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Abstract: This paper presents a new conceptualization of complex nonlinear mechanical systems and
develops new and novel computational methods for determining their response to given applied
forces and torques. The new conceptualization uses the idea of including particles of zero mass to
describe the dynamics of such systems. This leads to simplifications in the development of their
equations of motion and engenders a straightforward new computational approach to simulate their
behavior. The purpose of the paper is to develop a new analytical and computational methodology to
handle complex systems and to illustrate it through the study of an old unsolved problem in classical
mechanics, that of a non-uniform rigid spherical shell rolling, without slipping, under gravity on
an arbitrary dimpled bowl-shaped rigid surface. The new conceptualization provides the explicit
equations of motion for the system, the analytical determination of the reaction forces supplied by the
surface, and a straightforward computational approach to simulate the dynamics. Detailed analytical
and numerical results are provided. The computations illustrate the complexity of the dynamical
behavior of the system and its high sensitivity to the initial orientation of the shell and to the presence
of any initial angular velocity normal to the surface.

Keywords: new approaches to nonlinear and multibody dynamics; constrained motion; zero-mass
particles; shell rolling on an arbitrary surface; computational approaches

1. Introduction

In the area of dynamical systems, mechanical systems play a quintessential role. One
of the first mathematical descriptions of a dynamical system was a mechanical one as
proposed by Newton in his description of the motion of a particle subjected to forces. Euler
gave the equations of the motion of particles and rigid bodies in 1752 [1,2]. Numerous
advances in the general theory of dynamical systems have been initiated and/or brought
about by investigations into the behavior of mechanical systems. For example, the discovery
of chaos in dynamical systems is credited to Poincaré for his geometrical analysis of the
three-body planetary problem [3,4], and the general theory of bifurcations in dynamical
systems was presaged by observations on the mechanical buckling of columns. In fact, as is
well known, the modern geometrical approach currently used in the analysis of nonlinear
dynamical systems has its roots in the approach pioneered by Poincaré in his essay on the
three-body problem [4].

This paper deals with modeling and computational aspects of nonlinear multi-body
mechanical systems. Most mechanical systems are nonlinear, even simple ones such as
planar pendulums. Thus, the response of mechanical multi-body systems that include
particles, solid, and/or flexible bodies subjected to externally applied actions can indeed
be both complex and highly nonlinear. This paper presents a new conceptualization
and methodology to model complex multi-body systems to obtain their response to the
time-dependent forces and torques to which they may be subjected.
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Each multi-body mechanical system, depending on its number of degrees of freedom,
needs a certain minimum number of time-dependent variables (coordinates, parameters)
to model it mathematically. These variables describe the motion of the system in the so-
called configuration space. The aim of obtaining a suitable model is to: (1) write down
expressions for the second derivatives of these coordinates with respect to time in terms of
the coordinates, their first derivatives, time, and the given time-dependent actions, such
as forces and torques, acting on the system, and (2) corroborate the consequent model’s
predicted behavior of interest with what is physically observed.

One of the major areas of considerable concern in the development of the dynam-
ical equations of motion for multi-body systems is the handling of constraints. From a
historical perspective, this concern has been one of the central foci of attention of mathe-
maticians/mechanicians throughout the last 300 years or so [5–7]. It is only recently that
advances have been made in the development of a general theory of constrained mechan-
ical systems that can be applied with equal ease to both holonomic and non-holonomic
constraints [8–10]. Furthermore, it is now also possible to include the dissipation and/or
injection of energy to the system through the constraints, as often happens in physical
situations [11,12]. These advances expand our understanding of the nature of constraints,
their use, and their influence on a system when they are imposed on it.

In this expanded view, constraints can be used: (1) for modeling restrictions applied
to mechanical systems so that they satisfy certain kinematical conditions during their
motion, such as those imposed on the relative motion between robots joints [10]; (2) for
finding the explicit actions (forces and torques) needed for a mechanical system to follow a
given trajectory, such as requiring the end effector of a robot arm to move exactly along
a prescribed trajectory, or requiring the system to satisfy some dynamical conditions [13];
(3) for obtaining the equations of motion of a system when additional coordinates are
required beyond the minimum, such as in the determination of the rotational motion of
a rigid body whose orientation though described by just three coordinates—the Euler
angles—requires, in fact, four parameters—a quaternion—to describe it adequately and
thereby avoid the singularities in angular velocities that arise when using Euler angles [14].

In addition to the above uses, complex multi-body systems often have numerous
constraints to which they are subjected, and obtaining the equations of motion for such
systems when using the minimum (though adequate) number of coordinates can not only
be very time-consuming but, more importantly, can lead to equations of high complexity.
This makes understanding the behavior of such nonlinear systems much more difficult and
also usually results in higher computational complexity. The complexity in formulating
equations of motion arises because the numerous constraints that the system is required
to respect may not be easily describable in terms of the minimum adequate number of
chosen coordinates. Often, there may be some other time-dependent coordinates, besides
the minimum adequate number chosen, that simplify the description of the constraint
relations and/or the description of the unconstrained system, for instance, the coordinates
of contact points, joints, coordinates on which the external forces/torques act, or other
significant points in the system that aid our geometrical understanding of its behavior.

The new and novel direction proposed in this paper is the direct inclusion of additional
time-dependent variables (coordinates) into the dynamical description of a multi-body
system in order to make its unconstrained motion simpler to obtain and/or the constraints
simpler to express mathematically. On the face of it, such an expansion of the number of
dynamical variables—the configuration space—poses unsurmountable problems from a
conceptual viewpoint, since the mass associated with these additional coordinates must
necessarily be zero in order to maintain the fidelity of the model to the physical system, and
the inclusion of particles of zero mass would lead to singular mass matrices. Furthermore,
in nonrelativistic mechanics, no forces can be applied to a particle with zero mass and
hence its acceleration becomes indeterminate.

However, there have been significant developments in deriving the equation of mo-
tion of constrained mechanical systems in recent years [15,16]. It is these advances that
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view a mechanical system from a different perspective as a system moving under con-
straints that makes the inclusion of zero-mass particles in the description of a mechanical
system possible.

This paper illustrates the new modeling methodology and its associated computational
aspects by solving, as an example, one of the unsolved problems of classical mechanics: the
dynamics of a rigid non-uniform spherical shell rolling under gravity, without slipping,
on an arbitrarily given surface. The dynamics of a rigid non-uniform sphere rolling on a
surface under gravity is a classical problem that appears to have been first broached by
E. Lindelöf in 1895 and further explicated by Chaplygin [17–19]. Kilin [20] investigated
the trajectory of the contact point between a rolling sphere and a plane by deriving the
equations of the motion. Borisov et al. [21–24] used one more non-holonomic constraint on
spinning and studied the motion of a rigid body rolling with or without spinning on a plane.
Bizyaev et al. [25] extended this topic by investigating the motion of a rolling spherical
shell with a moving rigid body inside it. Ivanov has considered the long-time asymptotic
motion of a homogeneous sphere moving on a horizontal rough plane with friction [26].
Besides motion on a plane, work on the motion of a non-uniform sphere on some simple
prescribed surfaces has also been investigated by several researchers (e.g., see Ref. [27]).
An investigation into the controlled motion of a spherical robot on a periodically vibrating
horizontal plane has been recently carried out in Ref. [28]. Despite the work done on this
classical problem by several investigators, the determination of the explicit equations of
motion and the quantitative characteristics of motion for general (arbitrarily prescribed)
surfaces on which a non-uniform shell/sphere rolls has remained an unsolved problem.

The structure of this paper is as follows. Section 2 provides the analytical development
of the methodology. Section 2.1 begins with modeling the unconstrained multi-body
system that includes the rigid spherical shell subjected to gravity and two zero-mass
particles. In Section 2.2 the constraints are described and the equations of constraint are
obtained. Sections 2.1 and 2.2 demonstrate using the zero-mass particles eases deriving the
equations. Sections 2.3 and 2.4 provide the explicit equations of motion for the system. The
determination of the physical constraint forces, and from them, the (generalized) reaction
forces provided by the surface during the motion of the shell, are explained in Section 2.5.
Extensive computational results are provided in Section 3. They deal with the dynamical
behavior of a non-uniform rigid shell moving over a multi-dimpled bowl-shaped rigid
surface. Three examples are illustrated. In Section 3.1 the details of the three examples
used in the numerical computations are explained along with the initial orientations of the
shell that are considered. Section 3.1.1 presents results for the first example in which the
shell is given no initial spin velocity about the normal to the surface. In Section 3.1.2 the
second example is studied in which the shell’s dynamical behavior is computed when an
initial spin velocity is added. Section 3.1.3 considers the third example in which a shell
is restricted throughout its motion to have no spin velocity at all. Section 4 provides a
discussion of the new approach to modeling complex dynamical systems and summarizes
the computational results. Section 5 gives the conclusions.

An initial study using a zero-mass particle to model a solid sphere rolling on an
arbitrary surface was reported in Ref. [29]. In the present paper, this study is greatly
expanded and further explored. It differs from our initial study in the following aspects.

(1) The methodology is developed for a non-uniform shell and two particles of zero mass
are used instead of one. This greatly simplifies the formulation of the problem from
that obtained in Ref. [29] and the formulation of the equations of motion and the
equations of constraint. It also makes the computations more efficient.

(2) The theory of constrained motion with singular mass matrices is used to obtain the
final equations of motion of the system [15,16,30,31]. This theory requires a certain
condition to be satisfied in order to yield the correct equations of motion for the
physical system. In Ref. [29] this condition was only computationally confirmed for
the parameters chosen in the numerical example presented there. Here, we show
that the condition is analytically satisfied, thereby placing the approach on a firm
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mathematical footing. This allows us to obtain the explicit closed form equations of
motion for the shell moving over an arbitrarily prescribed surface.

(3) Computational results that show the motion of the shell on a complex unsymmet-
rical multi-dimpled bowl-shaped surface with an unsymmetrical cross-section are
obtained, showing vast qualitative differences in its motion and sensitive dependence
on initial conditions.

