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Abstract: This study examines the dynamics in a brushless DC motor (BLDCM) and methods used
to control potentially chaotic behavior or behavior similar to chaotic processes in these systems.
Bifurcation diagrams revealed complex nonlinear behaviors over a range of parameter values. In
the resulting bifurcation diagram, period-doubling bifurcation, period-three bifurcation, and chaotic
behavior can clearly be seen. We used Lyapunov exponents and Lyapunov dimensions to show the
occurrence of chaos in a BLDCM. We then used the state feedback method to control chaos behaviors
in the same BLDCM. Numerical simulations show the feasibility of the suggested means. Analysis
of robustness against parametric perturbation in a BLDCM was performed from the perspective
of Lyapunov stability theory and by using numerical simulations. We believe that studying the
nonlinear dynamics and controlling chaos in BLDCMs will help to advance the development of
high-performance electric vehicles.
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1. Introduction

Over the last decade, brushless DC motors (BLDCMs) have been widely adopted, such
as in spacecraft applications [1], electrical vehicles [2], and unmanned aerial vehicles [3],
due to their high efficiency, [4], torque [5], and robustness [6]. Modern nonlinear theory,
which involves bifurcation and chaos [7,8], has been widely utilized to study the stability
of nonlinear systems [9,10]. The stability of nonlinear dynamics of chaos in BLDCM have
been extensively studied, such as bifurcation analysis in BLDCM [11] and chaotic dynamic
analysis of BLDCM [12,13]. It has been observed that when the motor parameters fall
within specific ranges, the motor drives a behavior that resembles a chaotic process and
torque changes suddenly. In this study, we sought to elucidate the dynamics of BLDCM in
order to develop an effective method by which to control chaotic vibrations.

This paper presents a variety of numerical analysis methods by which to reveal
periodic and chaotic motions, namely bifurcation diagrams, Poincare maps, phase portraits,
and frequency spectra. In the current study, we adopted the largest Lyapunov exponent to
verify whether a given BLDCM exhibits chaotic motion. Algorithms have been developed
to derive the Lyapunov exponents of smooth dynamical systems [14]. Note that a certain
amount of chaotic behavior can be tolerated; however, it tends to have a negative effect on
performances and restrict the operating ranges of many mechanical and electrical devices.
Nonetheless, controlling chaos behavior in key variables in motors is difficult, as these
systems feature multiple strongly coupled nonlinear variables. A number of methods
by which to control chaotic motion in BLDCM have recently been developed, including
anti-control [15], backstepping nonlinear control [16], and synchronization control [17].

Improving the performance of BLDCM by preventing chaotic motion involves the
conversion of chaos behaviors into period motion in order to reach steady-state oper-
ating conditions. In this study, we employed the simple control method developed by
Cai et al. [18] for controlling chaos by the linear state feedback. Numerous studies have
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addressed the application of linear state feedback to control the chaos behaviors in some
nonlinear systems. Chang and Lin [19] employed this approach in an automobile wiper
system. Chang [20] also succeeded in quenching chaos in a steer-by-wire using this method.
Simulations were performed to confirm the feasibility and efficiency of these methods.
Finally, we designed a feedback controller by which to ensure global stability in systems
subject to nonlinear error based on the theory of Lyapunov stability [21–23].

2. Description and Bifurcation Analysis of BLDCM

The dynamic model of BLDCM was as in the literature [24–26]. By using an affine
transformation and a single time-scale transformation [16], its governing equations can be
transformed into a dimensionless mathematical model of BLDCM as follows:

dĩq

dt̃
= ũq − ĩq − ω̃ĩd + ρω̃ (1)

dĩd

dt̃
= ũd − δĩd + ω̃ĩq (2)

dω̃

dt̃
= σ

(
ĩq − ω̃

)
+ η ĩq ĩd − T̃L (3)

where ĩq and ĩd denote currents along the transformed direct axis and quadrature axis; ω̃ de-
notes motor angular speed; ũq and ũd denote the voltages along the transformed direct axis
and quadrature axis; T̃L is the load torque; and ρ, δ, σ, and η are structural parameters of the
dynamic motor system after transformation; the state variables as (̃.) = T−1(.) [16]. Setting
y1 = ĩq, y2 = ĩd and y3 = ω̃ allows us to rewrite Equations (1)–(3) as Equations (4)–(6):

.
y1 = ũq − y1 − y1y2 + ρy3 (4)

.
y2 = ũd − δy2 + y1y3 (5)

.
y3 = σ(y1 − y3) + ηy1y2 − T̃L (6)

where the dot indicates derivation with respect to t̃. The parameter values of Equations
(4)–(6) are summarized as follows in Table 1 [15].

