direct the observation of hydraulic fractures is needed, and the best method of achieving
this verification is to examine core intervals that have been hydraulically fractured [2].

The knowledge of the extent and density of hydraulic fracture networks in conglomer-
ate reservoirs is generally limited. The hydraulic fracture distribution in multi-stage and
multi-well operations is irregular and can be difficult to predict even with robust subsurface
constraints [3]. During the stimulation of stages with multiple perforation clusters, complex
interactions between fractures take place, resulting in different numbers of propagated
fractures, which were usually considered greater than one but less than the number of the
perforation clusters [4]. Whereas recent subsurface data from Hydraulic Fracturing Test
Site-1 (HFTS1) in the Midland Basin [2,5] and Hydraulic Fracturing Test Site-2 (HFTS2) in
the Delaware Basin [6,7] indicated that hydraulic fractures were not evenly distributed
through the slant cores, they tended to occur in clusters, and the number of fractures was
generally greater than the number of perforations [8]. Previous work in HFTS1 and HFTS2
has shown the value of cores, which were recovered from a stimulated volume, in providing
information on the geometry and extent of hydraulic fractures [9,10]. The core fracture
information is basic data regarding reservoir-scale simulations of hydraulic fracturing and
production. Field data from the Hydraulic Fracturing Field Test (HFTS) provided upscaled
parameters for calibrating the reservoir scale hydraulic fracturing model, which could
accurately capture both the average length and the total aperture of the fractures in the
fracture swarms [11,12]. Based on the hydraulic fracturing model calibrated to the HFTS,
a fully coupled hydraulic fracturing, reservoir, and geomechanic simulator was used to
perform an economic optimization of design parameters, including well spacing, landing
depth, and completion design parameters [13].

The CHFTS is in the Mahu oilfield of the Junggar basin, the slant core well is located
near hydraulically fractured wells. A slant core through the stimulated volume was ac-
quired above and below the adjoining stimulated wells, which provided direct information
about hydraulic fractures. In this paper, we characterized and measured hydraulic frac-
tures, drilling-induced fractures, and core-cutting-induced fractures in the slant core, and
further classified the hydraulic fractures according to their characteristics and mechanical
origin. Moreover, the hydraulic fracture density and spatial distribution were quantified
based on the acquired fracture dataset. The results provide a basis for understanding
hydraulic fracture characteristics and the mechanical mechanism of the conglomerate reser-
voir. Findings can help verify indirect diagnostic results, such as microseismic monitoring
and tracer monitoring.

2. CHFTS Project Overview
2.1. Test Site

CHFTS is a field-based hydraulic fracturing research experiment performed in the
Junggar basin. Figure 1 is a 3D view of the CHFTS wells. A total of eleven horizontal
wells were drilled in T1b3 and T1b2 formations, in which seven wells are T1b3 with a well
spacing of 100 m and five wells are T1b2 with a well spacing of 150 m. The horizontal
section length of the horizontal wells are 1800 m, and the measured depths are 4597–5040 m.
The horizontal wells were drilled from north to south in a three-dimensional staggered
arrangement, which was approximately perpendicular to the predicted direction of max-
imum horizontal stress. The thickness of the T1b2 formation is 6–8 m, and the thickness
of the T1b3 formation is 14–16 m. The T1b2 and T1b3 wells are separated vertically with
an interlayer of approximately 13–20 m thickness. The reservoir lithology is dominated
by conglomerates (gravel diameter 5–70 mm). The gravel composition is mainly pyrolith,
followed by metamorphic rock. The inter-gravel is mainly filled with sand, mud, or fine
gravel and the overall reservoir is highly heterogeneous.
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main body adopted a single segment with three clusters. The cluster spacing was 20 m. 
Meanwhile, three types of tests were conducted: cluster spacing (10 m/20 m/30 m), prop-
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technology. 

Fracture growth is a point of concern during the completion of the adjacent horizon-
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nostics, such as microseismic tracer data [14]. Figure 2 shows the relative position of the 
horizontal wells, test wells, and slant core well. A microseismic was deployed in eleven 
wells to help identify hydraulic fracture dimensions (H4 was microseismic monitoring 
well), and fluid tracers (water-based and oil-based) were placed in two wells to evaluate 
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Figure 2. Elevation view of CHFTS wells, showing the relative position of the horizontal wells, test 
wells, and slant core well. 
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proximity to both the T1b3 and T1b2 formation wells. The well that accomplished this task 
was the slant core well positioned within the 2# operating well pad (horizontal wells are 

Figure 1. Three-dimensional view of CHFTS wells. Wells in red are T1b3 and those in green are T1b2.
The slant core well is in blue, and it passes through the fracture networks of wells H8/H9 in the T1b3

formation and well H4 in the T1b2 formation.