(4) Analytical equations for the reaction of the surface to the motion of the shell from the
determination of the generalized forces of constraint are explicitly obtained. That is,
besides obtaining the coordinates that describe the configuration of the system at each
time instant and the velocities of these coordinates as done in Ref. [28], the generalized
forces acting on the spherical shell at its point of contact with the surface are also
determined. Thus, the reaction forces exerted by the surface are therefore explicitly
obtained. This permits the minimum coefficient of friction required to sustain the
motion of the shell over the surface, without any slippage, to be determined.

(5) The effects of the initial orientation and the initial spin velocity of the shell—the
component of the initial angular velocity normal to the surface—are investigated in
considerable detail, showing that they have a significant effect on its motion.

(6) A further constraint that prevents the shell to have any spin velocity is investigated.
Its effect on the motion of the shell, and especially on the reaction forces that it brings
about, is investigated in some detail.

2. Analytical Results
2.1. Description of the Unconstrained Multi-Body System

Figure 1 shows the unconstrained system consisting of a non-uniform rigid spherical
shell, Σ, with mass m and (geometric) center O, whose internal and external radii are ri

and r, respectively. Its center of mass, denoted by C, is located at wC = [xC, yC, zC]
T in an

inertial coordinate frame XYZ (see Figure 1). The body-fixed coordinate frame x̂ŷẑ is a
right-handed coordinate frame formed by the principal axes of inertia of Σ; its origin is the
point C. The location of the point C with respect to O is given by ρ = [ρ1, ρ2, ρ3]

T , in which
ρi, i = 1, 2, 3 are the components of the vector

→
ρ in the body-fixed x̂ŷẑ coordinate frame.

The principal moments of inertia of Σ about these body-fixed axes are denoted by J1, J2, and
J3; the inertia tensor of the shell in the body-fixed coordinate frame is J = Diag(J1, J2, J3).

Processes 2022, 10, x FOR PEER REVIEW 5 of 36 
 

 

 
Figure 1. The unconstrained system consisting of the non-uniform spherical shell, Σ , with center 
of mass at C and geometric center at O, under the force of gravity. 

To describe the rotational motion of  , a four-vector quaternion (and not the Euler 
angles) is used; this averts singularities in determining the angular velocities. The quater-
nion four-vector that describes the rotational configuration at any time t is given by 

= 0 1 2 3( ) : [ ( ), ( ), ( ), ( )]Tu t u t u t u t u t , where the 'iu s  are constrained to satisfy the relation 
2 2 2 2 2

0 1 2 3u(t) = u (t) + u (t) + u (t) + u (t) = 1  [14]. Thus, the position and orientation of the shell 

at any time t can be described by the seven-vector = = 0 1 2 3: [ , , , , , , ] [ , ]T T T T
C C C Cq x y z u u u u w u  

wherein the four-vector u satisfies the constraint =( ) 1u t . 
The unconstrained equation of motion of the shell   under gravity can be obtained 

quite trivially using Lagrange’s equation (see Figure 1). The total kinetic energy, T, of the 
shell is composed of its translational and rotational kinetic energy as 

( ) ( )T T
trans rot C CT = T +T = 1 2 mw w + 1 2 ω Jω  , where ˆ ˆ ˆ[ ]T

x y zω := ω ,ω ,ω  is the absolute angular 
velocity of the shell whose components are measured in the body-fixed coordinate frame 
ˆ ˆ ˆxyz  with its origin at C. Dots over the symbols refer to derivatives with respect to time t 

in this paper. 
Since the absolute angular velocity of the body expressed in the body-fixed coordi-

nate system ˆ ˆ ˆxyz  can be written in terms of the components of the quaternion four-vector 
q  as 

   
   
   
     

x 1 0 3 2

y 2 3 0 1

3 2 1 0z

ω -u   u   u -u
ω := ω = 2Eu := 2 -u -u   u   u u

-u   u -u   uω

 
ˆ

ˆ

ˆ

, (1)

the expression for the kinetic energy, T, can be written as  

( ) T T T T T T
C trans rot C C C C

m mT w ,u,u = T + T = w w + 2u E JEu = w w + 2u E JEu
2 2

         . (2)

Figure 1. The unconstrained system consisting of the non-uniform spherical shell, Σ, with center of
mass at C and geometric center at O, under the force of gravity.

To describe the rotational motion of Σ, a four-vector quaternion (and not the Eu-
ler angles) is used; this averts singularities in determining the angular velocities. The
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quaternion four-vector that describes the rotational configuration at any time t is given
by u(t) := [u0(t), u1(t), u2(t), u3(t)]

T , where the ui
′s are constrained to satisfy the relation

‖u(t)‖2 = u0(t)2 + u1(t)2 + u2(t)2 + u3(t)2= 1 [14]. Thus, the position and orientation of
the shell at any time t can be described by the seven-vector q̃ := [xC, yC, zC, u0, u1, u2, u3]

T =

[wT
C, uT ]

T wherein the four-vector u satisfies the constraint ‖u(t)‖ = 1.
The unconstrained equation of motion of the shell Σ under gravity can be obtained

quite trivially using Lagrange’s equation (see Figure 1). The total kinetic energy, T, of the
shell is composed of its translational and rotational kinetic energy as T =Ttrans + Trot =

(1/2)m
.

wC
T .

wC + (1/2)ωT Jω, where ω :=[ωx̂, ωŷ, ωẑ]
T is the absolute angular velocity of

the shell whose components are measured in the body-fixed coordinate frame x̂ŷẑ with its
origin at C. Dots over the symbols refer to derivatives with respect to time t in this paper.

Since the absolute angular velocity of the body expressed in the body-fixed coordinate
system x̂ŷẑ can be written in terms of the components of the quaternion four-vector q as

ω :=

 ωx̂
ωŷ
ωẑ

= 2E
.
u := 2

 −u1 u0 u3 −u2
−u2 −u3 u0 u1
−u3 u2 −u1 u0

 .
u, (1)

the expression for the kinetic energy, T, can be written as

T
( .
wC, u,

.
u
)
= Ttrans + Trot =

m
2

.
wC

T .
wC+2

.
uTET JE

.
u =

m
2

.
wC

T .
wC+2uT

.
E

T
J

.
Eu. (2)

From the definition of E in Equation (1) we see that the product Eu = 0, and on
differentiating this relation with respect to time, t, it yields E

.
u = −

.
Eu; this is used in the

last equality in Equation (2). The potential energy of Σ is given by

V(wC) = mgzC = mgwT
Ce3, (3)

where e3 = [0, 0, 1]T . The Lagrangian of the system is L = T(wC, u,
.
u)− V(wC) and the

equations of motion of the shell are simply given by

d
dt

(
∂L

∂
.
q̃

)
− ∂L

∂q̃
= 0. (4)

Noting that
∂T
∂

.
u
= 4ET JE

.
u, (5)

and
d
dt

(
∂T
∂

.
u

)
= 4

.
E

T
JE

.
u + 4ET J

.
E

.
u︸︷︷︸

=0

+ 4ET JE
..
u = 4

.
E

T
JE

.
u + 4ET JE

..
u, (6)

the equation of motion of the shell is trivially found to be

M̃
..
q̃ :=

[
mI 0

0 4ET JE

][ ..
wC..
u

]
=

[
−mge3

−8
.
E

T
JE

.
u

]
, (7)

where the four-vector u at each instant of time t is required (constrained) to be of unit
Euclidean length. The definition of E in Equation (1) shows that the matrix product

.
E

.
u in

Equation (6) is zero.
Equation (7) describes the unconstrained motion of the shell, Σ, under gravity. How-

ever, the components of the seven-vector q̃ are not independent, because the constraint
‖u(t)‖= 1 is required on the components of the four-vector u to represent the rotational
motion of the shell correctly. Thus, while the use of the quaternion u eliminates singularities
in the description of the rotational dynamics as stated before, it adds an extra coordinate
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beyond the minimum needed to describe the rotational motion of the shell. This additional
coordinate makes the block diagonal mass matrix M̃ singular. The four by four matrix
ET JE has rank three, since

Rank
(
ET JE

)
= Rank

((
J1/2E

)T(
J1/2E

))
= Rank

(
J1/2E

)
= Rank(E) = Rank

(
EET) = Rank(I3) = 3.

(8)

This makes its determinant zero, and therefore the determinant of M̃ also zero.
To model the shell, Σ, rolling on an arbitrarily specified rigid surface Γ without slipping,

we require it: (1) to always remain in contact with the surface and (2) to roll on the surface
without slipping. These two requirements (constraints) embody the core of the problem
that we are addressing. And their mathematical description becomes straightforward and
simple when we use the coordinates of the geometrical center, O, of the shell, Σ, and the
coordinates of the point of contact, P, between Σ and the arbitrary surface Γ on which
it rolls. Indeed, as the shell rolls over the surface, the coordinates of both these points
change with time t. However, as yet the coordinates of these two points do not appear in
the seven-vector q̃ that describes the configuration of our dynamical system. In order to
include them as part of the configuration vector, we resort to the novel idea of adding two
particles, each of zero mass, and co-locating them with the points P and O, respectively
(see Figure 2).
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Figure 2. The constrained system consisting of the shell Σ in contact with the surface Γ, a zero-mass
particle P located at the contact point, and a zero-mass particle O located at the center of the shell.
The unit normal vector perpendicular to the surface Γ at P is n.

Recall that zero-mass particles are never used in non-relativistic mechanics, because,
from a physical viewpoint, no forces can be applied to them, and, from a mathematical
viewpoint, they lead to singular mass matrices, thereby precluding the determination of the
accelerations of the system. However, recent advances in analytical dynamics show that
in certain situations, as we saw with Equation (7) above, we can use zero-mass particles
provided the dynamical system is adequately constrained [11].

