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Abstract: High efficiency removal of methyl orange (MO) and bromothymol blue (BT) dyes from con-
taminated water has been reported using magnetic mesoporous nanoparticles modified with cationic
polymer brush (poly(2-methacryloyloxy)ethyl] trimethylammonium chloride solution) (Fe3O4-MSNs-
PMETAC). Atom transfer radical polymerization (ATRP) was utilized to grow the polymer chains on
the magnetic mesoporous silica nanoparticles. The chemical surface modifications were confirmed
using IR, TGA, SEM and TEM. The results show that the obtained Fe3O4-MSNs-PMETAC materials
were nearly spherical in shape with approximately 30 nm magnetic core, and silica shell thicknesses
ranged from 135 to 250 nm. The adsorption performance of the material was found to be unaffected
by the pH (3-9) of the media, with a removal efficiency of 100% for both dyes. The adsorption of BT
and MO on the surface of Fe3O4-MSNs-PMETAC was found to follow Freundlich and Langmuir
models, respectively. Since the synthesized nanocomposite materials exhibit an enhanced properties
such as large maximum adsorption capacity, rapid synthesis process, and easy separation from
solution, it could be an effective sorbent for the removal of other pollutants such as potentially toxic
anionic elements (e.g., arsenate and chromate ions) from water and wastewater.

Keywords: magnetic nanoparticles; mesoporous silica nanoparticles; cationic polymer brushes;
kinetic isotherm; anionic dyes

1. Introduction

The increase in population density leads to an increase economic activities and man-
ufacturing. Consequently, organic pollutants introduced into water sources increase in
types and quantity [1,2]. Some of these contaminants are poorly or not biodegradable [3,4].
Continuous exposure to such pollutants has harmful effects on humans [5,6]. Most common
industries today such as textiles, plastics and paper depend on dyes, which are one of
the most common pollutants [7–10]. Organic dyes have a complex molecular structure,
high toxicity, stability and poor biodegradability, and they can associate with metal ions
to form complex pollutants [11–13]. Many technologies have been used to remove the
organic pollutants from wastewaters such as photocatalysis [14], sedimentation, reverse
osmosis, ion-exchange [15], ozonolysis, electrolysis, membrane processes [16], and adsorp-
tion [17–19]. Adsorption is one of the premier and important technologies that have been
utilized for dye removal because it is an effective, economically acceptable procedure, with
the ability to regenerate and high retention efficiency without producing secondary con-
tamination [20–22]. There are many traditional materials used as adsorbents for removing
dyes from aqueous solutions such as activated carbon [23,24], metal–organic framework
(MOFs) [25], graphene-based nanocomposites [26], and natural clay [27]. However, most of
these materials have limitations due to difficult preparation and disposal, poor selectivity,
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and cost. In recent years, magnetic nanoparticles (MNPs) have received significant atten-
tion for wastewater treatment [28–30], due to their magnetic properties that enable them
to be removed easily from systems [31,32]. MNPs include nickel, cobalt, iron and their
oxides. They have high surface energy, leading to their agglomeration, which affects their
adsorption capacity [33,34]. Shen et al. synthesized iron nanoparticles for water treatment
to remove metal ions [34]. They found that the removal efficiency of such nanoparticles was
high, even though they were chemically unstable. To improve the chemical stability (rust)
and prevent aggregation, MNPs may coated with a protective layer [35,36]. The protective
layer can be organic (self-assembled monolayer and polymer) or inorganic (e.g., silica
shell) [37–39]. Mesoporous silica nanoparticles (MSNs) are one of the most used adsorbent
nanomaterials in water treatment, due to their stability, affordability, resistance to different
environments, low toxicity, high surface area, large pore size, and pore volume [40–43].
Coating MNPs with mesoporous silica shells could prevent their aggregation, protect
them from rust, and enhance the selectivity for contaminants and adsorption capacity [44].
Elmobarak et al. prepared MNPs covered with different thickness of silica shell (5, 8, 10
and 15 nm) to recover oil from oil-in-water emulsion [45]. They found that the best result
was obtained when the thickness of the silica layer was 5 nm. Huang et al. synthesized
magnetic silica nanoparticles coated with chitosan modified with diethylenetriamine pen-
taacetate (DTPA) to increase selective adsorption of Pb (II) and methylene blue dye (MB)
from multi-metal wastewater based on anion-synergism [46]. The adsorbed amount of Pb
(II) in the presence of MB increased from 111.71 to 268.01 mg g−1 and the efficiency of MB
removal was increased in the presence of lead as a synergistic effect. Alotaibi et al. have
recently reported the preparation of magnetic mesoporous silica nanoparticles coated with
poly (2-diethyl aminoethyl methacrylate) (PDEAEMA) brushes. Tertiary amines present
in polymer chains were quaternized using 2-iodoethanol to remove anionic dyes effec-
tively [47]. The adsorption efficiency increased after the quaternization process, comparing
to the non-quaternized polymer.

