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Abstract: Environmental pollution is currently a major concern globally owing to increase in the world
population and advances in industrialization. An automatic waste separation and sorting equipment
for small-scale waste sorting systems was constructed in this paper. A two-DoF (two-degree-of-
freedom) parallel sorting mechanism as well as a belt waste separation and feeding mechanism were
designed, and 3D models of the mechanism were established. Finite element analysis (FEA) was
conducted for the sorting mechanism, and kinematic and dynamic analysis and numerical simulation
were performed for the waste and sorting mechanism. The simulation results demonstrated that the
spherical waste did not roll out of the platform after leaving the slideway. The waste was stabilized
at the center of the platform within a short duration with movement of the collecting mechanism of
the platform. The system was optimized to reduce waste separation and sorting time. Stability of the
waste motion in the equipment as well as efficiency of the system were significantly improved after
optimization. The results showed that the designed equipment can complete separation and sorting
of waste materials at lower output power.

Keywords: automatic waste sorting; material separation mechanism; material sorting mechanism;
motion simulation; optimization

1. Introduction

The Law of the People’s Republic of China on Prevention and Control of Environmen-
tal Pollution by Solid Waste proposes the general principles of “reduction, recycling, and
harmlessness” for waste disposal. These recommendations ensure nationwide populariza-
tion of waste sorting culture in both urban and rural areas [1]. The diversity and complexity
of domestic waste limit large-scale centralized waste sorting, and thus significantly reduce
the feasibility of its application. Therefore, recent studies have explored lightweight, au-
tomatic, and efficient waste-sorting methods as alternatives [2], especially at the disposal
stage, to circumvent the challenges in mixed disposal.

Several studies have explored the design and optimization of garbage classification
systems based on intelligent garbage classification technology from the perspective of
automatic sorting mechanisms, machine learning algorithms, and artificial intelligence
model construction. Carlos et al. proposed a three-category automatic garbage classifica-
tion system based on computer vision, with an accuracy rate of over 70% [3]. However,
the study mainly explored the application of computer vision and its accuracy was low,
thus it was not feasible for domestic application. Moreover, Seunguk Na et al. expounded
the process of developing an artificial intelligence model for a classification system [4]. A
novel model based on the Frechette starting distance method was developed for common
learning data collection challenges in the field of garbage classification [4]. Lukka et al.
developed a construction waste collector in 2014, which automatically sorted construction
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waste with a robotic arm. The equipment comprised multiple sensors, such as visible-
spectrum cameras, near-infrared spectrometers, tactile sensors, and electronic scales. The
findings showed that use of a robotic arm in a small-scale waste separation and sorting
equipment significantly improved the complexity of the system. However, production
cost and sorting efficiency of the system did not meet the requirements of small-scale
garbage classification [5]. In 2016, TechCrunch Disrupt Hackathon designed an automatic
sorting trash can to distinguish compostable waste from recyclable waste. Analysis showed
that the system could only complete the binary classification task through clumsy me-
chanical devices with low efficiency and reliability [6]. Furthermore, Torres-García et al.
designed an Intelligent Waste Separator (IWS) with similar technology to the equipment
that TechCrunch Disrupt Hackathon developed. The IWS had extra features for waste
disposal through Radio Frequency Identification (RFID). However, the dimensions of the
IWS prototype were too large for extensive use [7]. In 2021, Zhang et al. established a novel
two-stage Waste Recognition-Retrieval algorithm (W2R). The process began by training
a Recognition Model (RegM) to recognize waste as one out of thirteen sub-categories.
Further, a Recognition-Retrieval Model (RevM) that classified the identified subcategories
into one out of four categories was built. In addition, a two-degree-of-freedom sorting
device was constructed. The experimental results indicated that the average accuracy of
RevM was 94.71% ± 1.69, which was significantly higher relative to that of the one-stage
waste Classification Model (ClfM) at 69.66% ± 3.43. However, the sorting speed of the
sorting device was low due to the combination of the feed motion of ball screw and the
rotary motion of motor. Thus, further studies should explore ways to improve the efficiency
of RevM [8].

China’s waste sorting industry has shifted toward higher intelligence, and manual
sorting has been replaced by early stage of automatic sorting owing to technological ad-
vances such as the Internet of Things and artificial intelligence [9,10]. However, global
waste sorting technology is still in its infancy, and several limitations must be explored. For
example, optimal designs have not yet been established for the waste separation mecha-
nisms and the sorting mechanisms, although machine recognition and image processing
technology are markedly advanced. Other limitations related to conventional waste sorting
equipment include low degree of automation, low efficiency, low cost-effectiveness, and
manual operation.