So far then, the use of quaternions in Equation (7) has added one more coordinate to
the description of the dynamical system than the minimum required, along with the unit
length constraint on the four-vector u, which is part of the system’s configuration vector
q̃. Now, we add to this configuration vector q̃ the coordinates of the points P and O by
placing zero-mass particles at these locations, thereby obtaining a new dynamical system
whose configuration vector has six more coordinates than those in q̃. This makes both the
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description of the constraints simpler (as the shell Σ rolls over the surface), and it also
makes the description of the equations of motion of the rolling shell on the surface much
simpler to develop.

The shell rolling on the surface is thus modeled as a multi-body system consisting of the
shell Σ and two zero-mass particles, one located at the point of contact P between the shell
and the surface and the other located at the geometrical center O of the shell.

Denoting the coordinates of a zero-mass particle located at P, the point of contact
between the Σ and the surface, by α =[α1, α2, α3]

T , and the coordinates of a zero-mass
particle located at the point O by β =[β1, β2, β3]

T , the configuration of this multi-body
system is described by the 13-vector

q :=
[
wT

C, uT , αT , βT
]T

:=

 xc, yc, zc︸ ︷︷ ︸
coordinatesofC

, u0, u1, u2, u3︸ ︷︷ ︸
u

, α1, α2, α3︸ ︷︷ ︸
coordinatesofP,α

, β1, β2, β3︸ ︷︷ ︸
coordinatesofO,β


T

. (9)

Writing the equations of motion of these two zero-mass particles that have been
included is, of course, trivial. Their equations, using Newton’s laws, simply state that the
mass of the particle located at P(O), which is zero, times its acceleration in any direction,
equals zero, since no force can be applied to zero-mass particles.

The equations of motion of the multi-body system consisting of the shell Σ and the
two zero-mass particles (located at O and P) are therefore obtained directly as

M
..
q :=


mI 0 0 0

0 4ET JE 0 0
0 0 MP 0
0 0 0 MO




..
wC..
u
..
α
..
β



−mge3

−8
.
E

T
JE

.
u

0
0

:= Q
(
q,

.
q
)
. (10)

Notice that the equations of motion comprise those already obtained in Equation (7)
along with the trivial equations

MP
..
α = 0, and MO

..
β = 0, (11)

for the two zero-mass particles, where the three by three (diagonal) matrices MP = MO = 0.
The right-hand sides of each equation in Equation (11) is the zero three-vector, since, as
mentioned before, no force can be applied to a zero-mass particle. It should be noted that
the 13 by 13 mass matrix M is singular. So far, we have one constraint that the four-vector u
must satisfy, namely ‖u(t)‖= 1.

We assume that the surface Γ is smooth enough that at every point on it all the second
order partial derivatives of Γ(X, Y, Z) = 0 exist. In addition, we assume that the shell
touches the surface at just a single point. In other words, when the shell Σ with center O
at β(t) = [β1(t), β2(t), β3(t)]

T touches the surface Γ during its motion at a point P with
coordinate α(t) = [α1(t), α2(t), α3(t)]

T so that Γ(α1, α2, α3) = 0, it touches no other point of
the surface Γ. Thus, we assume that the relation between the two points P and O, whose
coordinates are α(t) and β(t), respectively, is given by

β = α + rn(α) := f(α), (12)

where n is the unit normal to the surface Γ at the point of contact α. Furthermore, this
equation provides a unique value for β (point O) given a value of α (point P) and the
function f is invertible. Therefore, the Jacobian of f is nonsingular at every point on the
surface Γ.
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The normal to the surface Γ at a point of contact α is given by the three-vector

k(α) =
[

∂Γ
∂X

∂Γ
∂Y

∂Γ
∂Z

]T
∣∣∣[X

Y
Z

]
=

[
α1
α2
α3

] (13)

where Γ(X, Y, Z)= 0 is expressed (arranged) such that the Z-component of the three-vector
k is taken to be positive. At the point of contact, the unit normal vector n to the surface is
then obtained as

n(α) =
k√
kTk

=
k
‖k‖ . (14)

Appendix A explicitly gives the Jacobian of the function f(α) defined in Equation (12),
which we denote by Jf. As stated before, J−1

f exists at every point α on the surface Γ.

2.2. Description of the Constraints

In this subsection, we describe the constraints that the components of the configuration
vector must satisfy. They can be categorized as those coming from:

(1) The use of quaternions to describe the rotational dynamics of the shell;
(2) The description of the location of the two zero-mass particles, one placed at the point

of contact P between the shell Σ and the surface Γ and the other at the center, O, of Σ;
(3) The constraints relevant to the physical conditions that must be satisfied by the shell

to roll without slipping on the surface;
(4) Additional constraints that might be redundant but are consistent with all the other

existing constraints, and/or constraints that may be added to the system to, for
example, further physically constrain the motion of the shell Σ.

We consider each of these categories in turn.

(1) Quaternion Constraint

The constraint on the four-vector u, as mentioned before, is described by

ϕ1:=u0(t)2 + u1(t)2 + u2(t)2 + u3(t)2 − 1 = 0. (15)

A suitable form of constraint can be obtained by taking the second time derivative of
Equation (15) to yield

A1
..
q :=

[
01×3 | uT | 01×3 | 01×3

] ..
q =− .

uT .
u :=b1. (16)

We call ϕ1(t) the ‘Quaternion Constraint’.

(2) Location of the two zero-mass particles at P and O

(i) Location of the zero-mass particle at P

The first zero-mass particle is co-located at the point P that lies at the point of contact
between the shell and the surface, and therefore its coordinate α must satisfy the equation
of the surface. This leads to the constraint

ϕ2:= Γ(α1, α2, α3)= 0, (17)

which we shall refer to as the ‘Surface Constraint’.
As before, the second time derivative of Equation (17) in term of k, defined in

Equation (13), is given by

A2
..
q :=

[
01×3 | 01×3 | kT | 01×3

] ..
q =−

.
k

T .
α =− .

α
T
[

∂k
∂α

]
.
α :=b2, (18)

noting that the matrix ∂k
∂α is symmetric.
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(ii) Location of the zero-mass particle at O

For the second zero-mass particle to be co-located with the point O, which is the
geometric center of the shell Σ (see Figure 2), the distance OP must be r and O must lie
along the normal to the surface at P. Hence, we obtain the relation

ϕ3 := β− α− rn = 0. (19)

We call this the ‘Tangency Constraint’. Again, taking the second derivative of Equation (19)
with respect to time t, we can write

A3
..
q = b3. (20)

The matrix A3 and the three by one column vector b3 are obtained in Appendix A as

A3 =
[
03×3 | 03×4 | Jf | −I3×3

]
, and b3= −r

∆
d
dt

(
∂k
∂α

)
.
α + kδ− 2

.
k

T
k

(kT k) 3/2
∂k
∂α

.
α

 (21)

where the Jacobian Jf =
[

I3×3+r∆ ∂k
∂α

]
, and the expressions for ∆ and δ are given in

Appendix A.

(3) Physical Constraints

(i) Constraint on wC

As seen from Equation (10), the coordinate wc of the center of mass C of the shell in
the unconstrained system is uncoupled from the coordinates u, α, β. However, when the
shell Σ rolls over the surface Γ, wc depends on the (rotational) orientation of the shell and
the location of the point of contact (or alternately as seen from Equation (12), the location of
the point O). The zero-mass particle co-located at O simplifies this relation and we have

ϕ4 := β + Sρ− wC = 0 (22)

where S is the active rotation matrix, which can be written in terms of the quaternion
components as

S =

u2
0 + u2

1 − u2
2 − u2

3 2(u1u2 − u0u3) 2(u1u3 + u0u2)
2(u1u2 + u0u3) u2

0 − u2
1 + u2

2 − u2
3 2(u2u3 − u0u1)

2(u1u3 − u0u2) 2(u2u3 + u0u1) u2
0 − u2

1 − u2
2 + u2

3

 (23)

and ρ =[ρ1, ρ2, ρ3]
T is the vector that starts from the center of the shell O and points to the

center of mass C of the shell; its components are measured in the body-fixed coordinate
frame x̂ŷẑ and are therefore constant and they depend on the distribution of the mass of
in the shell Σ (see Figure 1). We call the constraint, ϕ4, the ‘Geometric Center Constraint’.
We write the constraint Equation (22) in suitable form by taking its second derivative with
respect to time. Defining

.
Sρ = C1u where

C1= 2

 u0ρ1 − u3ρ2 + u2ρ3 u1ρ1+u2ρ2 + u3ρ3 −u2ρ1 + u1ρ2 + u0ρ3 −u3ρ1 − u0ρ2 + u1ρ3
u3ρ1 + u0ρ2 − u1ρ3 u2ρ1 − u1ρ2 − u0ρ3 u1ρ1 + u2ρ2 + u3ρ3 u0ρ1 − u3ρ2 + u2ρ3
−u2ρ1 + u1ρ2 + u0ρ3 u3ρ1 + u0ρ2 − u1ρ3 −u0ρ1 + u3ρ2 − u2ρ3 u1ρ1 + u2ρ2 + u3ρ3

 (24)

and C2 =
.
C1 the second derivative of Equation (22) can be written as

..
β + C1

..
u + C2

.
u− ..

wC = 0 (25)

which can be recast in the form

A4
..
q :=

[
−I3×3 | C1 | 03×3 | I3×3

] ..
q = −C2

.
u :=b4. (26)
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(ii) The Rolling No-Slip Constraint

The shell Σ rolling on the surface Γ without slipping requires the non-holonomic constraint

ϕ5:=
.
β + rñSω = 0 (27)

to be satisfied at each instant of time t. We note that the normal to the surface is n(α(t)) and
it is therefore a function of the time, t, as the shell rolls over the surface. The active rotation
matrix S is given in Equation (23). The matrix ñ(t) is the three by three skew-symmetric
matrix obtained from the components of the unit three-vector n in the XYZ coordinate
frame in Equation (14); it is given by

ñ =

 0 −nZ nY
nZ 0 −nX
−ny nX 0

 (28)