To the best of our knowledge, the number of studies using polymer brushes coated
magnetic mesoporous nanoparticles as adsorbent is very few. This work shows the synthe-
sis of magnetic mesoporous nanoparticles modified with cationic polymer brush (poly(2-
(methacryloyloxy)ethyl] trimethylammonium chloride solution) using atom transfer radical
polymerization (ATRP) for removing anionic dyes. The adsorption efficiency of the pre-
pared materials in removing anionic dyes methyl orange (MO) and bromothymol blue
(BT) from an aqueous solution has been studied. Adsorption isotherms (Langmuir and
Freundlich) and kinetic models (first and second order) were used to fit the experimental
data. The nanosystem prepared was characterized by numerous techniques such as FTIR,
SEM and TEM.

2. Materials and Methods
2.1. Materials

Ferrous chloride (FeCl2, 99%,) and ferric chloride (FeCl3, 99%) were acquired from
Loba Chemie (Mumbai, India). Deionized water was obtained from Elga Pure Nanopore
system. Ammonium hydroxide (NH4OH, 28 wt.%), ammonium nitrate (NH4NO3, 99%),
3-aminopropyltriethoxysilane (APTES, >98%), 2-bromo-2-methylpropionyl bromide (BIBB,
98%), N-2,2′-bipyridyl (Bipy, 99%), cetyltrimethylammonium bromide (CTAB, 98%), cop-
per(II) bromide (CuBr2, 99.9%), copper(I) chloride (CuCl, 99.9%), dichloromethane (DCM,
HPLC grade), ethanol (HPLC grade), methanol (HPLC grade), hexane (HPLC grade), iso-
propanol (HPLC grade), tetraethylorthosilicate (TEOS, 98%) and [2-(methacryloyloxy)ethyl]
trimethylammonium chloride solution (METAC, 75 wt.% in H2O) were acquired from
Sigma-Aldrich (United States). Triethylamine (TEA, 99%) was obtained from Nexgen
chemicals (India). Hydrochloric acid (HCl, 36%) was purchased from Fisher Scientific
(United States). Sodium hydroxide was obtained from BDH chemicals (United Kingdom).
All chemicals were used as received.
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2.2. Preparation of the Nanoadsorbent
2.2.1. Synthesis of Magnetic Nanoparticles (Fe3O4)

Magnetic nanoparticles (Fe3O4) were prepared by co-precipitation method. Two
separate aqueous solutions of ferrous chloride (FeCl2) and ferric chloride (FeCl3) were
prepared with a concentration of 0.1 M in 50 mL. The two solutions were mixed, then 25 mL
of ammonium hydroxide (NH4OH) was added under nitrogen atmosphere under stirring
at 70 ◦C for 20 min. The magnetic nanoparticles were collected by filtration, and washed
three times with water followed by ethanol.

2.2.2. Magnetic Nanoparticles Embedded with Mesoporous Silica (Fe3O4-MSNs)

Magnetic nanoparticles (0.5 g) were suspended in 180 mL of DI water. To the suspen-
sion, 1.0 g of CTAB (C19H42NBr) was added followed by the addition 9 mL of ammonia
water (NH4OH) under stirring at 40 ◦C. A mixture solution of 16 mL n-hexane (C6H14)/
4 mL TEOS (Si(OC2H5)4) was added dropwise to the suspension. After stirring for 12 h, the
solid product was obtained by filtration, then washed three times with water and ethanol.
For the removal template, the solid product was dispersed in a solution of ammonium
nitrate (NH4NO3)/ethanol (10 mg/mL) under stirring at 80 ◦C for 12 h. Fe3O4-MSNs were
collected by centrifugation and washed with ethanol three times.

2.2.3. Amino Modified Magnetic Mesoporous Silica (Fe3O4-MSNs-NH2)

Fe3O4-MSNs (2.0 g) were suspended in a mixture of APTES (H2N(CH2)3Si(OC2H5)3)/
methanol (0.5 mL/45 mL) at 80 ◦C for 17 h. Fe3O4-MSNs-NH2 was collected by centrifuga-
tion and washed five times with ethanol.

