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Abstract: In this paper, a set of novel adaptive control strategies based on an advanced G-L (proposed
by Ge-Li-Tam, called GLT) fuzzy system is proposed. Three main design points can be summarized as
follows: (1) the unknown parameters in a nonlinear dynamic system are regarded as extra nonlinear
terms and are further packaged into so-called nonlinear terms groups for each equation through the
modeling process, which reduces the complexity of the GLT fuzzy system; (2) the error dynamics
are further rearranged into two parts, adjustable membership function and uncertain membership
function, to aid the design of the controllers; (3) a set of adaptive controllers change with the estimated
parameters and the update laws of parameters are provided following the current form of error
dynamics. Two identical nonlinear dynamic systems based on a Quantum-CNN system (Q-CNN
system) with two added terms are employed for simulations to demonstrate the feasibility as well
as the effectiveness of the proposed fuzzy adaptive control scheme, where the tracking error can be
eliminated efficiently.

Keywords: advanced G-L fuzzy systems; nonlinear terms group; adaptive control; membership
functions matrices

1. Introduction

The concept of fuzzy logic was proposed by L. A. Zadeh in 1965 [1] that has received
much attention as a powerful tool for interdisciplinary applications, such as clustering [2,3],
fault diagnosis [4–6], prediction [7,8] and decision making [9–12], etc. For example, Khosh-
dast et al. [3] presented an approach to reduce the mesh-induced error for CFD analysis;
Krzywanski et al. [9] applied a set of fuzzy logic-based methods to raise the performance
of heat transfer in a super-heater for an industrial CFBC; Khoshdast et al. [10] developed a
coupled fuzzy logic design for the simulation of a coal classifier in an industrial environ-
ment; and in [11], Akbar et al. proposed a fuzzy logic-based model to elucidate the effect of
FSW parameters on the ultimate tensile strength and elongation of pure copper joints.

Among the various kinds of applications in the fuzzy area, fuzzy logic control [13–20],
especially fuzzy model-based control, is widely used because the design and analysis
of the overall fuzzy system can be systematically performed using the well-established
classical linear systems theory. The Takagi–Sugeno fuzzy model proposed in 1985 [21]
is widely accepted as a powerful tool for modeling, design and analysis of nonlinear
dynamic systems [22–36]. This well known mathematical tool aims to build a fuzzy model
of dynamic systems where fuzzy implications and reasoning are applied to describe a fuzzy
subspace of inputs and its consequence for a linear input-output form.
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According to the modeling concept revealed by the T-S fuzzy model, Ge and Li [37]
proposed a novel modeling approach—applying the fuzzy concept to model each equation
in nonlinear systems. This new modeling approach was proposed in an attempt to raise the
efficiency of fuzzy modeling, simplify the modeling procedure, and reduce the numbers of
modeling materials and feedback control inputs during fuzzy control. This novel modeling
approach has been cited over 50 times in various research fields and applications; for
instance, H∞ control design [38–42], design and control of memristive systems [43–46], data
encryption [47–50], sampled-data control [51–53] and other applications [54–60]. Moreover,
Li et al. [61] extended a new concept of a nonlinear terms group to further improve
the effectiveness of the G-L fuzzy model in 2015, called advanced G-L fuzzy modeling
strategy (GLT fuzzy system). For all kinds of nonlinear dynamic systems, there will be only
two linear subsystems and two membership function matrices in the final output of this
advanced fuzzy model. In summary, this proposed modeling approach provides a novel
way to model systems with different structures as the same form, and therefore, the fuzzy
controllers can be designed in a more efficient way.

Furthermore, in practical engineering, the structure and parameters in a system are
usually unobtainable, especially when the parameters are always changing according to
the operation of the system. As a result, adaptive control [62,63] has been employed to
address this kind of practical issue. Fuzzy logic systems (FLSs) provide a very effective
method for coping with uncertainties due to its excellent functional approximation abilities.
For example, Liu et al. [64,65] investigated adaptive fuzzy control for MIMO systems with
unknown dead-zones, Tong et. al. [66,67] designed a set of state observers for a fuzzy
adaptive control system, and Chen et. al. [68] applied a fuzzy neural network to address
the adaptive control problem for a class of uncertain nonlinear stochastic systems.