In this paper, an automatic separation and sorting equipment for small-scale waste
management was designed to circumvent the limitations of conventional systems. The
mechanisms effectively alleviate the complexity of mixed disposal in the small-scale waste
classification system and have high potential for field application. In addition, the sorting
speed was improved from the perspective of mechanical design, resulting in a faster speed
compared with that of similar structures. The mechanisms were fully linked with image
acquisition and computer vision processing and are highly effective in waste classification.
Therefore, the present study presents a mechanical equipment with higher reliability and
better efficiency for small-scale waste separation and sorting systems. This system provides
a basis for development of intelligent waste classification techniques. The experimental
design of the present study is presented in Figure 1.
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Figure 1. Schematic illustration of the study design. The schematic diagram shows the mechanical
design, working principle, and software system design of waste management equipment. Finite
element simulation and dynamic simulation of the waste separation process were carried out. Finally,
the structural parameters were optimized to improve the efficiency of waste management equipment.

2. Mechanical Design and the Principle of the Waste Management Equipment

The waste management simulation equipment in the present study was designed
to achieve the processing of multiple types of wastes corresponding to the actual waste
management. A conveyor belt was used for the waste separation process, and the sorting
section was characterized by a two-DoF parallel platform. The separation and the sorting
sections were connected by a slideway. A 3D model of the overall structure of the equipment
is presented in Figure 2. The separation and sorting sections were coordinated to achieve
the sorting of four types of waste: recyclable waste, hazardous waste, kitchen waste, and
other types of waste.

Figure 2. 3D model of the waste separation mechanism and the sorting mechanism.
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2.1. Two-DoF Parallel Platform for Waste Sorting

The sorting process in current small-scale waste sorting systems can be divided into
three sections as follows.

(1) The bottom of the waste identification platform has a door, and four waste cans are
placed on a rotatable base. The waste type is first identified then the corresponding
waste can is rotated to the bottom of the identification platform, and the door is
opened for waste sorting. This strategy is currently applied in China’s garbage
classification industry.

(2) The trash cans are placed side by side, and the motor moves the identification table
straight to the top of each type of trash can for delivery. This strategy is similar to the
sorting device designed by Zhang et al. in 2021.

(3) The entire identification platform is a rota-platform. The platform rotates to a position
above the corresponding waste bin, after identification of the type of waste, for waste
delivery [11]. This sorting mechanism was previously designed by Dai et al. in 2021.

These methods comprise two consecutive steps namely: waste positioning and deliv-
ery. Notably, only one type of waste can be processed at a time in the two-step methods,
making the process very inefficient. Positioning and delivery of wastes are carried out
simultaneously by imitating manual waste sorting behavior. Therefore, a one-step sorting
design was explored in the present study.

The two-DoF parallel sorting mechanism comprises a base, a driving steering gear,
a rocker bracket, and a waste identification platform (Figure 3). The upper and lower
steering gears were adopted to provide the rotational torque of the platform. The rocker
bracket transmits torque and withholds loads. The lower steering gear ensures that the
identification platform rotates at +80◦ or −80◦ around the x-axis, achieving delivery of
hazardous waste and recyclable waste, respectively. The upper steering gear rotates the
identification platform at +80◦ or −80◦ around the y-axis to achieve delivery of other types
of waste and kitchen waste. The design proposed in the present study only requires one
steering gear to perform an 80◦ rotation and a reset function for each type of waste. Testing
of a physical prototype revealed that the one-step sorting was completed in about 1 s with
the motor at full speed, and the efficiency was four-fold higher compared with that of
traditional two-step methods.

Figure 3. Two-degree-of-freedom parallel platform. 1. Base, 2. Lower steering gear, 3. Upper steering
gear, 4. Waste identification platform.

The identification platform receives the waste and identifies its type as well as carries
out waste sorting. The center of the identification platform is a 60 mm × 60 mm horizontal
plane, and the four sides are three-stage slopes with different inclination angles. The acute
angle between the slopes and the horizontal plane gradually increases from the bottom to
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the top, thus the platform forms a bowl shape. This design was chosen to buffer the speed
of the waste through the varying slopes. This prevents the waste from rushing out of the
platform and ensures that the waste rapidly achieves a low speed in the central horizontal
plane or becomes static. These features allow the stability and the placement of the waste
to be well-positioned for image collection.

2.2. Conveyor Belt Mechanism

The separation and sorting sections can be classified into two types according to the
placement of the waste, (namely, random position and linear placement), to meet the
requirements of multiple waste sorting simultaneously. The waste separation mechanism
should have a robotic arm to perform multiple complex actions, such as identification,
positioning, grasping, moving, and throwing, due to its randomness for the random waste
placement process. This implies that the process relies on computer vision for target
detection [12–14]. The recognition accuracy is high whereas the recognition speed is
not ideal when the R-CNN algorithm of the Region Proposal Network is used for this
process [15]. The one-stage algorithm is characterized by a high speed and sub-optimal
accuracy [16]. This implies that recognition of multiple objects is complex and inevitably
affects the recognition speed and accuracy. Moreover, the mechanical arm is a complex
system and is characterized by various uncertainties such as parameter perturbation,
external interference, and unmodeled dynamics [17]. Notably, the model of the arm is
complex. The motion trajectory of the joint space, which is very inefficient and not cost-
effective in small-scale waste sorting systems, should be carefully chosen for different
tasks [18]. A conveyor belt separation and feeding mechanism was designed to achieve
linear placement of multiple types of waste. As a result, only one type of waste is placed
on the platform each time, increasing the accuracy and speed of image recognition.