2.2.4. ATRP Initiator Modified Magnetic Mesoporous Silica (Fe3O4-MSNs-Br)

Fe3O4-MSN-NH2 (2.0 g) was dispersed in a mixture of DCM(CH2Cl2)/triethylamine
(23 mL/1.5 mL), which was followed by adding a mixture of 2-bromo-2-methylprpionyl
bromide((CH3)2CBrCOBr)/DCM (0.5 mL/5 mL) dropwise to the mixture and stirring for
18 h at room temperature. The solid was collected by centrifugation and washed three
times with DCM and ethanol.

2.2.5. Polyelectrolyte [2-(methacryloyloxy)ethyl] Trimethylammonium Chloride Brushes
Coated Magnetic Mesoporous Silica (Fe3O4-MSNs-PMETAC)

The ATRP initiated nanoparticles (0.5 g) were suspended in a solution of isopropanol
(16 mL) and deionized water (4 mL). 2-(Methacryloyloxy)ethyl]trimethylammonium chlo-
ride (H2C=C(CH3)CO2CH2CH2N(CH3)3Cl, METAC, 13.8 g), CuBr2 (0.011 g), and of 2,2
bipy (C10H8N2, 0.382 g) were added to the suspension and degassed for 20 min. CuCl (0.1 g)
was added to the polymerization mixture and stirred for 3 h under nitrogen atmosphere.
The solid was washed three times with DI water.

2.3. Measurement and Characterization

The magnetic nanoparticles were imaged by using SEM (JEOL JSM-6380 LA) and TEM
(JEOL JEM-1230). Prior to imaging, the sample was suspended in ethanol (HPLC grade),
then one or two drops of the suspension were placed into copper mesh (on a carbon film
and dried in an oven at 80 ◦C overnight. The chemical functional group of the synthesized
materials was studied in the region of 4000–400 cm−1 by FTIR Spectroscopy (Thermo
Scientific Nicolet IS10). To acquire the IR spectrum of the sample, pellets were prepared
by mixing 2 mg of the sample with potassium bromide (KBr), with approximately 0.1 to
1.0%. TGA analyzer (SII TGA 6300) was used to study the thermal stability of the magnetic
nanoparticles at heating rate 10 ◦C/min. UV–vis spectrophotometer (Shimadzu UV-2600)
was used to estimate the concentrations of MB and BT before and after adsorption at room
temperature.
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2.4. Adsorption Studies

By varying the starting dyes concentrations, contact time, and pH, the adsorption
capability of anionic dyes onto the surface of Fe3O4-MSNs-PMETAC was investigated.
Fe3O4-MSNs-PMETAC (10 mg) was suspended in 10 mL of dye solution of various con-
centrations and stirred at 25 ◦C at 200 rpm. UV—vis spectrophotometry at maximum
absorbance was used to determine the concentration of dyes after centrifugation. The
following expression was used to compute the adsorption capacity:

qe =
(C0 −Ce)V

m
(1)

where V and m denote the volume of contaminant solution in L and the amount of Fe3O4-
MSNs-PMETAC in g, respectively. qe denotes the adsorption capacity at equilibrium in
mg/g, while C0 and Ce represent the initial concentration of anionic dye in mg/L and dye
concentration at time t in mg/L, respectively.

2.4.1. Adsorption Isotherms

Two isotherm models, Langmuir and Freundlich, were used to investigate the dyes’
adsorption behavior on nanomaterials.

The isotherm of the Langmuir model is defined by the Equation (2):

Ce

qe
=

1
qmKL

+
Ce

qm
(2)

where Ce and qe are the pollutant concentration (mg/L) and equilibrium adsorption capac-
ity (mg/g), respectively. The maximal contaminant adsorption capacity onto nanomaterials
(mg/g) is described by qm. The Langmuir constant (L/mg) is represented by KL.

The isotherm of the Freundlich model is defined by the Equation (3):

log qe =
1
n

log Ce + log KF (3)

KF is the Freundlich adsorption constant ((mg/g)/(mg/L)1/n), and 1/n defined as the
adsorption intensity and surface heterogeneity.

2.4.2. Adsorption Kinetics

Using pseudo-first-order (4) and pseudo-second-order (5) equations, the dyes’ adsorp-
tion kinetics onto Fe3O4-MSNs-PMETAC were calculated.

log
(
qe − qt

)
= log

(
qe
)
− K1

2.303
t (4)

t
qt

=
1

K2qe
2 +

1
qe

t (5)

where qt is the adsorption capacity in mg/g at time t. The rate coefficients of pseudo
first-order and pseudo second-order, respectively, are K1 (L/min) and K2 (g/mg·min).