2.2. Completion Overview

The 12 horizontal wells were divided into three factory operating well pads. The
main body adopted a single segment with three clusters. The cluster spacing was 20 m.
Meanwhile, three types of tests were conducted: cluster spacing (10 m/20 m/30 m),
proppant concentrations (1.0–1.8 m3/m), and limited entry and temporary plugging
fracturing technology.

Fracture growth is a point of concern during the completion of the adjacent horizontal
wells. Thus, comprehensive monitoring data were collected, including advanced diag-
nostics, such as microseismic tracer data [14]. Figure 2 shows the relative position of the
horizontal wells, test wells, and slant core well. A microseismic was deployed in eleven
wells to help identify hydraulic fracture dimensions (H4 was microseismic monitoring
well), and fluid tracers (water-based and oil-based) were placed in two wells to evaluate
horizontal well profile heterogeneity.
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Figure 2. Elevation view of CHFTS wells, showing the relative position of the horizontal wells, test
wells, and slant core well.

2.3. Coring through the Stimulated Reservoir Volume (SRV) and the Results

The prominent task of CHFTS is to acquire a four-inch diameter whole core in close
proximity to both the T1b3 and T1b2 formation wells. The well that accomplished this task
was the slant core well positioned within the 2# operating well pad (horizontal wells are
H8/H9/H3/H4), with an azimuth of 175.0◦ and an inclination of 80.3◦. Figure 3 shows a
perspective view of the slant core well trajectory with respect to the adjacent horizontal
wells. The core well is shown as a blue line in Figure 3 and will hereafter be referred to
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as S1. In the T1b3 formation, S1 is located between two horizontal wells as H8 and H9,
near the middle of the horizontal section. The cores were drilled from the east side of H8
with a lateral distance of 18.6 m from the nearest completion stage, and sloped down to
the bottom of H9 with a vertical distance of 14.6 m. In the T1b2, S1 is close to H4 on the
west side, the lateral distance between the cores and completion stage is in the scope of
20.3–51.8 m.
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(b) side view.

The S1 trajectory enabled the collection of cores with varying lateral distances from the
adjacent producing wells, providing insights into both the vertical and horizontal fracture
geometries [15].

This slant core well recovered approximately 323.13 m of core, and 293.71 m of those
were applied for study; a total of 48 cores, each with a length of about 6.5 m. Cores 1 to 31
are located in the T1b3 formation, sized approximately 194.95 m, and cores 32 to 48 are
located in the T1b2 formation, sized approximately 98.76 m.

3. Slant Core Methods: Handling and Process for Core Description

A complete set of slant core methods was presented, as shown in Figure 4. Each of
the 4-inch-diameter cores was contained within an aluminum tube. To conduct the CT
scans of the core, the core was cut into segments of about 1 m length without removal
from the aluminum tube, which assists in maintaining the integrity of the core. The core
CT scans were utilized to compare the core description dataset to differentiate in situ
fractures from fractures created while removing the core from the aluminum tube. Then,
the core was removed from the aluminum tube. The methodology for extracting cores
was required to maintain the condition of the core and fractures as close to their original
state. A clam-shell core barrel extraction method was utilized, referred to as clam-shell
methodology, via cutting the core barrel along its length on both sides to then exposing the
core for study [15].



Processes 2022, 10, 1646 5 of 17

Processes 2022, 10, x FOR PEER REVIEW 5 of 17 
 

 

A clam-shell core barrel extraction method was utilized, referred to as clam-shell method-
ology, via cutting the core barrel along its length on both sides to then exposing the core 
for study [15]. 

The recovered core provides a unique opportunity to obtain a high-quality research 
dataset of hydraulic fracture networks in post-fractured formations. The systematic core 
description was conducted as follows: 

The recovered core captured hundreds of fractures, which were numbered from top 
to bottom, denoted as “# core-segment-fracture”. The fracture depth was determined by 
measuring the length of the core segment and the length from the fracture to the top of 
the core segment. 