This notation of a tilde above a three-vector to denote the skew-symmetric matrix of
its components shown on the right hand side of (28) will be used throughout this paper.
Equation (27) states that the instantaneous velocity of the point on the shell that touches the
surface Γ is zero. The second term in Equation (27) is the relative velocity of this point while
the shell is rotating with angular velocity ω. The three-vector ω contains the components
of the angular velocity in the body-fixed x̂ŷẑ coordinate frame. Differentiating Equation
(27) twice with respect to time t, we obtain

..
β + 2r

.
ñSE

.
u + 2rñ

.
SE

.
u + 2rñS

.
E

.
u︸︷︷︸

=0

+2rñSE
..
u = 0, (29)

which, upon noting that SST = I, can be rewritten as

..
β + 2r

.
ñSE

.
u + 2rñSST

.
S︸︷︷︸

=ω̃

E
.
u + 2rñSE

..
u = 0. (30)

Since ST
.
S = ω̃, ω = 2E

.
u, and ω̃ω = 0, the third term on the left in Equation (30) is

zero and the equation can be simplified to

A5
..
q :=

[
03×3 | 2rñSE | 03×3 | I3×3

] ..
q =− 2r

.
ñSE

.
u :=b5. (31)

Constraints (16), (20), (26), (18), and (31), obtained so far, can be expressed as a system
of equations in form of

A
..
q :=


A1
A2
A3
A4
A5

 ..
q =


b1
b2
b3
b4
b5

:= b, (32)

where the matrix A is an 11 by 13 matrix and vector b is an 11-vector (11 by 1). These
five sets of constraint equations are sufficient to model the spherical shell Σ rolling on the
surface Γ without slipping. It should be noted that the rows of matrix A do not have to be
independent and multiple consistent constraints can be imposed on the system.

(4) Additional Constraints

(i) Constraints Related to Known Conserved Quantities

One of the significant advantages of this methodology is that even additional con-
straints that are not independent from of the existing constraints can be added to the system.
In other words, the rows of matrix A need not be independent. This capability lets us make
the numerical model more consistent with conserved quantities that are known to exist
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during the evolving motion of the system. For instance, in the modeling of a system whose
energy is conserved, the energy conservation equation can be added to the rows of matrix
A as an additional constraint. Since there is no dissipation or injection of energy to our
system, energy is conserved. Using Equations (2) and (3), the equation that states that the
total amount of energy, E(t), of the system at each instant of time t remains constant can be
written as

φE := E(t)− E(0) =
m
2

.
wC

T .
wC+2

.
uTET JE

.
u + mgwT

Ce3 − E(0) = 0, (33)

and taking the time derivative of Equation (33) gives the relation

AE
..
q = bE (34)

where
AE =

[
m

.
wT

C

∣∣∣ 4
.
uTET JE | 01×3 | 01×3

]
and bE = mg

.
wT

Ce3. (35)

Hence, Equation (34) can be added to the set of constraints given in Equation (32), so
that the augmented set of constraints is given by the system of equations

A
..
q :=



A1
A2
A3
A4
A5
AE


..
q =



b1
b2
b3
b4
b5
bE

:= b, (36)

where the matrix A is now 12 by 13 and the vector b is 12 by 1.

(ii) No-Spin Constraint

Although the constraints in Equation (32) are sufficient to model the motion of the shell
rolling on a prescribed surface without slipping, depending on the situation at hand, the
motion of the shell can be further restricted by imposing additional constraints. For instance,
the spin of the shell Σ about the normal vector n to the surface Γ can be prevented during
its rolling motion by the inclusion of an additional constraint. As shown in Appendix B,
the components of the angular velocity of the shell Σ at each instant of time in the x̂ŷẑ
body-frame and in the XYZ inertial frame can be expressed as

ω =ST

(
ñ

.
β

r
+ λn

)
(37)

and

ω = Sω =

(
ñ

.
β

r
+ λn

)
, (38)

respectively. The two three-vectors on the right hand side in the last equality in Equation (38)
are orthogonal to each other since nT ñ = (ñTn)T

= −(ñn)T = 0. The component of ω
along the unit normal n to the surface Γ is nTω. Thus, from Equation (38) we see that the
component of the angular velocity ω (in the inertial XYZ frame) normal to the surface Γ is λ.
In addition, the tangential component of the angular velocity ω is determined in terms of
the velocity three-vector

.
β of the center O of the shell. When λ(t) ≡ 0, the angular velocity

of the shell is thus seen to depend only on the velocity of its center O. We refer to the
component λ = nTω = nTSω of the angular velocity ω about an axis normal to the surface
Γ as the ‘spin velocity’ of the shell Σ throughout this paper. Noting from Equation (14) that
the three-vector n = k/‖k‖, we have λ = nTSω = kTSω/‖k‖. Thus, to constrain the shell
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from ‘spinning’ about the normal to the surface Γ when it rolls, we use the non-holonomic
constraint [24]

ϕNS := kTSω = 0. (39)

The subscript ‘NS’ signifies the ‘No-Spin’ constraint. This constraint simply states that
the component of the angular velocity vector along the vector n is zero during the motion
of the shell. Differentiating Equation (39) twice with respect to time, we obtain

.
k

T
SE

.
u + kT

.
SE

.
u︸︷︷︸

=0

+ kTS
.
E

.
u︸︷︷︸

=0

+ kTSE
..
u = 0. (40)

The first bracketed term on the left hand side computes to
.
SE

.
u = S(ST

.
S)(E

.
u) =

Sω̃ω/2 = 0, where we have used Equation (1) in the second-last equality. Equation (40)
can be rearranged as

ANS
..
q :=

[
01×3 | kTSE | 01×3 | 01×3

] ..
q =− .

α
T
[

∂k
∂α

]
SE

.
u :=bNS. (41)

If this additional No-Spin constraint is required to be imposed, one simply includes
Equation (41) in the set of constraints given earlier in Equation (36). This gives the new set
of constraint equations

A
..
q :=



A1
A2
A3
A4
A5
AE

ANS


..
q =



b1
b2
b3
b4
b5
bE

bNS


:= b (42)

where the matrix A, upon this inclusion, is now a 13 by 13 matrix and the column vector b
is a 13-vector. It should be noted that in the presence of the No-Spin constraint, the energy
of the constrained system is still conserved, because at each instant of time the spin about
the normal n to the surface Γ is zero and therefore there is no work done by the constraint
torque about the normal; Equations (34) and (33) therefore continue to be applicable to
the dynamical system. As seen above, the methodology developed here allows the easy
handling of additional constraints. In a simple and straightforward manner, it permits
one to determine the effect of the addition or exclusion of one or more constraints on the
evolutionary dynamics of the system.

2.3. Description of the Constrained Multi-Body System

Given the matrices M, Q, A and b that are derived based on the description of the
unconstrained system and the constraint equations that the unconstrained system is re-
quired to satisfy, we next determine the explicit equations of motion of the constrained
dynamical system.

Though the mass matrix M of the unconstrained equations of motion is singular, as
stated before, the equations of motion of the unconstrained system in the presence of the
constraints can provide the acceleration of the constrained system uniquely. This (unique)
acceleration

..
q that satisfies d’Alembert’s principle is explicitly given by [15]:

..
q =

[
(I−A+ A)M

A

]+[ Q
b

]
, (43)
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where X+ denotes the Moore–Penrose (MP) inverse of the matrix X [12,32]. However,
Equation (43) is valid if and only if the m by n matrix M defined as

M :=
[

M
A

]
(44)

is such that
Rank(M) = n (45)

where n is the dimension of the vector q in Equation (9).
It should be noted that the row dimension of the matrix M in Equation (44) de-

pends on the row dimension of A—the number and nature of constraints included in the
modeling—and the dimension of the square matrix M; its column dimension is that of
the column vector, q, which in our case is 13. In the following Result, we next show that
Equation (45) is satisfied and that Rank(M) = n = 13, thereby providing an analytical
proof that Equation (43) is the closed form equation that describes the motion of a shell
moving on an arbitrarily prescribed surface.

Remark 1. Besides the approach used in this paper and given in Equation (43), there is an
alternative way of modeling the dynamical behavior of systems whose unconstrained equations of
motion have singular mass matrices (see, for example, Refs. [24,29,30]).

Result 1. With the matrices M and A given in Equations (10) and (36) or (42), respectively, the
matrix M has full column rank.

Proof. The matrix M, in which the matrix A is either given by Equation (36) or Equation
(42), has full column rank if the truncated matrix, M̂, obtained from M by discarding some
of its rows

M̂ =


M
A1
A3
A4


20×13

=


M13×13

01×3 | uT
1×4 | 01×3 | 01×3

03×3 | 03×4 | Jf | −I3×3
−I3×3 | C1 | 03×3 | I3×3

 (46)

has full column rank. The three by three matrix Jf = [I + r∆ ∂k
∂α ] in Equation (46) is the

non-singular Jacobian matrix (see Equation (21) and Appendix A) of f(α) that is defined in
Equation (22). Our aim is to show that M̂ has full column rank, i.e., Rank(M̂) = column-size
of q = 13. �

We begin by showing that there exists a matrix D that is compatible with M̂ such that
the square matrix DM̂ has rank = 13. Consider the 13 by 20 matrix D given by

D = [DM | D1 | D3 | D4 ] (47)

where

DM =


1
m I3×3 0 0 0

0 1
4 ET J−1E4×4 0 0

0 0 03×3 0
0 0 0 03×3


13×13

(48)

and

D1 =


03×1
u4×1
03×1
03×1


13×1

, D3 =


03×3
04×3
J−1
f

03×3


13×3

, D4 =


03×3
04×3
J−1
f

I3×3


13×3

. (49)

Noting that EET = I3, ETE + uuT = I4, the product DM̂ can be written as
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DM̂ = DM M + D1 A1 + D3 A3 + D4 A4

=


I 0 0 0
0 ET E 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 uuT 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 I −J−1

f
0 0 0 0

+


0 0 0 0
0 0 0 0
−J−1

f J−1
f C1 0 J−1

f
−I C1 0 I


=


I3 0 0 0
0 I4 0 0
−J−1

f J−1
f C1 I3 0

−I C1 0 I3


13×13

(50)

Since the square matrix DM̂ is a lower-triangular matrix with all its diagonal ele-
ments equal to one, its determinant is one, and so nonsingular, hence Rank(DM̂) = 13.
However, Rank(M̂) ≥ Rank(DM̂) = 13. In addition, M̂ is a 20 by 13 matrix, therefore
Rank(M̂) ≤ 13. Since both these last two inequalities must hold, Rank(M̂) = 13 and M̂ has
full column rank.