The adaptive control studies mentioned above can be divided into two types: one
designs the adaptive control scheme following fuzzy logic theory, and the other derives the
stability of adaptive control via transferring the original dynamic systems to a T-S fuzzy
system. A novel fuzzy model [37,61] provides an alternative way to model a dynamic
system in a more efficient way, and as a consequence, we became interested in how to solve
the adaptive control problem by applying a novel fuzzy model. In this paper, a GLT fuzzy
system based on an adaptive control strategy is proposed to address the control problem
for membership function matrices with mismatched parameters. The concept provided
via this set of adaptive control strategies is to consider the unknown parameters in the
original dynamic system as extra nonlinear terms and then package them into a nonlinear
terms group in each equation. With this approach, the unknown parameters problem is
transferred to an uncertain membership function matrices problem. This strategy provides
a different perspective for solving the adaptive control problem that is based on a GLT
fuzzy model.

The organization of the research can be summarized below. The modeling concept
for the GLT fuzzy model theory and the fuzzy adaptive control scheme are introduced
in Section 2. The modeling process, simulation results and some further discussion are
included in Section 3. Finally, the conclusions are given in Section 4.

2. Materials and Methods
2.1. GLT Fuzzy-Model Theory

According to the proposed fuzzy model [61], to model each nonlinear equation and
package the nonlinear terms groups, the consequent part of the proposed fuzzy system is
designed to be a linear equation, and the system output can be simply described as weight
sums of two linear subsystems as given below:

.
Y(t) =

p

∑
i=1

Mi(AiY(t) + Bi) (1)

where Y(t) ∈ <n×1 is the state of the system, revealed to be a vector form, and the
coefficient matrices, Ai ∈ <n×n and Bi ∈ <n×1, indicate the coefficient of states and
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constants transformed via modeling, respectively. Moreover, p = 2, the number of linear
subsystems and membership function matrices according to the modeling process, where
Mi ∈ <n×n are matrices including the membership functions generated by the proposed
fuzzy if-then rules:

Mi=


Mji 0 0 0
0 Mji 0 0

0 0
. . . 0

0 0 0 Mji

, (2)

where j = 1, 2, . . . , n; i = 1, 2, M1 + M2 is the identity matrix and
2
∑

i=1
Mji = 1.

2.2. Adaptive Control Scheme

The proposed adaptive control scheme is constructed in this subsection. The unknown
parameters are regarded as part of the nonlinear terms, and we package those unknown
parameters into nonlinear terms groups, i.e., through this design, the unknown parameters
are included in the membership function and no longer appear in the coefficient matrix of
linear subsystems of the final output. Equations (3) and (4) are two GLT fuzzy systems with
consistent structures, the first is regarded as the drive system, and the second is viewed as
a response system with designed fuzzy controllers, where the unknown system parameters
are arranged in the membership function matrices in Equation (3):

Master system:
.
Y(t) =

p

∑
i=1

Mi(AiY(t) + Bi) (3)

Slave system:
.

X(t) =
p

∑
i=1

Ôi(AiX(t) + Bi) + U(t) (4)

where Y(t) ∈ <n×1, X(t) ∈ <n×1 are the states of the master and slave systems, respectively;
Mi ∈ <n×n and Ôi ∈ <n×n are the membership function matrices with unknown and
estimated parameters, respectively. Once again, p = 2, the number of linear subsystems
and membership function matrices according to the modeling process. It is important to
mention that Ai ∈ <n×n and Bi ∈ <n×n are the coefficient matrices, which are the same in
the master and slave system through the design given above. U(t)∈ <n×1 is the adaptive
control input, designed to not share the same membership functions as the plant model.

The error states e(t) = Y(t) − X(t) are defined, e(t) ∈ <n×1, then we have the
following error dynamics description in Equation (5):

.
e =

.
Y−

.
X =

p

∑
i=1

Mi(AiY(t) + Bi)−
p

∑
i=1

Ôi(AiX(t) + Bi)−U(t) (5)

In observation of the mathematics structure in Equation (5), the structure of the error
system is not simple, where the drive system, response system and the designed fuzzy
controllers are included. Also, the membership function matrices Mi in the master system
comprise unknown parameters, the estimated parameters are designed in Ôi and Mi 6= Ôi.
Thus, the fuzzy controllers cannot be assigned to remove these uncertain terms directly.
According to the observation mentioned above, Equation (5) can be further expanded in
the following way:

.
e =

.
Y−

.
X =

p
∑

i=1
Mi(AiY(t) + Bi)−

p
∑

i=1
Ôi(AiX(t) + Bi)