Initial fracture description was performed prior to core cleaning. Comprehensive 
fracture description data include fracture number, fracture depth, fracture orientation, 
morphology/fracture surface features, apertures, fill, fracture mechanical origin (type), 
etc. 

Since proppant was pumped during the fracturing slurry in the adjacent horizontal 
wells, it was anticipated that proppant would be discovered in the collected whole core 
within hydraulic fractures. Following initial fracture description, sludge residue from cor-
ing operations on all fracture faces, the exterior core surface, and within the core sleeves, 
including drilling mud, rock cuttings, proppant, and aluminum shavings from the clam-
shell process, was recovered for detecting proppant [15]. 

A second fracture description was performed after core cleaning. Removing sludge 
residue on all core surfaces provided a clear view of the lithologic interface, gravel size, 
and gravel morphology on the fracture surface, etc. The repositioning of the core fractures 
to the in situ position was executed via combining the characteristics of lithologic inter-
faces with fractures through interpretation by FIM image logging. Considering that the 
core barrel had been slightly offset and twirled in the slant core wellbore during the pro-
cess of coring, the core fractures repositioning assisted in correcting the fracture depth, 
fracture orientation, and dip angle. The fractures interpreted by FIM image logging were 
compared with the core fractures at the corresponding depth to identify hydraulic frac-
tures. 

 
Figure 4. Workflow chart of the slant core methods: handling and process for core description. 

Few natural fractures were observed, both filled and unfilled. Criteria was developed 
for distinguishing between hydraulic (tensile and shear), drilling-induced, and core cut-
ting-induced fractures by examining the features of all fractures, combining a CT scan of 
the core and FIM image logging. 

4. Fracture Characteristics 
4.1. Hydraulic Fracture 

A total of 228 hydraulic fractures were observed in the slant core with an average 
fracture density of 0.78 fractures per meter. According to the characteristics of fractures 
formed under different mechanical conditions, hydraulic fractures were further 

Figure 4. Workflow chart of the slant core methods: handling and process for core description.

The recovered core provides a unique opportunity to obtain a high-quality research
dataset of hydraulic fracture networks in post-fractured formations. The systematic core
description was conducted as follows:

The recovered core captured hundreds of fractures, which were numbered from top
to bottom, denoted as “# core-segment-fracture”. The fracture depth was determined by
measuring the length of the core segment and the length from the fracture to the top of the
core segment.

Initial fracture description was performed prior to core cleaning. Comprehensive
fracture description data include fracture number, fracture depth, fracture orientation,
morphology/fracture surface features, apertures, fill, fracture mechanical origin (type), etc.

Since proppant was pumped during the fracturing slurry in the adjacent horizontal
wells, it was anticipated that proppant would be discovered in the collected whole core
within hydraulic fractures. Following initial fracture description, sludge residue from
coring operations on all fracture faces, the exterior core surface, and within the core sleeves,
including drilling mud, rock cuttings, proppant, and aluminum shavings from the clam-
shell process, was recovered for detecting proppant [15].

A second fracture description was performed after core cleaning. Removing sludge
residue on all core surfaces provided a clear view of the lithologic interface, gravel size,
and gravel morphology on the fracture surface, etc. The repositioning of the core fractures
to the in situ position was executed via combining the characteristics of lithologic interfaces
with fractures through interpretation by FIM image logging. Considering that the core
barrel had been slightly offset and twirled in the slant core wellbore during the process of
coring, the core fractures repositioning assisted in correcting the fracture depth, fracture
orientation, and dip angle. The fractures interpreted by FIM image logging were compared
with the core fractures at the corresponding depth to identify hydraulic fractures.

Few natural fractures were observed, both filled and unfilled. Criteria was developed
for distinguishing between hydraulic (tensile and shear), drilling-induced, and core cutting-
induced fractures by examining the features of all fractures, combining a CT scan of the
core and FIM image logging.

4. Fracture Characteristics
4.1. Hydraulic Fracture

A total of 228 hydraulic fractures were observed in the slant core with an average
fracture density of 0.78 fractures per meter. According to the characteristics of fractures
formed under different mechanical conditions, hydraulic fractures were further subdivided
into tensile fractures and shear fractures, of which 52 are tensile fractures and 176 are shear
fractures. The tensile fractures are the principal fractures, and the shear fractures swarms
are adjacent to the principal fractures.