Table 1. BLDCM system parameters [15].

Parameter Value

ρ 60

ũq 0.168

ũd 20.66

δ 0.875

η 0.26

T̃L 0.53

Simulations based on Equations (4)–(6) were used to clarify the dynamic characteristics
of a BLDCM. IMSL FORTRAN subroutines (DIVPRK software suite) were used to solve
the ordinary differential equations [27]. Here, DIVPRK with initial conditions (y1(0) = 0.01,
y2(0) = 0.001, y3(0) = 0.001) and time step (1 × 10−3) were used. An important conceptual
tool for understanding the stability of periodic orbits is Poincaré map. Bifurcation diagrams
are universally used to draw transitions from period to chaos motions in nonlinear dynamic
systems. Figure 1 expresses a bifurcation diagram in which the first period-doubling
bifurcation occurred when σ = 4.08, chaotic behavior appeared in region II, and period-
three motion appeared in region III, eventually leading to chaos in region IV. Figures 2–7
detail system responses using Poincaré maps, phase portraits, and frequency spectra.
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Figure 1. Bifurcation diagram of motor angular speed against σ.

Figure 2a–c illustrates period-1 motion, where σ < 4.08 indicates no chatter vibrations.
Figure 3a–c delivers a cascade of period-doubling bifurcations with new frequencies at Ω/2,
3Ω/2, 5Ω/2, ..., which generated a series of subharmonic components. Figure 4a–c depicts
the period-4 bifurcation, which occurred when σ≈ 4.195. As shown in Figure 1, a cascade of
chaos-inducing period-doubling bifurcations occurred as σ continued to increase, resulting
in a chatter vibration and potential instability. Poincaré maps and frequency spectra can be
used to characterize the nature of chaotic behavior. Poincaré maps exhibit an infinite set
of points referred to as strange attractors used to describe chaotic motion as a continuous
frequency spectrum. The appearance of strange attractors and/or a continuous Fourier
spectra are strong indicators of chaos [28]. Figure 5 indicates the characteristics of chaotic
behavior. The period-three bifurcation occurs in region III in Figure 1, finally resulting in
chaotic behavior. Period three is normally associated with chaos of dynamical systems and
was first proved in [29]. Figure 6 depicts period-three motion and Figure 7 reveals these
characteristics of chaotic behavior in detail.
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Figure 2. Period-1 orbit for σ = 4.05: (a) phase portraits, (b) Poincare maps, and (c) frequency spectra.
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Figure 3. Period-2 motion for σ = 4.15: (a) phase portraits, (b) Poincare maps, and (c) fre-
quency spectra.
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Figure 4. Period-4 orbit for σ = 4.205: (a) phase portraits, (b) Poincare maps, and (c) frequency spectra.
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Figure 6. Period-3 orbit for σ = 4.2865: (a) phase portraits, (b) Poincare maps, and (c) fre-
quency spectra.
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Figure 7. Chaotic motion for σ = 4.32: (a) phase portraits, (b) Poincare maps, and (c) frequency spectra.

3. Lyapunov Exponents and Lyapunov Dimension for Examining Chaos in a BLDCM

The analysis in Section 2 is inadequate to recognize chaos in BLDCM. In this section,
we outline various methods based on Lyapunov exponents to affirm the onset of chaos in
BLDCM. Lyapunov exponents, which are the average exponential rates of divergence or
convergence of close orbits in phase space, can be used to characterize chaotic motions. Any
bound motion of a system containing at least one positive Lyapunov exponent is defined to
be chaos, whereas for period orbit, all Lyapunov exponents are negative. The algorithm
for computing the Lyapunov exponents from an equation of motion has been described in
detail in Wolf et al. [14]. The Lyapunov exponent spectrum from an equation of motion has
been described in detail by the long-time evolution of axes of an infinitesimal sphere of
states. The sphere will become an ellipsoid due to the locally deforming nature of the flow.
The ith one-dimensional Lyapunov exponent is then defined in terms of the length of the
ellipsoidal principal axis ρi(t) [14]:

λi = lim
t→∞

log2
ρi(t)
ρi(0)

. (7)

The largest Lyapunov exponent for BLDCM is shown in Figure 8, which indicates
that the beginning of chaos arose at points P3, P4, and P5, because the sign of the largest
Lyapunov exponent converts from negative to positive when σ was increased. At P1 and
P2, the largest Lyapunov exponent approached zero, at which point the system was prone
to bifurcate.
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Figure 8. Evolutions of largest Lyapunov exponent.