This result proves that the (unique) acceleration
..
q of the constrained system is given

by Equation (43).

2.4. Explicit Equations of Motion

We have thus analytically proved that using the matrices M and A, and the column
vectors Q and b, which are given explicitly in Equations (10) and (36) (or Equation (42)),
Equation (43) is the closed form equation that describes the motion of a shell Σ as it rolls
without slipping on an arbitrarily prescribed surface Γ. This equation is of course valid as
long as the shell does not leave the surface during its traverse over it, as required by the
constraint in Equation (17).

2.5. Determination of the Generalized Constraint Forces and the Generalized Reaction Provided by
the Surface Γ

The methodology used here, also, provides an explicit equation for the constraint force
QC, which is the generalized force 13-vector applied to the system to satisfy the constraints.
It is simply obtained as [15]

QC:=
[[

QC
wC

]T [
QC

u
]T [

QC
α

]T
[

QC
β

]T
]T

= M
..
q−Q. (51)

Equation (51) shows the components of column vector QC that correspond to the
respective generalized coordinates wC, u, α, and β.

The three-vector QC
wC

(t), which corresponds to the coordinate of the center of mass
of the shell wC, gives the components (in the inertial XYZ frame) of the constraint force
applied at the center of mass C; the four-vector QC

u (t), which corresponds to the coordinate
u, gives the components of the ‘quaternion constraint torque’ acting at C. To obtain the
components of the physical constraint torque TC (in the body-fixed x̂ŷẑ frame) from QC

u (t),
we use the relation (see Ref. [16])

TC =
[

TC
x̂ TC

ŷ TC
ẑ

]T
=

1
2

EQC
u . (52)

Thus, we obtain the components of the constraint force, QC
wC

(t) and the components
of the constraint torque, TC(t), acting at the point C that are required in order for the shell
to move over the surface while satisfying the imposed constraints.

It should be noted that the components of the three-vector QC
wC

(t) in Equation (52) are
expressed in the inertial XYZ coordinate frame, while the components of the three-vector
TC in Equation (52) are expressed in the body-fixed x̂ŷẑ coordinate frame.

We now determine from the constraint force vector,
→

QC
wC

, and the constraint torque

vector,
→
TC, the reaction force and torque provided by the surface Γ on the shell Σ. This
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is easily performed by simply moving the (generalized) force system [
→

QC
wC

,
→
TC] acting at

point C to an equivalent force system [
→

QP,
→

TP] acting at the point of contact P.

This yields the reaction force
→

QP =
→

QC
wC

. The component of the force vector
→

QP along
the normal to the surface Γ (in the XYZ frame) is therefore the three-vector (nTQC

wC
)n;

its magnitude is nTQC
wC

. The component of
→

QP tangent to Γ, which is the frictional force
exerted by Γ so that the shell rolls without slipping, is similarly given by the three-vector
(I3 − nnT)QC

wC
(in the XYZ frame) whose magnitude is ‖(I3 − nnT)QC

wC
‖.

Additionally, the equivalent torque vector at P is given by

→
TP =

→
TC + (

→
ρ + r

→
n )×

→
QC

wC
. (53)

The components of
→
TP in the x̂ŷẑ body-frame can therefore be written as

TP
x̂ŷẑ :=

 TP
x̂

TP
ŷ

TP
ẑ

 =

 TC
x̂

TC
ŷ

TC
ẑ

+ ρ̃ST(QC
wC

) + rST(ñQC
wC

). (54)

The three-vectors in brackets on the right hand side of Equation (54) are components

of the vectors
→

QC
wC

and
→
n ×

→
Q

C

wc in the XYZ coordinate frame; they are transformed to the
corresponding components in the x̂ŷẑ coordinate frame through pre-multiplication by ST ,
as shown.

Similarly, the components of
→
TP in the XYZ inertial frame can be obtained from

Equation (53) by first expressing the vectors
→
TC and

→
ρ in the XYZ frame to yield

TP
XYZ :=

 TP
X

TP
Y

TP
Z

 = STC + [Sρ + rñ]QC
wc . (55)

Here, the three-vectors TC and ρ are the components of
→
TC and

→
ρ , respectively, in the

x̂ŷẑ frame and they are expressed in the XYZ frame through pre-multiplication by S. Note
that the tilde in Equation (55) is over the three-vector Sρ.

Alternatively, since TP
XYZ = STP

x̂ŷẑ and SST = I, from Equation (54) the components of
the torque at the point P in the XYZ frame are directly given by

TP
XYZ = STC +

[
Sρ̃ST + rñ

]
QC

wC
. (56)

We have shown that the expressions given on the right hand sides of Equations (55)
and (56) for TP

XYZ must be equivalent. This can also be shown directly by interpreting ρ̃ as
the matrix representation of a linear operator expressed in the basis set of the body-fixed x̂ŷẑ
coordinate system. When expressed in the basis set of the XYZ inertial coordinate system,
the matrix representation of this operator is therefore Sρ̃ST , as shown in Equation (56). As

with the reaction force vector,
→

QP, the magnitude of the component (in the XYZ frame)

of the torque vector
→
TP in the normal direction, n, to the surface Γ is (nTTP

XYZ), and the
magnitude of the component tangent to the surface (in the XYZ frame) is ‖(I3 − nnT)TP

XYZ‖.
In this multi-body system, since each of the particles located at α and β have zero mass,

their corresponding constraint forces QC
α and QC

β are expected to each be zero three-vectors;
this is corroborated by the computational results obtained below.
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3. Computational Results

Three numerical examples are considered in this section. They investigate the motion
of a non-uniform rigid spherical shell rolling under gravity without slipping on a dimpled
bowl-shaped surface. The equations of motion in all the numerical examples are obtained
from Equation (43).

All the computations are performed on the MATLAB platform using a modified
variable-step (4, 5) Runge–Kutta integrator with relative and absolute error tolerances of
10−12 and 10−15, respectively. The gravitational acceleration, g, is taken to be 9.81 m/s2 in
the simulations.

Description of the Shell Σ: We describe here the properties of the non-uniform rigid shell
Σ considered in all the simulations in this section. The shell has an outer radius of r = 9 cm
and an inner radius of ri = 8 cm. One half of the shell Σ is made of silver with a density of
dH = 10,490 kg/m3 and the other half is made of iron with a density of dL = 7874 kg/m3.
The origin of the body-fixed frame x̂ŷẑ is placed at the shell’s center of mass C, and the
x̂-axis of the body-fixed frame lies along the line of symmetry with its positive direction
pointing in the direction of the lower density hemisphere of the shell. The center O of the
shell is located along the x̂-axis and it is approximately at a distance of 0.61 cm from C.

Description of Surface Γ: An asymmetric multi-dimpled bowl-shaped surface is consid-
ered in this study. It is described by Γ(X, Y, Z) = 0, where

Γ(X, Y, Z) = Z− h1 sin(h2πX)

1 + X2 − h3 sin(h4πY)
1 + Y2 − h5(X2 + Y2), (57)

with h1 = 0.04, h2 = 1.2
√

2, h3 = 0.05, h4 = 1.6 and h5 = 0.03.
Figure 3a shows a three-dimensional plot of the surface Γ. The vertical arrow marks

the location of the initial point of contact of the shell with the surface for all the numer-
ical simulations that follow. Figure 3b shows a contour plot of the surface illustrating
its asymmetry.

Processes 2022, 10, x FOR PEER REVIEW 18 of 36 
 

 

The center O of the shell is located along the x̂-axis and it is approximately at a distance 
of 0.61 cm from C.  

Description of Surface Γ : An asymmetric multi-dimpled bowl-shaped surface is con-
sidered in this study. It is described by Γ =( , , ) 0X Y Z , where 

ππΓ ))
= − − − +

+ +
2 23 41 2

52 2

sin(sin(( , , ) ( )
1 1

h h Yh h XX Y Z Z h X Y
X Y

, (57)

with 1 0.04h = , 2 1.2 2h =
, 3 0 .0 5h = , 4 1 .6h = , and 5 0 .0 3h = . 

Figure 3a shows a three-dimensional plot of the surface Γ . The vertical arrow 
marks the location of the initial point of contact of the shell with the surface for all the 
numerical simulations that follow. Figure 3b shows a contour plot of the surface illustrat-
ing its asymmetry.  

  
(a) (b) 

Figure 3. (a) 3D plot of the asymmetrical multi-dimpled bowl-shaped surface Γ =( , , ) 0X Y Z . The 
vertical arrow shows the initial point of contact of the shell with the surface for all the simulations. 
(b) Contour plot of the surface. 

3.1. Three Examples and Four Initial Shell Orientations 
Three different examples are considered in this study and the motion of the shell Σ  

over the surface Γ  given in Equation (57) is simulated for a duration of 25 s. We now 
describe these examples with special emphasis on how they differ from one another. 

At the initial time 0t = , the point P at which the shell touches the surface has com-
ponents given by 

1 (0) 1.5  mα = −  and 
2 (0 ) 0.75  mα = −  in the inertial XYZ coordinate 

frame. The initial velocity components of the (geometric) center O of the shell (also in the 

XYZ frame) are 1 1.5 m/sβ =  and 2 1 m/sβ = . These initial conditions are used in all the 
examples that follow. The initial location of the point of contact P of the shell with the 
surface Γ  for all the simulations is shown by the vertical arrow in Figure 3a. The rest of 
the initial conditions are determined by using the constraint equations. 