−
p
∑

i=1
Ôi(AiY(t) + Bi) +

p
∑

i=1
Ôi(AiY(t) + Bi)−U(t)

(6)
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where ±
p
∑

i=1
Ôi(AiY(t) + Bi) are the extra terms added in Equation (6), then we can obtain

the following expression:

.
e =

.
Y−

.
X =

p
∑

i=1
Ôi(AiY(t)−AiX(t) + Bi − Bi)

+
p
∑

i=1
(Mi − Ôi)(AiY(t) + Bi)−U(t)

(7)

Finally, the error dynamic system can be described in a clearer way in Equation (8):

.
e =

.
Y−

.
X =

p

∑
i=1

Ôi(Aie(t)) +
p

∑
i=1

(Mi − Ôi)(AiY(t) + Bi)−U(t) (8)

Here, the error dynamic system derived in Equation (8) can be classified into two parts
given in Equation (9). The first part is developed via the estimated membership function
matrices Ôi and the coefficient matrices Ai with error states, which can be controlled
directly through designing U1(t). The second part is composed of the difference of the
two membership function matrices Mi,Ôi, and the linear subsystems of the master system,
where the control input in U1(t) cannot address it directly. Therefore, U2(t) is needed.

.
e =

p

∑
i=1

Ôi(Aie(t))︸ ︷︷ ︸+
p

∑
i=1

(Mi − Ôi)(AiY(t) + Bi)︸ ︷︷ ︸−U(t)

U1(t) U2(t)

(9)

Consequently, the fuzzy controllers U(t) = U1(t) + U2(t) can be designed as follows: U1(t) =
p
∑

i=1
Ôi(−CiFie(t))

U2(t) = [u1(t), u2(t), u3(t) . . . ul(t)]
T

(10)

where U1(t) ∈ <n×1 is designed as the fuzzy control input to pre-process the error dynamic
systems in Equation (9); Ci ∈ <n×n is a constant matrix; Fi ∈ <n×n is a matrix designed to
be the control gain satisfying the condition Ai − CiFi = G, where G is a negative definite
matrix. The fuzzy controllers U2(t) ∈ <n×1 should be designed with appropriate parameter
update laws, where l is the total number of control inputs in U2(t).

The Lyapunov function given in Equation (11) is applied,

V(e(t), ãj) =
1
2

(
n

∑
i=1

(ei(t)
2) +

m

∑
j=1

(rjã
2
j )

)
(11)

where ãi is the difference of parameters in the membership function; m indicates the
number of parameters we have estimated; rj refer to the adaptation gains, where rj > 0 In
this paper, all rj are set to be rj = 1. Through designing appropriate fuzzy controllers U(t)
and the adaptation law of system parameters ãi, we aim to have the following:

.
V = −

n

∑
i=1

(ηiei(t)
2) ≤ 0 (12)

where ηi is designed to be positive. It is worth to mentioning that the pragmatically
asymptotical stability theorem provided by Ge et al. in 1999 [69,70] has proved in a strict
way that the error states, as well as the estimated parameters, can approach the uncertain
or goal parameters in Equation (12).
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3. Simulation Results and Discussion

In this section, a Quantum-CNN system (Q-CNN system) [71] with some extra nonlin-
ear terms is proposed for illustration. This complicated system is presented to show the
effectiveness of the proposed modeling and control strategy developed in this article.

.
y1 = −2b1

√
1− y2

1 sin y2
.
y2 = −w1(y1 − y3) + 2b3

y1√
1−y2

1
cos y2 + ∆1

.
y3 = −2b2

√
1− y2

3 sin y4
.
y4 = −w2(y3 − y1) + 2b4

y3√
1−y2

3
cos y4 + ∆2

(13)

where ∆1 and ∆2 are the extra nonlinear terms defined as ∆1 = b5y1y2
4, ∆2 = b6y3y3

2. When
the system parameters b1 = b3 = 6.8, b2 = b4 = 4.3, w1 = 4.7, w2 = 3.9, b5 = 5 and b6 = 2 and
initial states are set as (y10, y 20, y30, y40) = (0.1, 0.5, 0.1, 0.5), the system shows chaotic
behaviors, as shown in Figure 1.
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According to the modeling theory given in Section 2.1, Equation (13) can be expressed
in the following form:

.
Y(t) =

2

∑
i=1

Mi(AiY(t) + Bi) (14)

where Mi are membership function matrices, M1 + M2 is the identity matrix and Ai, Bi are
the coefficient matrices of the GLT fuzzy system:

M1 =


M11 0 0 0

0 M21 0 0
0 0 M31 0
0 0 0 M41

, M2 =


M12 0 0 0

0 M22 0 0
0 0 M32 0
0 0 0 M42

,

A1 =


0 0 0 0

W2 − w1 0 w1 0
0 0 0 0

w2 0 W4 − w2 0

, B1 =


−2b1W1

0
−2b2W3

0


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A2 =


0 0 0 0

−W2 − w1 0 w1 0
0 0 0 0

w2 0 −W4 − w2 0

, B2 =


2b1W1

0
2b2W3

0


where M11, M12, M21, M22, M31, M32, M41, M42 are fuzzy sets and can be described as:

M11 = 1
2 (1 +

N1
W1

), M12 = 1
2 (1 +

N1
W1

), M21 = 1
2 (1 +

N2
W2

), M22 = 1
2 (1−

N2
W2

),
M31 = 1

2 (1 +
N3
W3

), M32 = 1
2 (1−

N3
W3

), M41 = 1
2 (1 +

N4
W4

), M42 = 1
2 (1−

N4
W4

)

Further, W1 = 1, W2 = 30, W3 = 1, W4 = 15 are the boundary values defined by the
ranges for the nonlinear terms groups N1, N2, N3, N4 separately:

Nonlienar Terms Group 1 : N1 ∈ [−W1, W1] and W1 > 0
Nonlienar Terms Group 2 : N2 ∈ [−W2, W2] and W2 > 0
Nonlienar Terms Group 3 : N3 ∈ [−W3, W3] and W3 > 0
Nonlienar Terms Group 4 : N4 ∈ [−W4, W4] and W4 > 0

The nonlinear term groups N1, N2, N3 and N4 are designed as follows, and the time
series are given in Figure 2, where parameters b3 and b4 have been packaged into nonlinear
term groups, because b3 and b4 are designed to be the unknown parameters in the following
section of fuzzy adaptive control. This step provides the generated GLT fuzzy system two
linear subsystems without any uncertainty. Chaotic behavior of a GLT Fuzzy Q-CNN
system with extra nonlinear terms is given in Figure 3.

N1 =
√

1− y2
1 sin y2

N2 = 2b3cos y2/
√

1− y2
1 + b5y2

4

N3 =
√

1− y2
3 sin y4

N4 = 2b4cos y4/
√

1− y2
3 + b6y3

2

Fuzzy Adaptive Control of GLT Systems

In this subsection, two identical Q-CNN GLT fuzzy systems are illustrated for further
discussion. The goal of this section is to control the slave fuzzy system with estimated
parameters to achieve a drive system with several unknown parameters via the proposed
fuzzy adaptive control strategy devised in Section 2.2.

Processes 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 2. Time series for the nonlinear terms groups N1, N2, N3 and N4. 

3.1. Fuzzy Adaptive Control of GLT Systems 

In this subsection, two identical Q-CNN GLT fuzzy systems are illustrated for further 

discussion. The goal of this section is to control the slave fuzzy system with estimated 

parameters to achieve a drive system with several unknown parameters via the proposed 

fuzzy adaptive control strategy devised in Section 2.2. 

 

Figure 3. Chaotic behavior of a GLT Fuzzy Q-CNN system with extra nonlinear terms. 

CASE I: Parameter b3 is unknown 

Consider the fuzzy system in Equation (14) is the master system, where b3 is designed 

as unknown parameters, which leads the nonlinear terms group N2 to be uncertainties, 

and the membership functions M21, M22 become uncertain membership functions as well. 

Figure 2. Time series for the nonlinear terms groups N1, N2, N3 and N4.



Processes 2022, 10, 1043 7 of 15

Processes 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 2. Time series for the nonlinear terms groups N1, N2, N3 and N4. 

3.1. Fuzzy Adaptive Control of GLT Systems 

In this subsection, two identical Q-CNN GLT fuzzy systems are illustrated for further 

discussion. The goal of this section is to control the slave fuzzy system with estimated 

parameters to achieve a drive system with several unknown parameters via the proposed 

fuzzy adaptive control strategy devised in Section 2.2. 

 

Figure 3. Chaotic behavior of a GLT Fuzzy Q-CNN system with extra nonlinear terms. 