The primary evidence used to identify the hydraulic fractures was FIM image logging,
presenting broad dark bands. Moreover, CT scans of the core were utilized to eliminate
core cutting-induced fractures. The fracture morphology features of the CHFTS slant
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core mainly included straight, microwave, and crushed zones, as shown in Figure 5. The
fracture edges are incomplete and mostly scattered with gravel. The weak plane with low
cementation strength is prone to forming a crushed zone.

Processes 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

subdivided into tensile fractures and shear fractures, of which 52 are tensile fractures and 
176 are shear fractures. The tensile fractures are the principal fractures, and the shear frac-
tures swarms are adjacent to the principal fractures. 

The primary evidence used to identify the hydraulic fractures was FIM image log-
ging, presenting broad dark bands. Moreover, CT scans of the core were utilized to elim-
inate core cutting-induced fractures. The fracture morphology features of the CHFTS slant 
core mainly included straight, microwave, and crushed zones, as shown in Figure 5. The 
fracture edges are incomplete and mostly scattered with gravel. The weak plane with low 
cementation strength is prone to forming a crushed zone. 

 

 

 
Figure 5. Morphology features of hydraulic fractures. (a) Straight hydraulic fracture, oriented 107°, 
deviates slightly from the east–west direction. (b) Microwave hydraulic fracture. The fracture edge 
is incomplete. (c) Crushed zone with scattered gravel. 

The hydraulic fracture surfaces are all rough and uneven, many have through-pene-
trating gravel surfaces and some have bypassing gravel surfaces. In some other cases, both 
through-penetrating gravel and bypassing gravel existed in a single surface, as shown in 
Figure 6. 

Figure 5. Morphology features of hydraulic fractures. (a) Straight hydraulic fracture, oriented 107◦,
deviates slightly from the east–west direction. (b) Microwave hydraulic fracture. The fracture edge is
incomplete. (c) Crushed zone with scattered gravel.

The hydraulic fracture surfaces are all rough and uneven, many have through-penetrating
gravel surfaces and some have bypassing gravel surfaces. In some other cases, both through-
penetrating gravel and bypassing gravel existed in a single surface, as shown in Figure 6.
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Figure 7 shows the filling materials in hydraulic fractures. Hydraulic fractures in the
core are completely open with large apertures and the fracture surfaces are filled with
materials, including mud, mud sediment, and proppant.
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Figure 7. Filling materials in hydraulic fracture. (a) A film of dried mud on the surface. (b) Thick
drilling mud sediment in the fracture. (c) Proppant attached to the fracture surface.

All fractures are high-angle, largely in the east–west direction, oriented at 70◦–110◦,
and align with the maximum horizontal stress (±15◦). Difference in the morphology of
the created fractures was commonly observed in cores, and the orientations of certain
through-penetrating gravel fractures deviate slightly from the main direction (Figure 5a).
Changes of those kind are evidence for the formation of complex fracture networks.

Hydraulic fractures are unevenly distributed along the coring wellbore, and they
occurred in both single and clusters [6]. Doublets and fracture swarms are quite common.
For example, doublets (Figure 8a), triplets (Figure 8b), a 5-fracture swarm (Figure 8c), and
even a 9-fracture swarm (Figure 8d) were extant.
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Figure 8. Fracture swarms in the slant core. (a) Doublets; (b) triplets; (c) 5-fracture swarm;
(d) 9-fracture swarm.

The characteristics of hydraulic fractures are controlled by the dynamic geostress
field. In the near-wellbore area, under the condition of low stress difference and high
pore pressure, tensile failure mainly occurs, and the tensile fractures extend along the
weak-cemented planes or gravel edge with large effective apertures. Proppant enters
the wedge-shaped fractures and forms the propped fractures. In the area far from the
wellbore, under the conditions of high dynamic stress difference at the fracture tip, shear
failure mainly occurs, and the shear fracture extends along the through-penetrating gravel
fracture surface or forms a crushed zone. The shear displacement leads to a certain volume
expansion of the fracture and forms a self-supported fracture.

According to fracture characteristics under different mechanical states, hydraulic
fractures were subdivided into tensile fractures and shear fractures. Tensile fracture damage
along the weak cementation surfaces of gravel and matrix under tensile stress forms gravel-
edge fractures. Thus, tensile fractures are mostly microwave in morphology, with a large
aperture; they have uneven surfaces, mainly have bypassing gravel surfaces, shown as
Figure 9.
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Figure 9. Tensile fracture is microwave in morphology and has a bypassing gravel surface.