Example 1. At the start of the motion ( 0t = ), the shell is given no spin velocity ( λ( = 0) = 0t ) and 
so its angular velocity ω (see Equation (38)) is therefore initially solely tangential to the surface 

Figure 3. (a) 3D plot of the asymmetrical multi-dimpled bowl-shaped surface Γ(X, Y, Z) = 0. The
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3.1. Three Examples and Four Initial Shell Orientations

Three different examples are considered in this study and the motion of the shell
Σ over the surface Γ given in Equation (57) is simulated for a duration of 25 s. We now
describe these examples with special emphasis on how they differ from one another.

At the initial time t = 0, the point P at which the shell touches the surface has
components given by α1(0) = −1.5 m and α2(0) = −0.75 m in the inertial XYZ coordinate
frame. The initial velocity components of the (geometric) center O of the shell (also in the
XYZ frame) are

.
β1 = 1.5 m/s and

.
β2 = 1 m/s. These initial conditions are used in all the

examples that follow. The initial location of the point of contact P of the shell with the
surface Γ for all the simulations is shown by the vertical arrow in Figure 3a. The rest of the
initial conditions are determined by using the constraint equations.

Example 1. At the start of the motion (t = 0), the shell is given no spin velocity (λ(t = 0) = 0)
and so its angular velocity ω (see Equation (38)) is therefore initially solely tangential to the
surface Γ. The No-Spin constraint is not imposed, and therefore the shell Σ can have a non-zero
spin velocity λ during its motion as it rolls over the surface. The set of constraints provided by
Equation (36) give the matrix A and the column vector b. The initial conditions are those described
in the previous paragraph.

Example 2. This example is identical in all respects to Example 1, except that a non-zero initial
spin velocity (i.e., a non-zero angular velocity about the normal to the surface) is now given to the
shell (λ(t = 0) = 3π rad/s), thereby showing the significant change in the dynamics generated by
starting the shell Σ with but a slight increase in its initial energy and a moderate initial spin velocity
when compared with Example 1. All the other initial conditions are the same as those in Example 1.
The set of constraints provided by Equation (36) give the matrix A and the column vector b.

Example 3. This example illustrates the results when the No-Spin constraint given in Equation (39)
is added. Consistent with this constraint, the initial spin velocity is set to zero. All the other initial
conditions are the same as for Example 1. The set of constraints given in Equation (42) provides the
matrix A and column vector b now.

In each of the three examples described above, the simulations are done for four
different initial (t = 0) orientations of the shell Σ relative to the surface Γ. Figure 4 shows
these four initial orientations of the shell when the shell is at its initial point of contact
with the surface. In what follows these four initial orientations will be referred to as Cases
A to D. The lower density half of the shell (with density dL) is shown in yellow with a
black band; the higher density half (with density dH) is shown in red. The solid (black) line
shows the direction of the positive x̂-axis of the shell in the body-fixed coordinate frame;
the dash–dot (red) line shows the direction of the positive ŷ-axis, and the dotted (blue) line
shows the direction of the positive ẑ-axis in the body-fixed coordinate frame.

As seen in Figure 4a, in Case A, the shell’s initial orientation is such that the directions
of the inertial XYZ axes coincide with the corresponding directions of the shell’s body-
fixed x̂ŷẑ axes. The manner in which the other three initial orientations (Cases B to D) are
obtained from the orientation in Case A, and the different initial quaternion four-vectors
that they engender are described in Table 1 below.

For brevity, in the simulations that follow, we show the numerical errors obtained
computationally in the satisfaction of the constraints for just one case for each example.
The orders of magnitude of the errors for the other cases are similar and have therefore not
been shown. The computational results for each of the three examples are now presented.
Animations of some of the simulations are provided in the supplements to this paper.
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Table 1. Initial quaternions at t = 0 for the initial orientations of the shell shown in Cases A–D
in Figure 4.

Case Initial Quaternion Initial Orientation of the Body-Fixed Frame (BFF)
A [1, 0, 0, 0]T No rotation of BFF with respect to the inertial frame

B [
√

2 +
√

2/2 , 0, 0,
√

2−
√

2/2 ]
T BFF in Case A is rotated by 45◦ counterclockwise

around the ẑ-axis

C [
√

2/2, 0, −
√

2/2, 0]
T BFF in Case A is rotated by 90◦ clockwise around

the ŷ-axis

D 1√
2(1+nX)

[1+nX , 0 , −nZ , nY ]
T 1 The x̂-axis of the BFF in Case A points in the

direction of the normal vector n to the surface.
1 nX , nY and nZ are the three components of the unit normal vector n(t = 0).

3.1.1. Example 1

In the first example, the constraint equations given in Equation (36) are implemented.
The shell starts the motion from the four different initial orientations described in Cases A,
B, C, and D with no initial spin.

Figure 5a,c,e,g show the 3D motion of the shell Σ. The solid red line shows the path
traced by the point of contact P on the surface Γ as the shell rolls over it, and the dashed
blue line shows the trajectory of the (geometric) center O of the shell in the 3D space (see
Figure 2). Figure 5b,d,f,h show these trajectories projected onto the X-Y plane for different
initial orientations of the shell (Cases A to D, Figure 4) with respect to the inertial XYZ
frame. As seen, a change in initial orientation even when the rest of the initial conditions are
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left totally unchanged leads to dramatic changes in the path taken by the shell. Although
the distance between the center of mass C and the center O of the non-uniform shell is only
0.61 cm, which is just about 7% of its outer radius, the paths taken by the shell in the four
cases are significan tly different. This shows the high sensitivity of the dynamics to the
initial starting orientation of the shell for even small deviations of its center of mass C from
its geometrical center O.

Videos S1–S4 show the three-dimensional animations of the rolling motion of the shell
Σ on the surface Γ described in Cases A to D, respectively. The video ‘avi’ files are provided
in the supplementary material with the paper [33]. These animations can be seen by first
downloading the (free) software called VLC and then double clicking on the downloaded
files Animations of the motions shown in Figure 5a,c,e,g can be seen in this way. They have
a slightly different viewing angle from those in these figures, so that the motion over the
dimpled surface can be better observed. By running these animations at a slower speed
than in real time, one can see the enormous complexity of the motion of the shell as it
navigates across the undulating surface terrain.
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Figure 6a,c,e,g show the normal reaction force and the frictional force applied by the
surface Γ on the shell for Cases A to D, respectively. The normal force (solid line) is positive,
showing that the shell does not leave the surface during its motion. Components of the
torque TP

XYZ provided by the surface on the shell (in the inertial XYZ coordinates) about
the point of contact P are shown in Figure 6b,d,f,h. They are computed using Equation (55).
Since the surface meets the shell at only one point, it is impossible for the surface to apply
a torque on the shell, and therefore this torque must, theoretically, be zero. As seen, this
computed torque applied by the surface about the point of contact P is O(10−9) and is
negligibly small. It should be noted that in this example, the shell Σ can spin freely about
the normal vector n to the surface at its point of contact P when t > 0
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It should be noted that the ratio of the frictional force to the normal force computed at
every instant of time must be less than the coefficient of friction, µ, between the surface Γ
and the shell Σ so that the shell does not slip over the surface. At each instant of time t, this
ratio (of the two forces) depends on the dynamics of the motion and is determined from the
equations of the motion and the initial conditions; it can be obtained from the numerical
results shown in Figure 6 over the duration of the shell’s motion. The maximum value of this
ratio therefore gives the minimum value of µ required to sustain the shell’s motion without
slipping. For each of the four cases, this minimum value of µ required so that the shell
does not slip over the surface (over the duration of its motion) is different. We report these
numbers for the four Cases A to D as: µA = 0.23, µB = 0.19, µC = 0.2, and µD = 0.17.

For Case A, the computational errors in the satisfaction of the constraints
ϕi(t),i = 1, . . . , 5. (see Equations (15), (17), (19), (22) and (27)) are shown in Figure 7.
Errors in the satisfaction of the constraint

.
ϕ1 are shown in Figure 7a. Figure 7f shows the

errors in the satisfaction of the constraint ϕE(t) normalized by the initial energy of the shell
(see Equation (33)). We see that errors have orders of magnitude that are of the same order
as the integration error tolerances set for the numerical integrator.
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Each of these errors for Cases B, C, and D, have similar orders of magnitude. As
mentioned earlier, for brevity, we show these errors for only one case in each example.

3.1.2. Example 2

In this example, the shell starts its motion from the same four initial conditions as in
Example 1, except that the initial spin velocity about the unit normal vector n to the surface
Γ is now nonzero. Figure 8 shows the different paths (projected on to the XY plane) taken
by the point of contact P (see Figure 2) on the surface Γ during the motion for Cases A to D
with and without an initial spin velocity. The solid (green) line shows the path taken by P
when the shell Σ has an initial spin velocity of λ(0) = 3π rad/s, and the dashed (blue) line
shows the path when the shell has no initial spin velocity.

Comparing Examples 1 and 2, the initial potential energies in the corresponding cases
(Cases A to D) in the two examples are identical, and we find that the initial kinetic energies
of translation in the corresponding cases are also about the same; however, the initial
rotational energies in each of the cases in Example 2 are higher than the corresponding
initial rotational energies in Example 1 due to the addition of the non-zero spin velocity,
λ(0). However, the total initial energies in each of the cases in Example 2 are higher than
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those in the corresponding Cases A to D in Example 1 by only about 3.6%, 5.4%, 4.9%,
and 5.2%.
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Despite this small initial energy difference between Examples 1 and 2, which is
of course preserved though out the motion (as the error in satisfaction of ϕE shows in
Examples 1 and 2), as seen in Figure 8, the trajectories of the dynamical system are sig-
nificantly different. We observe, then, that although the initial orientation, position, and
velocity of the geometrical center are identical in the two examples, the addition of a small
initial spin velocity makes a substantial change in the entire motion of the shell, and, in
particular, the extent of surface territory ‘explored’ by the shell during its motion.