3. Results and Discussion
3.1. General Synthesis Method

Iron oxide nanoparticles (Fe3O4 NPs) were fabricated by mixing ferrous and ferric
salts in basic media. The mixture was heated to 70 ◦C for 20 min to complete the reduction
reaction. The Fe3O4 NPs were then coated with mesoporous silica shell using the Stöber
method in the presence of expander agent (hexane) to increase the pore size. After removing
the template using an ionic exchange method, Fe3O4-MSNs had been coated with thin
layer of organic molecules terminated amine group (APTES). BIBB molecules have been
used to react with amine groups, producing Fe3O4-MSNs capped with ATRP initiator.
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Magnetic mesoporous nanoparticles were modified with cationic polymer brush (poly(2-
(methacryloyloxy)ethyl] trimethylammonium chloride solution) using ATRP technique, as
shown in Scheme 1.
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Scheme 1. The preparation route of Fe3O4-MSNs-PMETAC.

The morphological structure of Fe3O4 NPs and Fe3O4-MSNs-PMETAC was charac-
terized by SEM and TEM. As shown in Figure 1a, the SEM images of Fe3O4 NPs present
almost a spherical shape, and size distribution approximately equal to 18 nm. Moreover, it
was observed that the iron oxide nanoparticles were aggregated. After covering the Fe3O4
core with a layer of silica, a decrease in the aggregation, and an increase in the particle
size was observed. The size of Fe3O4-MSNs was found to be between 120 and 280 nm, as
shown in Figure 1b. The TEM image of Fe3O4-MSNs presents a magnetic core of 18 nm
and silica shell thicknesses ranged from 135 to 250 nm, (Figure 1c). Moreover, Fe3O4-MSNs
exhibited mesoporous structure, with an average pore size of ca. 5 nm. No significant dif-
ference has been noticed in SEM images between Fe3O4-MSNs and Fe3O4-MSNs-PMETAC
(Figure 1b,d). However, a shell around the core of magnetic nanoparticles was observed in
the TEM image (Figure 1e) proving successful capping of PMETAC over the Fe3O4-MSNs.
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FTIR characterization showed the modification steps of Fe3O4-MSNs (Figure 2). The
obtained results show a broad peaks at 1250–1050 cm−1 and 810 cm−1 that were assigned
to Si–O band stretching of the silica network [48]. Peaks at ~2900 cm−1 and ~1430 cm−1

were assigned to C-H stretching mode of APTES-BIBB. After the polymerization process, a
new peak appeared at ~1750 cm−1, which could be attributed to carbonyl group stretches
of the polymer segments [49].
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TGA analysis has been conducted to study the thermal stability and weight loss of the
functionalized materials. CTAB-free Fe3O4-MSNs showed negligible weight loss with less
than 5% at 600 ◦C, indicating the complete extraction of the template. The ATRP-initiator
anchored on the Fe3O4-MSNs shows weight loss of around 20%; whereas the Fe3O4-MSNs-
PMETAC shows weight loss of 45%, as demonstrated in Figure 3. The gradual weight
increase confirms the successful synthesis of Fe3O4-MSNs-PMETAC.
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3.2. Adsorption Studies

The effect of pH on the extraction efficiency of MO and BT at 350 ppm waw studied
at different pH values between 3 to 9. The dosage of adsorbent was (10 mg/10 mL) with
3 h contact time at 25 ◦C. As shown in Figure 4a, the extraction efficiency of both dyes on
Fe3O4-MSNs-PMETAC was observed to be ca. 100% at all studied pH levels. Furthermore,
the effect of analytes concentration on the performance of Fe3O4-MSNs-PMETAC was
studied using different dye concentrations (200, 300, and 500 ppm) at 25 ◦C and pH 7. As
presented in Figure 4b, the amount of MO uptake by Fe3O4-MSNs-PMETAC decreased
gradually as the concentration of dye increased from 300 to 500 ppm. On the other hand,
a slight reduction on the extraction efficiency of the material for removal of BT has been
observed.
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(contact time 3 h at 25 ◦C and concentration is 100 ppm). (b) Adsorption Efficiency (%) at different
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Adsorption efficiency has also been investigated using tap water spiked with different
dye concentrations (Figure 5). More than 95% extraction efficiency was achieved, indicat-
ing that performance of Fe3O4-MSNs-PMETAC was not affected by the presence of the
competitive ions.
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Figure 5. Adsorption efficiency (%) of methyl orange and bromothymol blue dyes using different
water types.

The effect of time variation on the adsorption efficiency has been studied over a 40 min
time frame at different concentrations, as shown in Figure 6. The efficiency was ca. 90%
in 5 min after exposure time at 100 ppm and 350 ppm of BT and reached equilibrium
after 20 min of exposure time with almost 98% removal efficiency. Similar behavior was
observed when MO was used (Figure 6b). However, the removal efficiency decreased to
~70% at 500 ppm.