When parameter σ increased across the bifurcation point P2, for example σ = 4.1, the
Lyapunov exponents were λ1= −0.0035045, λ2 = −0.2269056, and λ3 = −8.3870359. This
shows that the motion of the BLDCM at these parameter values will finally converge to
a stable limit cycle. Kaplan and Yorke [30] utilized λ1 ≥ . . . ≥ λn to assess Lyapunov
dimension dL:

dL = j +
1∣∣λj+1
∣∣ ∑j

i=1 λi, (8)

where j is the largest integer satisfying ∑
j
i=1 λi > 0. When σ = 4.1 in Equations (4)–(6), this

manner yields a Lyapunov dimension of dL = 1. Since the Lyapunov dimension was an
integer, the variable behavior followed a periodic orbit. When the parameter σ increased
across point P3, such as at σ = 4.25, it resulted in Lyapunov exponents of λ1 = 0.4994983,
λ2 = −0.0029595, and λ3 = −9.3307454, and a Lyapunov dimension of dL = 2.0535. The fact
that the Lyapunov dimension is non-integer is evidence of chaotic motion. Accordingly, the
Lyapunov dimension for a periodic system is an integer, whereas the Lyapunov dimension
for a strange attractor is not necessarily an integer.

4. Controlling Chaos in BLDCM

Analyzing and predicting the behaviors of chaotic systems is beneficial; however,
the final goal is performing chaos control. Ensuring reliable performance requires steady-
state operating conditions, which can only be achieved by transforming chaotic motion to
periodic motion. Cai et al. [18] suggested an easy approach to turning chaos into period
orbit using linear state-feedback based on an available system variable. We describe this
method for an n-dimensional dynamic system, namely:

.
x = f (x, t), (9)

where x(t) ∈ Rn is the state vector, and f = ( f1, . . . , fi, . . . , fn), where f includes at least one
nonlinear function. Assume now that fk(x, t) is a nonlinear function that leads to chaos in
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Equation (9). One state feedback term of system state variable xm is added to the equation
that includes fk, namely:

.
xk = fk(x, t) + Kxm, k, m ∈ {1, 2, . . . , n}, (10)

where K denotes the feedback gain. Note that the other functions retain their original types.
Using state-feedback control, Equations (4)–(6) can be revised, namely:

.
y1 = ũq − y1 − y1y2 + ρy3 + Ky1 (11)

.
y2 = ũd − δy2 + y1y3 + Ky2 (12)

.
y3 = σ(y1 − y3) + ηy1y2 − T̃L + Ky3 (13)

Equations (4)–(6) describes chaotic motion for σ = 4.26 in no state-feedback controller
(i.e., K = 0). Figure 9 presents a bifurcation diagram resulting from the addition of state-
feedback controller to the right-hand side of Equations (4)–(6). Chaotic motion appeared
when K increased beyond −0.032, and a stable period motion appeared when K decreased
beyond−0.032. Period-four orbit appeared when K decreased to approximately−0.055 and
−0.032. Period-two orbit appeared when K decreased to approximately −0.19 and −0.055.
A further decrease in K beyond −0.19 resulted in period-one motion. Stable period-one
appeared when feedback gain (K) fell below −0.19. Figure 10 shows how the application of
a control signal after 4 s can be used to assert control over chaotic oscillations. Therefore,
to suppress the occurrence of chaos, the simple state-feedback controller can be used to
disrupt the balance of dynamic behaviors in a chaotic system.
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5. Study of Parametric Perturbation in BLDCM

The parameters ρ, δ, and η are the structure parameters of the BLDCM dynamic system.
These parameters in Equations (4)–(6) are easily changed by the influence of temperature
and noise in the working environment of BLDCM. In examining the effects of perturbated
parameters on the manifestation of the suggested controller, we address the issue of linear
state feedback by adding a sinusoidal perturbation to parameters ρ, δ, and η in the drive
system addressed in Equations (4)–(6), with the aim of achieving synchronization. Thus,
let Equations (4)–(6) be the drive system, the corresponding response system is given
as follows:

dv1

dt
= ũq − v1 − v2v3 + ρ(1 + ε sin ωt)v3 + u1, (14)