The normal reaction forces and the friction forces exerted by the surface Γ at the point
of contact between the shell and the surface are shown in Figure 9a,c,e,g for Cases A, B, C,
and D, respectively. As before, the normal force is always positive showing that the shell
never leaves the surface. Figure 9b,d,f,h show that for each of these cases, the computed
reaction torque applied by the surface Γ on the shell about the point of contact P which,
theoretically speaking should be zero as mentioned before, is computed to be of O(10−9).
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As in Example 1, the minimum value of coefficient of friction, µ, required—so that the
shell Σ does not slip over the surface Γ throughout the duration of its computed motion—is
found, as before, to be different for each case. The values for Cases A to D are, respectively,
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µA = 0.26, µB = 0.28, µC = 0.22 and µD = 0.19. Comparisons with Example 1 show
that the values of the coefficients of friction obtained here are higher for each of the
corresponding cases A to D. This is caused by the additional rotational energy, though
relatively quite small, that is provided to the shell by the initial spin velocity.

The numerical errors in the satisfaction of the constraints in Case B are shown in
Figure 10. The magnitudes of these errors are seen to be of the same order as the error toler-
ances used for the numerical integration. Similar results are found for Cases A, C and D.

Processes 2022, 10, x FOR PEER REVIEW 27 of 36 
 

 

the corresponding cases A to D. This is caused by the additional rotational energy, though 
relatively quite small, that is provided to the shell by the initial spin velocity.  

The numerical errors in the satisfaction of the constraints in Case B are shown in Fig-
ure 10. The magnitudes of these errors are seen to be of the same order as the error toler-
ances used for the numerical integration. Similar results are found for Cases A, C, and D. 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Example 2. Case B. Time history of the numerical errors in the satisfaction of the con-
straints (a) 

1ϕ  and 
1ϕ , (b) 

2ϕ , (c) 
3ϕ , (d) 

4ϕ , (e) 
5ϕ , (f) normalized 

Eϕ . 

3.1.3. Example 3 
In this example, the spherical shell Σ  is not permitted to spin about the normal 

vector to the surface Γ  during its motion, and the No-Spin constraint ϕNS
 given in 

Equation (39) is enforced. The only difference between the simulation for this example 
and the simulation for Example 1 is the addition of this No-Spin constraint. The initial 
total energy in each case (for Cases A–D) is therefore the same as the initial total energy 
for the corresponding case in Example 1. The matrix A  and the vector b  that describe 
the constraint set are now given by Equation (42). 

Figure 11 compares the path taken by the point of contact P on the surface Γ  ob-
tained in this example for Cases A, B, C, and D with the corresponding path computed in 
Example 1. The solid (green) line shows the shell’s motion when the No-Spin constraint is 
enforced, and the dashed (blue) line shows the motion obtained in Example 1 when this 
constraint is not enforced. We observe that the presence of this additional constraint 
makes a substantial change in the dynamical behavior of the shell. Though the two sets of 
lines for each case start at the same point, their paths soon become markedly different for 
each case, as seen in this figure. 

Figure 10. Example 2. Case B. Time history of the numerical errors in the satisfaction of the constraints
(a) ϕ1 and

.
ϕ1, (b) ϕ2, (c) ϕ3, (d) ϕ4, (e) ϕ5, (f) normalized ϕE.

3.1.3. Example 3

In this example, the spherical shell Σ is not permitted to spin about the normal vector
to the surface Γ during its motion, and the No-Spin constraint ϕNS given in Equation (39) is
enforced. The only difference between the simulation for this example and the simulation
for Example 1 is the addition of this No-Spin constraint. The initial total energy in each
case (for Cases A–D) is therefore the same as the initial total energy for the corresponding
case in Example 1. The matrix A and the vector b that describe the constraint set are now
given by Equation (42).

Figure 11 compares the path taken by the point of contact P on the surface Γ obtained in
this example for Cases A, B, C, and D with the corresponding path computed in Example 1.
The solid (green) line shows the shell’s motion when the No-Spin constraint is enforced,
and the dashed (blue) line shows the motion obtained in Example 1 when this constraint is
not enforced. We observe that the presence of this additional constraint makes a substantial
change in the dynamical behavior of the shell. Though the two sets of lines for each case
start at the same point, their paths soon become markedly different for each case, as seen in
this figure.

Figure 12a,c,e,g show the reaction force supplied by the surface at P for Cases A, B, C,
and D, respectively. As before, the reaction force normal to the surface is always positive in
all four cases showing that the shell does not leave the surface.
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Figure 11. Comparison of the path taken by the point of contact P projected on the XY plane. The
solid (green) line shows the trajectory with the No-Spin (NS) constraint and the dashed (blue) line
without the No-Spin (NS) constraint for (a) Case A, (b) Case B, (c) Case C, (d) Case D.

Figure 12b,d,f,h show the components of the torque, TP
XYZ, normal to the surface Γ

and tangential to it. As seen, the component tangential to the surface is negligibly small for
each of the Cases A to D. However, the component of the torque normal to the surface is
seen to be substantial for each case, unlike in Examples 1 and 2, both of which show that
the X, Y, and Z components of the torque are all negligibly small (see Figure 6 and Figure 9
for comparison). Since the shell Σ meets the surface Γ at only a single point, the surface
cannot apply any torque on the shell. Thus, this additional torque about the point P along
the normal n to the surface needs to be externally applied to the shell at each instant of time
in order to prevent it from having any angular velocity about the normal to the surface
Γ, which is, of course, the No-Spin constraint under which the shell has been modeled to
move in this example.
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Figure 12. Example 3. Magnitude of normal and frictional forces provided by the surface to the shell
at P on the left and the torque TP

XYZ that is required to be externally applied to satisfy the No-Spin
constraint on the right. (a,b) Case A, (c,d) Case B, (e,f) Case C, (g,h) Case D.

The minimum values of the coefficient of friction required for the shell Σ not to
slip over the surface Γ during its computed motion for Cases A to D are: µA = 0.21,
µB = 0.19, µC = 0.16 and µD = 0.17.
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The numerical errors in the satisfaction of the constraints for Case C are shown in
Figure 13. Their magnitudes are of the same order as the error tolerances used in the
numerical integration as before. The time history of the errors in the satisfaction of the
No-Spin constraint ϕNS are also shown (see Equation (39)) in this figure. Similar results are
found for Cases A, B and D.
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We can now compare among the three examples the coefficients of friction that have
been reported in order to sustain the motion of the shell without slipping over the surface
described by Equation (57). In Cases A to D, for the initial conditions chosen, the coefficients
reported when the shell is given an initial angular velocity about the normal to the surface
(Example 2) appear to be the larger than (or equal to) the corresponding coefficients
reported in the other two examples. In addition, the coefficients of friction obtained when
the No-Spin constraint is enforced (Example 3) appear to be lower than (or equal to), the
corresponding coefficients of friction for each of the cases reported in Examples 1 and 2.

4. Discussion

Since the approach developed in this paper is new, we provide in this section: (1) a
discussion of the general approach developed here for analytically and computationally
determining the dynamical behavior of complex mechanical systems, and (2) a discussion
of the simulation results obtained by using the new approach to the open problem of the
shell rolling, without slipping, on an arbitrarily prescribed surface.

(1) This paper points to new directions in the conceptualization, analysis, and compu-
tational aspects of complex multi-body dynamical systems. In general, there is a minimum
number of variables that can completely describe all the configurations of a dynamical sys-
tem. However, describing a dynamical system by using a number of coordinates (variables)
that is greater than the minimum adequate number makes a notable advance in the mod-
eling and computer simulation of systems. This capability facilitates the description and
analysis of the dynamics of complex systems since the coordinate vector is not restricted to
include a certain number of independent coordinates. Often, one finds a set of coordinates
that play crucial roles in the description and understanding of the dynamics of a system,
though the coordinates in the set may not all be independent. Their explicit involvement
in the equations of motion then provides an improved understanding of the system’s
dynamics. It improves our capability to algebraically and geometrically appreciate the
sensitivity in the evolving dynamics of these coordinates to different initial conditions and
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parameter changes. For instance, as shown in Section 3, the tracks made on an undulating
surface by a non-uniform spherical shell as it rolls on it show great sensitivity to the initial
orientation of the shell and could be of vital significance in its navigation over the surface,
so that the coordinate of the shell’s point of contact with the surface becomes important
both from a geometric and a physical viewpoint.

The novel new direction in the modeling of complex dynamical systems presented in
this paper expands the coordinate vector of a primary mechanical system by introducing
zero-mass particles. The primary mechanical system in addition to the zero-mass particles
then forms a multibody system. The zero-mass particles, as components of the multibody
system, are constrained to co-locate with intended points in the system whose motions
provide crucial and important understandings of the system’s complex dynamics. The
additional coordinates of the zero-mass particles become intrinsic to the multibody system.
They are involved in, and used, in the derivation of the equations of motion of the multibody
system, and their motion is explicitly obtained as the system evolves in time. These
additional coordinates, however, are not independent and one has to invoke the theory of
constrained motion to obtain the correct equations of motion of such multibody systems.

We note that particles with zero mass have so far never been used in nonrelativistic
mechanics. From a Newtonian standpoint, no forces can be applied to zero-mass particles,
and therefore their accelerations are indeterminate. The new methodology developed
here utilizes zero-mass particles within the context of the dynamics of constrained motion.
These developments are applicable to the systems with semi-definite mass matrices. Thus,
although Newton’s second law of motion gives a trivial equation for a particle with zero
mass (0 = 0!), well-defined constraint equations can permit the acceleration of such a particle
to be uniquely determined.

The first step in the modeling methodology developed in Section 2 is to write the
equation of the unconstrained system. In such a hypothetical system, all the coordinates
are assumed to be independent. In the problem of the rolling sphere, for instance, the
unconstrained system consists of a rigid spherical shell moving under the force of gravity
and the two zero-mass particles. The equations of motion of the zero-mass particles are
trivial and they make the mass matrix of this unconstrained system singular. The use of
quaternions to model rotational dynamics also leads to singular mass matrices, as shown
in Equation (8). The equation of the unconstrained system is stated, using generalized
coordinates, in form M

..
q = Q, where the matrix M is singular.