The conveyor belt is divided into compartments to ensure that the waste is placed
linearly, allowing sequential identification and delivery to the corresponding waste can.
Image recognition is conducted in the conveyor belt area to fully utilize the high accuracy
and efficiency of the two-DoF parallel platform. The conveyor belt moves the waste forward
to a slideway at the end of the conveyor belt and delivers the waste to the lower sorting
platform. The conveyor belt stopping time = t is presumed to be equal to the duration
between falling of waste into the sorting mechanism to completion of identification and
sorting. The conveyor belt then moves forward every time = t to transport waste to the
lower sorting mechanism, and the belt displacement is equivalent to the length of one
compartment. Identification and sorting are immediately performed when an item of waste
is delivered to the identification platform. These steps are repeated until all the waste is
processed. The speed and pause time = t of the conveyor belt can be preset, since the time
needed for each incidence of waste sorting is certain and stable. Therefore, the conveyor
belt separation system and the sorting system are coordinated without communication.

The slideway performs the following three functions: (1) it effectively connects the
conveyor belt and the identification platform; (2) it ensures vertical positioning of the waste
movement path, which makes full use of the internal space of the waste can; (3) it buffers
the gravitational potential energy of the waste falling from the conveyor belt, reducing its
impact on the recognition platform, and stabilizes the waste on the recognition platform.

The conveyor belt has a length of 360 mm and a width of 200 mm. The conveyor belt
is divided into three equal compartments using rigid plates. The size of each compartment
is 120 × 200 mm. One type of waste is placed in each compartment during the waste
management process. Rotation of the conveyor belt is driven by a stepping motor, which is
controlled by a single-chip microcomputer. The time required from the waste falling from
the slideway to the completion of waste sorting is 1.4–1.6 s based on the actual measurement.
The pause time = t of the conveyor belt was set to 1.8 s, thus a different type of waste is
sorted after a duration of 1.8 s.
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3. Image Intelligent Classification Software Design
3.1. Waste Image Sample Preprocessing

The surface of the garbage identification table facing the camera was covered with
blue paint in the prototype design. The inserted materials are transferred to the garbage
identification platform by the distributing mechanism. The garbage identification section
is easily contaminated, and the geometry of domestic garbage is irregular. Therefore, it is
easily interfered by background pollutants during image processing, reducing the accuracy
of recognition. Separation of material and background pollutants is achieved based on HSV
(Hue, Saturation, Value) color space [19]. The HSV color space is adopted to decompose
the background from the overall color, since the background of the recognition station is
uniformly set to blue. The thresholds of the H value, S value, and V value corresponding
to the blue background are approximated through repeated experiments, and the final
HSV threshold set ranged from (100, 75, 145)~(130, 255, 255). The comparison chart of the
before and after processing effect after color space separation and filtering is presented
in Figure 4. The findings showed that the material entity in the image became the main
part under the black background and exhibited few noise impurities after background
separation and filtering.

Figure 4. Processing effects before and after color space separation and filtering. The sample is an
image of a rolling potato taken with a 2-megapixel camera: (a) Pre-processing effect of color space
separation and filtering. (b) Post-processing effect of color space separation and filtering; in the black
background, the material entity is the main part, with some noise occurring in the background. The
noise appears in the form of tiny white patches in the picture.

The material entities were dominant in the processed image, leaving a residual noise
when the color space is used to separate the background. The Canny edge detection
algorithm was then applied to obtain the edge contour information in the image. The
effective information and the noisy information were distinguished, and the noise was
removed according to the perimeter of the contour [20]. The processing effect is presented
in Figure 5. Unnecessary or redundant interference information in the image data was
completely removed after noise processing using the Canny edge detection algorithm.

The garbage pattern was moved to the center of the image field of view, owing to the
randomness of the position of the material falling into the garbage identification table to
improve the accuracy of image identification. The circumscribed rectangle of the garbage
outline was initially confirmed, then the length and width of the circumscribed rectangle
and the coordinate position of the center point were recorded. Further, the garbage pattern
was determined from the point coordinates of the rectangle. The center point of the
circumscribed rectangle of the garbage image was coincident with the center point of the
all-black image in the newly created all-black image to complete centering conversion of
the garbage image. The processing effect before and after pattern centering conversion is
presented in Figure 6.
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Figure 5. Processing effect before and after noise processing: (a) Effect before noise processing; noise
is detected, which is presented as the white patches occurring at the middle and edge of the figure.
(b) Effect after noise processing; unnecessary or redundant interfering information in the image data
is completely eliminated.