CASE I: Parameter b3 is unknown 

Consider the fuzzy system in Equation (14) is the master system, where b3 is designed 

as unknown parameters, which leads the nonlinear terms group N2 to be uncertainties, 

and the membership functions M21, M22 become uncertain membership functions as well. 

Figure 3. Chaotic behavior of a GLT Fuzzy Q-CNN system with extra nonlinear terms.

CASE I: Parameter b3 is unknown

Consider the fuzzy system in Equation (14) is the master system, where b3 is designed
as unknown parameters, which leads the nonlinear terms group N2 to be uncertainties,
and the membership functions M21, M22 become uncertain membership functions as well.
The slave Q-CNN fuzzy system with the designed fuzzy controllers U(t) and the estimated
parameters b̂3 are given below:

.
X(t) =

2

∑
i=1

Ôi(AiX(t) + Bi) + U(t) (15)

where
.

X(t)=
[ .

x1
.
x2

.
x3

.
x4
]T . When initial conditions are set as (x10, x20, x30, x40) =

(5, −5, 5, −5), the coefficient matrices Ai and Bi are the same to those in the master system
in Equation (14), the boundary values (W1, W2, W3, W4) = (1, 30, 1, 15) and the membership
function matrices Ôi with estimated parameters can be organized as follows:

Ô1 =


O11 0 0 0

0 Ô21 0 0
0 0 O31 0
0 0 0 O41

,Ô2 =


O12 0 0 0

0 Ô22 0 0
0 0 O32 0
0 0 0 O42


where Ô1 + Ô2 is the identity matrix and each element is proposed as follows:

O11 = 1
2 (1 +

N1
W1

), O12 = 1
2 (1 +

N1
W1

), Ô21 = 1
2 (1 +

N̂2
W2

), Ô22 = 1
2 (1−

N̂2
W2

),
O31 = 1

2 (1 +
N3
W3

), O32 = 1
2 (1−

N3
W3

), O41 = 1
2 (1 +

N4
W4

), O42 = 1
2 (1−

N4
W4

)

The nonlinear terms groups N1, N2, N3, N4 in Ôi are as follows:

N1 =
√

1− x2
1 sin x2

N̂2 = 2b̂3cos x2/
√

1− x2
1 + b5x2

4

N3 =
√

1− x2
3 sin x4

N4 = 2b4cos x4/
√

1− x2
3 + b6x3

2
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It can be observed that the membership functions Ô21 and Ô22 are composed of the
nonlinear terms groups N̂2 comprising the estimated parameter b̂3, i.e., N̂2 is the estimated
group and Ô21 and Ô22 are the estimated membership functions. The initial value of the
estimated parameter is set as b̂30 = 6.

The error and error dynamic systems of the master and slave GLT fuzzy systems
provided in Equations (14) and (15) are defined following the form revealed in Section 2.2,
where the system dimension n = 4. In order to analyze the stability of the error dynamic
system, an appropriate candidate Lyapunov function should be defined. We chose the
candidate Lyapunov function with square form as follows:

V(e(t), ãi) =
1
2

(
e(t)2 +

n

∑
i=1

(Fi ã2
i )

)
=

1
2
(e2

1 + e2
2 + e2

3 + e2
4 + b̃2

3) (16)

where b̃3 = b3 − b̂3 is the error of unknown parameter b3 and estimated parameter b̂3. The
derivatives of the Lyapunov function in Equation (16) can be described as follows:

.
V(t)= e1

.
e1 + e2

.
e2 + e3

.
e3 + e4

.
e4 + b̃3

.

b̃3 (17)

According to the adaptive control scheme in Section 2.2, we can design the fuzzy
controllers U(t) = U1(t)+U2(t) shown in Equation (18) and the update laws of parameters
shown in Equation (19):  U1(t) =

2
∑

i=1
Ôi(−BiFie(t))

U2(t) = [u1(t), u2(t), u3(t), u4(t)]
T

(18)

where B1, B2 are set as the identity matrix,

F1 =


1 0 0 0

W2 − w1 1 w1 0
0 0 1 0

w2 0 W4 − w2 1

, F2 =


1 0 0 0

−W2 − w1 1 w1 0
0 0 1 0

w2 0 −W4 − w2 1


u1(t) = (M12 −O12)× 4b1W1, u2(t) = b5y1(y2

4 − x2
4)− 2b̂3y1(

cos x2√
1−x2

1
− cos y2√

1−y2
1
)

u3(t) = (M32 −O32)× 4b2W3, u4(t) = (M41 −O41)× 2y3W4

The Update Laws of Parameters

.
b̂3 = −

.