Shear fractures are created by an induced stress field with the growth of the principal
hydraulic fractures along natural weak planes. These shear fractures can also be formed
by shear failure or the bifurcation and splitting of principal fractures during propagation.
Thus, shear fractures are mainly straight and crushed zones in morphology. These fractures
mainly have small apertures and through-penetrating gravel surfaces. Where shear frac-
tures occur, fracture orientations change slightly and fracture swarms and crushed zones
are common. Figure 10 shows conjugate shear fracture and crushed zone in the slant core.
Conjugate shear fractures were observed in cores, forming scissor-shaped fracture planes.
Moreover, crushed zones are prone to forming when shear slip occurs at the weak-cemented
planes; some of these occur close to fracture swarms.

Processes 2022, 10, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. Tensile fracture is microwave in morphology and has a bypassing gravel surface. 

Shear fractures are created by an induced stress field with the growth of the principal 
hydraulic fractures along natural weak planes. These shear fractures can also be formed 
by shear failure or the bifurcation and splitting of principal fractures during propagation. 
Thus, shear fractures are mainly straight and crushed zones in morphology. These frac-
tures mainly have small apertures and through-penetrating gravel surfaces. Where shear 
fractures occur, fracture orientations change slightly and fracture swarms and crushed 
zones are common. Figure 10 shows conjugate shear fracture and crushed zone in the slant 
core. Conjugate shear fractures were observed in cores, forming scissor-shaped fracture 
planes. Moreover, crushed zones are prone to forming when shear slip occurs at the weak-
cemented planes; some of these occur close to fracture swarms. 

 
Figure 10. Cont.



Processes 2022, 10, 1646 11 of 17Processes 2022, 10, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 10. Conjugate shear fracture and crushed zone in a slant core. (a) Scissor-shaped conjugate 
shear fracture is straight in morphology and has through-penetrating gravel surface. (b) Crushed 
zone, which forms when shear slip occurs at the weak-cemented planes. 

4.2. Drilling-Induced Fractures and Core Cutting-Induced Fractures 
Both drilling-induced and core cutting-induced fractures were present, with charac-

teristics different from hydraulic fractures. Drilling-induced fractures have complete mor-
phology, many are twisted and serrated, and have bypassing gravel surfaces with uneven 
drilling mud attached (Figure 11). 

 
Figure 11. Drilling-induced fracture in slant core with irregular twisted fracture morphology. Frac-
ture surface comprises bypassing gravel with drilling mud attached. 

Core cutting-induced fractures were mostly formed near the two ends of the core 
segment; they are highly closed and serrated and display a fresh surface with no drilling 
mud (Figure 12). 

 
Figure 12. Core cutting-induced fracture in a slant core. Fracture morphology is highly closed and 
serrated. Fracture surface is fresh with no drilling mud. 

4.3. Proppant Observation 
Obvious quartz particles were observed in two fractures, which was consistent with 

the sand used in fracturing in terms of particle size, roundness, and uniformity. The quartz 
particle was identified as proppant, as shown in Figure 13. The two fractures lie in the 

Figure 10. Conjugate shear fracture and crushed zone in a slant core. (a) Scissor-shaped conjugate
shear fracture is straight in morphology and has through-penetrating gravel surface. (b) Crushed
zone, which forms when shear slip occurs at the weak-cemented planes.

4.2. Drilling-Induced Fractures and Core Cutting-Induced Fractures

Both drilling-induced and core cutting-induced fractures were present, with char-
acteristics different from hydraulic fractures. Drilling-induced fractures have complete
morphology, many are twisted and serrated, and have bypassing gravel surfaces with
uneven drilling mud attached (Figure 11).
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Figure 11. Drilling-induced fracture in slant core with irregular twisted fracture morphology. Fracture
surface comprises bypassing gravel with drilling mud attached.

Core cutting-induced fractures were mostly formed near the two ends of the core
segment; they are highly closed and serrated and display a fresh surface with no drilling
mud (Figure 12).
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Figure 12. Core cutting-induced fracture in a slant core. Fracture morphology is highly closed and
serrated. Fracture surface is fresh with no drilling mud.