The second step is to write the system of constraint equations. The set of constraint
equations include those on the motion of the zero-mass particles and can be made to assume
the form A

..
q = b. The accelerations of the system, including the zero-mass particles, are

fully defined by the constraint equations and the equations of motion of the unconstrained
system if the matrix

[
M
∣∣AT]T has full column rank. In this paper, this is proved analytically

for the example problem of a rolling spherical shell on an arbitrary surface.
The third and final step is to find the unique acceleration of the system. The matrices

M and A and the vectors Q and b, obtained in the preceding steps, are used to obtain the
closed form analytical equations of motion for the mechanical system. This three-step
procedure allows the constraint and/or reaction forces to be obtained explicitly also.

(2) The general approach explained above is applied to solve a well-known non-
holonomic system that has been investigated for decades, though with little resolution to
date: the problem of a rigid non-uniform spherical shell rolling over an arbitrary surface
under the force of gravity. Noting that two critical points in the system—the location of the
point of contact of the shell with the surface, and the geometric center of the shell—deliver
considerable information about the evolving dynamics, a multi-body system comprising the
shell and two zero-mass particles is considered. The two zero-mass particles are collocated
with these two critical points of the system that play a significant role in describing the
dynamics of the rolling sphere. Their use greatly facilitates the derivation of the explicit
equations of motion of the constrained motion. Furthermore, these two points play key
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roles in simplifying the description of the geometry of the constraints under which the
rolling, without slipping, occurs.

In the first example the shell starts at an initial location on the bowl, with its center
being given an initial velocity. In the second, an additional initial spin velocity (an angular
velocity about the normal to the surface) is imparted to the shell. The third example is the
same as the first, except that now the shell is prevented from rotating about the normal
to the surface as it rolls over it. For each of these examples the computations investigate
the influence of four different initial orientations of the shell (relative to the bowl-shaped
surface) on its subsequent motion. It is shown that the motion of the shell—the track it
makes on the surface as it rolls and the regional extent of the surface that it traverses—is
very sensitive to its initial orientation. This is a consequence of its non-uniformity, though
this non-uniformity as measured by the distance of its center of mass from its geometric
center is indeed very small, a somewhat non-intuitive result. Furthermore, it is shown that
the presence of an initial spin velocity given to the shell about the normal to the surface
substantially affects the shell’s dynamical behavior and heavily influences the region of
its traverse. It seems to call for larger coefficients of friction between the shell and the
surface to keep the shell from slipping, as one might intuitively expect. Preventing the shell
from rotating about the normal to the surface provides an additional constraint, which
the approach developed here is shown to easily handle. The inclusion of this constraint
also shows significant changes in the dynamical behavior. The minimum coefficients of
friction required to sustain the motion of the shell without it slipping over the surface are
determined for each example and each of the initial orientations considered. Among the
three examples, the minimum coefficients of friction required are found to be the largest
when the shell is given an initial spin velocity and the least when the shell is prevented from
rotating about the normal to the surface. The analytically obtained (generalized) reaction
forces generated by the surface as the shell rolls over it show wide variations depending on
the local acceleration and the local curvature of the surface. It should be noted that due
to the complexity of the dynamics and the arbitrariness of the surface, at the present time,
we are precluded for inducing general statements about the shell’s motion other than the
presence of some simple invariants such as its mechanical energy. The complexity of the
dynamics can perhaps best be intuitively grasped by viewing Videos S1–S4 provided in the
supplementary material for this paper [33].

5. Conclusions

This paper explores a new direction in the modeling and simulation of complex
mechanical systems. The key idea that has been presented is the use of particles of zero
mass that can be co-located with points in the system whose motion is critical to our
understanding of its dynamical behavior. The coordinates of such points are included in
the mathematical modeling of the system, which in turn is facilitated by their presence.
This could be not determined in the past, since particles of zero mass cannot be subjected
to any forces. Their inclusion in the mass matrix of any mechanical system makes the
matrix singular, therefore the accelerations of any system in which they are included cannot
be obtained. What makes it possible to use such zero-mass particles is the change in our
perspective brought about by viewing the system as a system subjected to constraints. The
paper shows how the explicit equations of motion of a constrained system that includes
zero-mass particles can be obtained. This also allows the motion of those critical points in a
system to which the zero-mass particles are attached to be handily determined.

The classical problem of obtaining the explicit equations of motion for a non-uniform
spherical shell rolling, without slipping, was first broached in 1895. The determination of
the explicit equations of motion for a spherical shell moving over an arbitrarily prescribed
surface has remained an open problem for more than a century now. The new approach
presented here is applied to handle this problem. It places two particles of zero-mass, one
at the geometric center of the shell, the other at the point of contact between the shell and
the surface. The paper shows how to obtain the explicit equations of motion and obtains
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them. This allows the motion of the shell to be simulated in a straightforward manner.
The simulations show that the motions are extremely complex and highly sensitive to
parameters such as the initial orientation of the shell, its initial conditions, and the nature
of the surface on which it moves. The complexity of the equations of motion of a shell as it
moves over an arbitrarily prescribed surface, however, precludes any general conclusions
from being drawn from the simulations at this time, due to limitations in the current state
of knowledge of highly nonlinear multi-degree of freedom mechanical systems.

Supplementary Materials: Video S1: Example 1, Case A: https://doi.org/10.5281/zenodo.6872914.
Video S2: Example 1, Case B: https://doi.org/10.5281/zenodo.6872914. Video S3: Example 1, Case C:
https://doi.org/10.5281/zenodo.6872914. Video S4: Example 1, Case D: https://doi.org/10.5281/
zenodo.6872914
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Appendix A

In this appendix, the matrices A3 and b3 are derived. The second time derivative of
Equation (19) can be written as

..
β− ..

α− r
..
n = 0. (A1)

Taking the time derivatives of unit vector n yields

.
n =

.
k√
kTk
− kT

.
k

(kT k)
3/2 k

= 1√
kTk

.
k− kkT

(kT k)
3/2

.
k
[

1√
kTk

I3 − kkT

(kT k)
3/2

]
∂k
∂α

.
α

= ∆ ∂k
∂α

.
α.

. (A2)

Differentiating once more, after some algebra, we obtain

..
n = ∆

∂k
∂α

..
α + ∆

d
dt

(
∂k
∂α

)
.
α + δk− 2

.
k

T
k

(kT k) 3/2

.
k (A3)

where

∆ =
1√
kTk

[
I3 −

kkT

kTk

]
, δ =

1

(kT k) 3/2


3(

.
k

T
k
)2

kTk
−

.
k

T .
k

 and
.
k =

∂k
∂α

.
α. (A4)

Furthermore, from Equation (19), which is β = α + rn := f(α), the Jacobian, Jf, of f(α)
is obtained as

.
β =

.
α + r

.
n =

[
I3×3+r∆

∂k
∂α

]
.
α := Jf

.
α. (A5)

The second equality follows from Equation (A2).
From Equation (A1), the constraint equation can then be written as
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A3
..
q :=

[
03×3 | 03×4 | I3×3+r∆ ∂k

∂α | −I3×3
] ..
q = −r

∆
d
dt

(
∂k
∂α

)
.
α + kδ− 2

.
k

T
k

(kT k) 3/2

.
k

:=b3. (A6)

so that

A3 =
[
03×3 | 03×4 | Jf | −I3×3

]
, and b3 = −r

∆
d
dt

(
∂k
∂α

)
.
α + kδ− 2

.
k

T
k

(kT k) 3/2
∂k
∂α

.
α

. (A7)

Appendix B

To obtain the angular velocity of the rolling shell in terms of the velocity of its geomet-
rical center and the spin velocity around the unit normal vector, we consider the vector of
angular velocity whose components are measured in the inertial frame defined as

ω :=

ωX
ωY
ωZ

= Sω, (A8)

where ω is the angular velocity with components expressed in the body-fixed coordinate
frame x̂ŷẑ, and the three by three matrix S is given in Equation (23).

The rolling constraint stated in Equation (27) yields the equation

ñω =−
.
β

r
(A9)

that relates the angular velocity of the shell and the linear velocity of its geometrical
center, O. The three by three coefficient matrix ñ is the skew-symmetric matrix given in
Equation (28), which is singular. Recall, the unit normal to the surface Γ at the point P is
n = [nX nY nZ]

T .
The solution ω of the linear Equation (A9) is easily obtained using the Moore–Penrose

(MP) generalized inverse as

ω = −(ñ)+
( .

β

r

)
+
(

I − (ñ)+ñ
)

λ̂ (A10)

where (ñ)+ is the MP-inverse of ñ and λ̂ is an arbitrary three-vector. We observe that the
second member on the right in Equation (A10) belongs to the null space of the matrix ñ.

Since ‖n‖2 = nX
2 + nY

2 + nZ
2 = 1 and (ñ)+ = −ñ, we find that

I − (ñ)+ñ = I −

 0 nZ −nY
−nZ 0 nX
nY −nX 0

 0 −nZ nY
nZ 0 −nX
−nY nX 0

 =

nX
nY
nZ

[nX nY nZ
]
= nnT . (A11)

Thus, from Equation (A10) the angular velocity ω is

ω = ñ

.
β

r
+ nnTλ̂︸︷︷︸

=λ

= ñ

.
β

r
+ λn. (A12)

where, as seen from the second member in the second equality above, the scalar λ = nTλ̂
gives the component of the angular velocity along the unit normal vector n to the surface Γ.

Using Equation (A8), we then obtain

Sω = ñ

.
β

r
+ λn. (A13)
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The angular velocity component, λ, along the unit normal n can be obtained by pre-
multiplying both sides of Equation (A13) by nT . Noting that nT ñ = (ñTn)T

= −(ñn)T = 0
and nTn = 1, we obtain λ = nTSω. We call λ the ‘spin velocity’ of the shell S. When the
spin velocity is zero ω (ω) depends only on the velocity

.
β of the center, O, of the shell

whose outer radius is r.
Equation (A13) shows the decomposition of the angular velocity in two orthogonal

components since nT ñ = 0; the first member on the right-hand side of the equation is the
component tangential to the surface Γ and the second member is the component normal to
the surface.
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