Langmuir and Freundlich’s isotherms are the most commonly used for modeling
adsorption data. The Langmuir isotherm is used to describe a monolayer adsorption of
the analyte on a homogeneous site, whereas Freundlich is applied to describe a multilayer
adsorption on heterogeneous sites. These models were used to explain the distribution
of the organic dyes between the adsorbent (Fe3O4-MSNs-PMETAC) and liquid phases
(Figure 7). The adsorption of BT on the surface of Fe3O4-MSNs-PMETAC was found to
follow the Freundlich model better than Langmuir’s model as indicated by the linear
regression coefficient (R2) value. On the other hand, the adsorption data of MO was found
to fit well with the Langmuir model with maximum adsorption capacity of 547.89 mg/g.
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Figure 7. (a,b) Langmuir isotherm for the adsorption of bromothymol blue and methyl orange,
respectively, at pH = 7 and 25 ◦C. (c,d) Freundlich isotherm for the adsorption of bromothymol blue
and methyl orange at pH = 7 and 25 ◦C.

To determine the adsorption mechanism of BT and MO by Fe3O4-MSNs-PMETAC,
three kinetic models were used: pseudo first-order, pseudo second-order and intraparticle
diffusion model. Figure 8 shows the plot curves of the adsorption data of BT and MO fitted
with three different models at different dyes’ concentration. In all cases, the adsorption
data fitted well with pseudo second-order model at all dye concentrations as indicated
by the correlation coefficients. When the intraparticle diffusion model was applied, the
adsorption of both dyes (BT and MO) onto the surface of the adsorbent generally involved
one fast step adsorption mechanism.

A variety of materials have been developed to remove the MO and BT dyes from
water. Fe3O4-MSNs-PMETAC performance in comparison to various adsorbents is shown
in Table 1. As can be shown, Fe3O4-MSNs-PMETAC has greater adsorption capabilities
than many other adsorbents employed in earlier investigations. Fe3O4-MSNs-PMETAC
could be a promising candidate for efficient removal of anionic dyes, due to easy production
and strong adsorption capability.
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Figure 8. (a,b) Pseudo-first-order kinetics for the adsorption of bromothymol blue and methyl
orange, respectively, at pH = 7 and 25 ◦C. (c,d) Pseudo-second-order kinetics for the adsorption of
bromothymol blue and methyl orange at pH = 7 and 25 ◦C. (e,f) Intraparticle diffusion models for
the adsorption of bromothymol blue and methyl orange at pH = 7 and 25 ◦C.

Table 1. Comparison of the amount of methyl orange (MO) and bromothymol blue (BT) adsorbed on
different materials.

MO Dye BT Dye

Materials qe (mg·g−1) Ref. Materials qe (mg·g−1) Ref.

Alkali Lignin (from Rice Husk) 1.23 [50] Alkali Lignin (from Rice Husk) 1.57 [50]

Tetraethylammonium modified
kaolinite clay 40 [51] Latvian Sphagnum Peat Moss 9 [52]

Chitosan/tannin/
montmorillonite (Cs/Tn/MMT)

films
58 [53] Zeolites (S-1) 17 [54]

NiO nanoparticles 98 [55] Oxidized multiwalled carbon
nanotubes (MWCNTs-COOH) 55 [56]

ZrFeOX particles 139 [57] Gold nanoparticle loaded on
activated carbon 95 [58]

Fe3O4-MSNs-PMETAC 547 In this study Fe3O4-MSNs-PMETAC 344 In this study
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4. Conclusions

In the present work, magnetic mesoporous nanoparticles were synthesized and mod-
ified with cationic polymer brush (poly(2-(methacryloyloxy)ethyl] trimethylammonium
chloride solution). The performance of the prepared material was then evaluated for the
removal of two types of ionic dyes (MO and BT). The impact of different parameters such as
analyte dosage, contact time and pH level were studied. The results confirm the ability of
Fe3O4-MSNs-PMETAC to remove MB and BT ions from contaminated water samples with
100% extraction efficiency. The linear regression coefficient value for the studied isotherms
suggested that the adsorption behavior of BT by Fe3O4-MSNs-PMETAC is better approx-
imated by the Freundlich isotherm, whereas in the case of MO, it follows the Langmuir
isotherm. The kinetic behavior of both dyes was found to be a second-order process. These
results indicate that the prepared material could introduce a new direction of producing
molecularly designed adsorbents that involve the combination of magnetic mesoporous
nanoparticles with the highly resourceful field of polymer brushes with tunable properties
for the removal of pollutants from aqueous solutions.
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