4.3. Proppant Observation

Obvious quartz particles were observed in two fractures, which was consistent with
the sand used in fracturing in terms of particle size, roundness, and uniformity. The quartz
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particle was identified as proppant, as shown in Figure 13. The two fractures lie in the T1b3
formation. A thin layer of proppant appeared as patches on the fracture surface with mud
attached, indicating that drilling mud flowed into the hydraulic fracture during coring.
In Figure 13, the proppant is the light-grey signal in the CT scan. The bright signal in the
fractures and matrix is likely pyrite [2].
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Figure 13. Proppant attached to the hydraulic fracture surface. In the CT scan, proppant is the
light-grey signal, and the bright signal is likely pyrite. The characteristic was also observed in Ref. [2].

Moreover, sandy mud deposits were observed in multiple fractures. The drilling mud,
mud deposits, and proppant particles were collected from parted fractures for further
analyses, regarding whether it contained proppant. However, a large level of sand pack
was not found in the core hydraulic fractures. The possible reason for this is that the
fracture surfaces were separated during the coring process and drilling mud flowed into
the hydraulic fracture. The proppant could not adhere to the fracture surface and was
washed away by drilling mud. Therefore, drilling mud and cutting samples were collected
during the coring operation to detect and quantify the spatial distribution of proppant
along the cored interval.

5. Core Fracture Visualization and Analysis

A total of 371 fractures were recorded in the slant core, and these fractures were
systematically described and classified. A total of 228 hydraulic fractures were identified,
including 52 tensile fractures and 176 shear fractures. One of the potential sources of
the observed fracture swarms is near-wellbore tortuosity [16]. Moreover, for regions far
away from the wellbore, reservoir heterogeneity can promote complex hydraulic fracture
trajectories and form fracture swarms. The variations of rock mechanical properties and in
situ stress may lead to variable fracture-front speeds and potential fracture splitting and
segmentation [17,18].

The data (type, orientation, and measured depth of fractures) from the core descrip-
tion were used to visualize fracture orientations/types along the core wellbores and the
perforation clusters of the infield-scale in three-dimensional space, especially the relative
locations of fractures to the fracturing wells/stages/clusters [8]. After filtering other types
of fractures (fractures induced by drilling and core cutting), only the hydraulic fractures
were visualized as lines with their orientations at their corresponding measured depths.
The tensile fractures are in blue, and the shear fractures are in red. To better understand
the spatial location of fractures relative to their initiation points (perforation clusters), the
adjacent perforation clusters were also visualized by disks with different colors for each
treatment stage.

Figure 14 shows a perspective view of hydraulic fractures along the core wellbore and
the adjacent perforation clusters. The completion interval length is 60 m. Wells H8, H9,
and H4 have two clusters, three clusters, and six clusters in each interval, respectively. The
cores 1~31 are located in the T1b3 formation, in which the cores 1~8 are closest to the stages
2 to 4 of the well H8, and the cores 9~31 are closest to the stages 3 to 5 of the well H9. The
cores 32~48 are located in the T1b2 formation, closest to stage 4 and stage 5 of well H4.
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Figure 14. Perspective view of hydraulic fractures along the core wellbore and perforation clusters in
the infield-scale in three-dimensional space.

Hydraulic fractures were observed in cores within the 100 m space between wells H8
and H9, indicating that fractures extended laterally over a distance of 50 m. Vertically, the
distribution range of hydraulic fractures is 20.2 m above the adjacent well and 9.8 m below
it. It can be inferred that the fractures extended over 30 m in a vertical direction, realizing
the full coverage of hydraulic fracture network in the reservoir.

5.1. Presentation of Fractures in Cores 1-31

Cores 1-31 are located between H8 and H9 in the T1b3 formation. Figure 15 shows
the perspective view of the hydraulic fractures in cores 1-31. Cores 1-8 are close to the
two perforating clusters from stage 3 and the heel-side perforating clusters from stage 2 of
well H8. Fractures observed in cores 1-8 are mainly from these clusters, and the fractures
and clusters have a lateral distance of 21.4–45.1 m and a vertical distance in the range of
20.2 m above to 9.8 m below the clusters. The length of cores 1-8 is 50.0 m. The number of
hydraulic fractures is 57, including 8 tensile fractures and 49 shear fractures.
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Figure 15. Perspective view of fractures in cores 1-31 from the southwest.