b̃3 =
2y1 cos y2√

1− y2
1

e2 (19)

Some interesting designs can be further discussed in this case. In Equation (18), u1(t),
u3(t) are controllers designed in the form of parallel distributed compensation (PDC). Since
there are no uncertain parameters in the first and third equations, the membership functions
in the master and slave systems can be used to design the corresponding controllers. In
addition, u2(t) is a controller designed to let the estimated parameter in the slave system
approach the original parameter in the master system. Since the membership functions
M21, M22 comprise unknown parameters b3, controller u2(t) should be designed without
uncertain membership functions.

According to the design in Equations (18) and (19), we have the following derivative
of the Lyapunov function, which is a negative semi-definite function of error states:

.
V(t)= −e2

1 − e2
2 − e2

3 − e2
4 ≤ 0 (20)

The derivative of the Lyapunov function in Equation (20) is a negative definite func-
tion of e. In the sense of Lyapunov stability theory, the Lyapunov asymptotic stability
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theorem is not satisfied. We cannot obtain the common origin of error dynamics and
the parameter dynamics are asymptotically stable. Through the pragmatic asymptotic
stability theorem [60,61] proposed by Prof. Ge, Yu and Chen, D is a 5-manifold, n = 5 and
the number of error state variables p = 4. When e1 = e2 = e3 = e4 = 0, b̂3 takes arbitrary
values,

.
V = 0, so X is of 4 dimensions and m = n − p = 5 − 4 = 1, m + 1 < n is satisfied.

According to the pragmatic asymptotic stability theorem, error vector e approaches zero
and the estimated parameters also approach the uncertain parameters. The equilibrium
point is pragmatically asymptotically stable. Under the assumption of equal probability, it
is actually asymptotically stable. The simulation results are shown in Figure 4.
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CASE II: Parameters b3 and b4 are unknown

When the fuzzy system in Equation (14) is the master system, where b3 and b4 are
designed as unknown parameters, this leads the nonlinear terms groups N2 and N4 to
be uncertainties, and the membership functions M21, M22, M41, M42 become uncertain
membership functions as well. The slave Q-CNN fuzzy system with the designed fuzzy
controllers U(t) and the estimated parameters are given below:

.
X(t) =

2

∑
i=1

Ôi(AiX(t) + Bi) + U(t) (21)

where all the system design in Equation (21) is the same as the design in Equation (15),
except the initial conditions are set as (x10, x20, x30, x40) = (0, −10, 10, −10), the membership
function matrices Ôi, which can be organized as follow:

Ô1 =


O11 0 0 0

0 Ô21 0 0
0 0 O31 0
0 0 0 Ô41

, Ô2 =


O12 0 0 0

0 Ô22 0 0
0 0 O32 0
0 0 0 Ô42


where Ô1 + Ô2 is the identity matrix, and the main differences for Ôi from those in
Equation (15) are Ô41 = (1 + N̂4/W4)/2 and Ô42 = (1− N̂4/W4)/2, which includes the

estimated parameter b̂4, where N̂4 = 2b̂4cos x4/
√

1− x2
3 + b6x3

2. In this case, Ô21, Ô22, Ô41,

Ô42 are estimated membership functions. The initial values of the estimated parameters
are set as b̂30 = 1 and b̂40 = 1.
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The error and error dynamic systems of the master and slave GLT fuzzy systems
provided in Equations (14) and (21) are defined following the form revealed in Section 2.2,
where the system dimension n = 4. In order to analyze the stability of the error dynamic
system, an appropriate candidate Lyapunov function should be defined. We chose the
candidate Lyapunov function with square form as follows:

V(e(t), ãi) =
1
2

(
e(t)2 +

n

∑
i=1

(Fiã
2
i )

)
=

1
2
(e2

1 + e2
2 + e2

3 + e2
4 + b̃2

3 + b̃2
4) (22)

where b̃3 = b3 − b̂3 and b̃4 = b4 − b̂4 are the errors for the unknown parameters and
estimated parameters, respectively. Then the derivatives of the Lyapunov function in
Equation (22) can be described as:

.
V(t)= e1

.
e1 + e2

.
e2 + e3

.
e3 + e4

.
e4 + b̃3

.

b̃3 + b̃4

.

b̃4 (23)

According to the adaptive control scheme in Section 2.2, the fuzzy controllers and the
update laws of parameters can be designed in the following form, where B1, B2, are set as
the identity matrix:

F1 =


1 0 0 0

W2 − w1 1 w1 0
0 0 1 0

w2 0 W4 − w2 1

, F2 =


1 0 0 0

−W2 − w1 1 w1 0
0 0 1 0

w2 0 −W4 − w2 1

 (24)

u1(t) = (M12 −O12)× 4b1W1, u2(t) = b5y1(y2
4 − x2

4)− 2b̂3y1(
cos x2√

1−x2
1
− cos y2√

1−y2
1
)

u3(t) = (M32 −O32)× 4b2W3, u4(t) = b6y3(y3
2 − x3

2)− 2b̂4y3(
cos x4√

1−x2
3
− cos y4√

1−y2
3
)

The Update Laws of Parameters:
.
b̂3 = −

.

b̃3 = 2y1 cos y2√
1−y2

1
e2

.
b̂4 = −

.

b̃4 = 2y3 cos y4√
1−y2

3
e4

(25)

In Equation (24), u1(t), u3(t) are controllers designed in the form of parallel dis-
tributed compensation (PDC). Since there are no uncertain parameters in the first and
third equations, the membership functions in the master and slave systems can be used
to design the corresponding controllers. In addition, u2(t), u4(t) are the controllers de-
signed to let the estimated parameters in the slave system approach the original parameters
in the master system. Since those membership functions M21, M22, M41, M42 comprise
unknown parameters b3, controllers u2(t), u4(t) should be designed without uncertain
membership functions.

With the design of the fuzzy controllers and the adaptation law of parameters men-
tioned in Equations (24) and (25), we have the following derivative of the Lyapunov
function, which is a negative semi-definite function of error states:

.
V(t) = −e2

1 − e2
2 − e2

3 − e2
4 ≤ 0 (26)

The derivative of the Lyapunov function in Equation (26) is a negative definite func-
tion of e. In the sense of Lyapunov stability theory, the Lyapunov asymptotic stability
theorem is not satisfied. We cannot obtain the common origin of error dynamics and
the parameter dynamics are asymptotically stable. Through the pragmatic asymptotical
stability theorem [60,61] proposed by Prof. Ge, Yu and Chen, D is a 6-manifold, n = 6 and
the number of error state variables p = 4. When e1 = e2 = e3 = e4 = 0, b̂3 and b̂4 take arbitrary
values,

.
V = 0, so X is of 4 dimensions, and m = n − p = 6 − 4 = 2, m + 1 < n is satisfied.
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According to the pragmatic asymptotic stability theorem, error vector e approaches zero
and the estimated parameters also approach the uncertain parameters. The equilibrium
point is pragmatically asymptotically stable. Under the assumption of equal probability, it
is actually asymptotically stable. The simulation results are shown in Figures 5 and 6.
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Further discussion: comparing the feedback gains F1 and F2 designed in CASES I and
II. We can figure out by packaging all unknown parameters into nonlinear terms groups
that there are no uncertain terms in the two linear subsystems of the final output fuzzy
systems. The uncertainty issue has been technologically transferred into the corresponding
membership functions, so that the feedback gains in CASES I and II are developed in
the same way. Through this design procedure, adaptive control can be achieved with a
set of fixed feedback gains, appropriately designed fuzzy controllers and update laws
of parameters.
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4. Conclusions

In this paper, an extensive application of the GLT fuzzy system for adaptive control is
proposed. Simulation results reveal that the proposed fuzzy adaptive control scheme is
feasible, and the control goal as well as parameters identification can be achieved effectively.
In fact, by using the fuzzy adaptive control scheme, the GTL fuzzy model played an impor-
tant role in transforming complicated systems with unknown parameters into two linear
subsystems by blending their uncertain membership function matrices. As a consequence,
fuzzy controllers and parameter update laws can be constructed in a more convenient way.
Furthermore, for those equations without unknown parameters, the first stage controller
provides influential control results; and for those equations with parameters that need to be
identified, the second stage controller and update laws are prerequisite. Consequently, the
proposed adaptive control strategy based on the GLT fuzzy system provides an efficient
way for designing controllers as well as achieving tracking goals.
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