dv2

dt
= ũd − δ(1 + ε sin ωt)v2 + v1v3 + u2 (15)

dv3

dt
= σ(v1 − v3) + η(1 + ε sin ωt)v1v2 − T̃L + u3, (16)

where ε is the perturbated amplitude and ω is the perturbated angular frequency.
We subtract Equations (4)–(6) from Equations (14)–(16) to obtain error equations, namely:

de1

dt
= −e1 − e1e2 + ρε sin ωte3 + u1, (17)

de2

dt
= −δε sin ωte2 + e1e3 + u2 (18)

de3

dt
= σ(e1 − e3) + ηε sin ωte1e2 + u3 (19)

where e1 = v1 − y1, e2 = v2 − y2, and e3 = v3 − y3.
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We consider the Lyapunov function for Equations (17)–(19) as follows:

V(e) =
1
2

eTe. (20)

Thus, the first derivative of V(e) is given by

.
V(e) = e1

.
e1 + e2

.
e2 + e3

.
e3. (21)

If we select
u1 = e1e2 − ρε sin ωte3, (22)

u2 = −e2 + δε sin ωte2 − e1e3, (23)

u3 = −e3 − σ(e1 − e3)− ηε sin ωte1e2 (24)

then .
V(e) = −e2

1 − e2
2 − e2

3, (25)

such that
.

V(e) < 0. Thus,
.

V(e) is a negative defined function, namely, the error states
lim
t→∞
‖ e(t) ‖= 0. This means that the states of response system and drive system undergo

globally asymptotic synchronization [31].
To explain the accuracy of the above theoretical analysis results, we performed simula-

tions based on the following parameters: ε = 0.001 and ω = 125 rad/s. The detailed numeri-
cal results are presented in Figure 11a–c. Figure 11a displays the results for e1 = v1 − y1,
Figure 11b displays the results for e2 = v2 − y2, and Figure 11c displays the results for
e3 = v3 − y3. Overall, the synchronization error converged to zero, thereby indicating that
the two systems, which contained perturbated parameters, can synchronize the states of
the drive system and the response system. This demonstrated that the suggested control
approach is more robust to perturbated parameters in a BLDCM. Figure 12 presents a bifur-
cation diagram demonstrating the efficacy of the recommended control approach described
in Equations (11)–(13) in suppressing chaotic behaviors under perturbed parameters.
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Figure 11. Dynamics of synchronization errors: (a) e1 = v1 − y1, (b) e2 = v2 − y2, and (c) e3 = v3 − y3.
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Figure 12. Bifurcation diagram of controlled system under ρ+ ρε sin ωt, δ+ δε sin ωt, and η + ηε sin ωt.

6. Conclusions

Based on our analysis of nonlinear dynamics, we recommend an effective means to
controlling chaos in BLDCM. The bifurcation diagram reveals that a BLDCM exhibits period-
doubling bifurcation, period-three bifurcation, and chaotic motion. A period-doubling
cascade is an infinite sequence of period-doubling bifurcations. Such cascades are a com-
mon route by which dynamical systems develop chaos. Period three implies chaos [29].
The most effective techniques to judging whether BLDCMs have chaotic motions involves
Lyapunov exponents and Lyapunov dimensions. A BLDCM will produce chaos under
certain electromechanical parameters, which greatly affects the operation quality and relia-
bility of a BLDCM system. Therefore, it is very important to suppress a chaotic BLDCM.
Our adoption of state-feedback control to suppress chaos in a BLDCM demonstrated the
efficacy of the proposed controller in removing chaotic oscillations. We also analyzed
and demonstrated the robustness of BLDCMs with state-feedback controller suppressing
chaotic behaviors under parametric perturbation using bifurcation diagrams and Lyapunov
stability theorem. The research results have a high reference value for stable operation
and chaos control for BLDCMs. This study proposes that researching nonlinear dynamics
and chaos control in BLDCMs could boost the progress of developing high-performance
electric vehicles.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, Republic
of China, under grant number MOST 108-2221-E-212-010-MY3.

Acknowledgments: The author gratefully acknowledges the support of the Ministry of Science and
Technology of Taiwan, Republic of China, under grant number MOST 108-2221-E-212-010-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Praveen, R.P.; Ravichandran, M.N.; Achari, V.T.S.; Raj, V.P.J. A novel slotless Halbach-array permanent-magnet brushless DC

motor for spacecraft applications. IEEE Trans. Ind. Electron. 2012, 59, 3553–3560. [CrossRef]
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