Cores 9-31 are close to the two toe-side perforating clusters from stage 5, three per-
forating clusters from stage 4, and the heel-side perforating clusters from stage 3 of the
well H9. Fractures observed in cores 9-31 are mainly from these clusters, and the fractures
and clusters have a lateral distance of 3.5–44.7 m, and the vertical distance is in the range
of 0.8 m above to 14.5 m below the clusters. The length of the cores 9-31 is 144.95 m. The
number of hydraulic fractures is 79, including 15 tensile fractures and 64 shear fractures.

No hydraulic fractures were observed in cores 20–22, in which the core lithology is
reddish-brown silty mudstone. This indicates that argillaceous rocks are not conducive to
fracture propagation. In addition, cores 20–22 are close to the middle perforation cluster
from stage 4 of well H9. The lack of fractures in the middle perforation cluster seems to
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indicate that the growth of the middle fractures, lagging behind the two outside fractures,
is suppressed. A significant proportion of the literature attributes this uneven distribution
mainly to the stress shadow phenomenon [4].

5.2. Presentation of Fractures in Cores 32–48

Cores 32–48 are located on the west side of well H4 in the T1b2 formation, close to
the six perforating clusters from stage 4 and the three toe-side perforating clusters from
stage 5 of well H4. Figure 16 shows them in a side view from the west. The lateral distance
between the cores and the clusters is 19.8–51.5 m, and the vertical distance is in the range
of 8.8 m above to 2.3 m below the clusters. The length of cores 32–48 is 98.76 m, and the
number of hydraulic fractures is 92, including 24 tensile fractures and 68 shear fractures.
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As in previous cores, the large number of fractures observed in cores seems to indicate
that tensile fractures are formed in the near-wellbore area and the extension of tensile
fractures induces a large number of shear fractures in the area far from the wellbore.

Based on hydraulic fracture distribution data along the coring wellbore, a statistical
analysis was conducted to better understand the spatial distribution of hydraulic fractures.
Hydraulic fractures were considered to be derived from adjacent wells with the closest
horizontal distance. Thus the spatial corresponding relationship between the hydraulic
fractures distribution in cores and adjacent wells was established.

Figure 17 presents the relationship between hydraulic fracture density in the cores
and the lateral distance from the horizontal well. Figure 17a shows that the hydraulic
fracture density decreases with the increase of distance in the area far from the wellbore
for well H8. The coring trajectory starts about 19 m away from H8, suggesting that cores
in near-wellbore area were not drilled. In Figure 17b,c, the hydraulic fracture density is
small in the near-wellbore area, where the lateral distances from wells H9 and H4 are in the
range of <10 m and <25 m, respectively. In particular, for well H9, the hydraulic fracture
density decreases with the increase of distance in the area far from the wellbore with a
lateral distance range of >10 m.

As a general trend, the fracture density of the near-wellbore area is lower than that of
the far-wellbore area. For the near-wellbore area, one of the potential sources of the dense
fractures is near-wellbore tortuosity, which can propagate in parallel even in the presence of
strong stress shadowing [16]. Meanwhile, for regions far away from the wellbore, reservoir
heterogeneity can promote complex hydraulic fracture trajectories [17,18]. During fracture
propagation, the local net pressure of fracture front decreases gradually, which results in
decreasing fracture density in the area far from the wellbore. The near-wellbore area can be
considered to have a lateral distance of less than 25 m from the horizontal wellbore.
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6. Conclusions

(1) Hydraulic fracturing formed planar fracture swarms. The conglomerate hydraulic
fractures have varied morphology; mainly straight with through-penetrating gravel sur-
faces. Fracture swarms are quite common. Fracture density along the coring wellbore
is 0.78 fractures per meter, and hydraulic fractures are largely in the east–west direction,
oriented at 70◦–110◦. Obvious proppant particles were observed in two fractures.

(2) For regions far away from the wellbore, a large number of additional fractures
were created by the growth of principal fractures. These additional fractures may be shear
failures along the natural weak plane created by the induced stress field or the bifurcation
and splitting of principal fractures during propagation.

(3) In the near-wellbore area, tensile fractures are mainly formed, and the fracture den-
sity of the near-wellbore area is lower than that of the far-wellbore area. In the far-wellbore
area, shear fractures are mainly formed, and the hydraulic fracture density decreases with
the increase of distance. The near-wellbore area can be considered to have a lateral distance
of less than 25 m from the horizontal wellbore.
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