Figure 6. Processing effect before and after the pattern centering conversion: (a) Effect before
centering transformation; (b) Effect after centering transformation.

3.2. Target Detection and Classification Algorithm Based on YOLOv5

The YOLO algorithm is used for classification and localization of target detection based
on a neural network and has been widely used in the field of target detection. YOLOv5
technology is currently advanced and has the advantages of high recognition rate, low false
alarm rate, easy-to-read code, convenient format conversion, and high work efficiency [21].
Therefore, YOLOv5 plays a key role in garbage classification recognition and classification.
The garbage categories in the algorithm test experiment were set to eight kinds of cans,
mineral water bottles, potatoes, carrots, white radishes, broken ceramic chips, batteries,
and pebbles. Each category dataset comprised 100 image samples, grouped into 85 training
sets and 15 test sets. The parameter training uses the SGD optimization algorithm [22]. The
parameters were set as follows: batch size of 32, epoch number at 100, the learning rate was
dynamically adjusted by cosine annealing strategy, the initial learning rate was 0.01, and
GIOU Loss was used as the loss function [23]. The loss function curves of the training set
and test set of the YOLOv5 network are presented in Figure 7. The findings showed that
the initial loss function value of the algorithm was small, the convergence speed was high,
and the convergence state was good (Figure 7).

The confusion matrix image is presented in Figure 8. The accuracy rate of all kinds of
garbage recognition in the test set comprising 15 images in each of eight categories reached
100%, the theoretical test results of the YOLOv5 algorithm were good, and the accuracy
was high.
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Figure 7. Loss function curves for training and test sets of the YOLOv5 network. The x-axis and the
y-axis represent the epochs experienced and the loss function value, respectively. The loss function
value converges rapidly as the epoch grows.

Figure 8. Confusion matrix image of test set results. The prediction results of all test sets for the eight
categories are consistent with the actual values.

4. Finite Element Analysis of the Waste Sorting Platform
4.1. Modeling

The prototype model of classification mechanism and material distribution mechanism
was established using SolidWorks tool. The height of the sorting mechanism was 166 mm
in a completely vertical state. The size of the side of the garbage identification table was
210 mm × 210 mm, the size of the central horizontal plane was 60 mm × 60 mm, and
the inner depth was 45 mm. The three-level slopes around the garbage identification
platform were initially set, and the included angles with the horizontal plane were 15◦,
37◦, and 60◦ from bottom to top. The lengths from the rotation center axis of the upper
and lower steering gear rocker arms of the classification mechanism to the top of the
rocker arms were 39.5 mm and 42 mm, respectively. The vertical drop between the upper
surface of the conveyor belt and the highest point of the garbage identification table was
140 mm, and the inclination angle of the slideway in the distributing mechanism was set to
15◦. The bottom of the slideway and the side of the identification table were always in a
coincident relationship.
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Some features such as threaded holes and rounded corners were used in the actual
design of the sorting mechanism in this study for connection and good appearance. These
features did not affect the mechanical properties of the platform and were thus simpli-
fied [24]. The shell structure, reduction gear set, and control chip of the high-speed steering
gear that provided torque in the mechanism were neglected in the finite element analysis
of the overall mechanism, and the steering gear was simplified as a rotation pair. The mech-
anism was thus first simplified to accommodate the computer resources before analysis.

4.2. Static Analysis

The steering gear and identification platform were designed from Q235 steel to obtain
excellent performance and improve the fatigue strength and welding performance of
the mechanism [25]. The density of the Q235 steel was 7.85 g/cm3, the elastic modulus
was 205 GPa, the Poisson’s ratio was 0.29, and the tensile strength and yield strength
were 460 MPa and 235 MPa, respectively. The base supported the entire mechanism and
maintained its stability. Q345 steel was used for construction of the base [26,27]. The
density of Q345 steel was 7.86 g/cm3, the elastic modulus was 209 GPa, the Poisson’s
ratio was 0.29, and the tensile strength and the yield strength were 620 MPa and 345 MPa,
respectively [28,29]. The material properties are listed in Table 1.

Table 1. Material properties of each component for the mechanisms.

Component Material Density
(g/cm3)

Elastic Modulus
(GPa) Poisson’s Ratio Tensile

Strength (MPa)
Yield Strength

(MPa)

Base Q345 7.86 209 0.29 620 345
Steering arm Q235 7.85 205 0.29 460 235

Waste identification
platform Q235 7.85 205 0.29 460 235

ANSYS software was used for meshing [30], and the element size control mode was
set as fine. Hexahedral elements were utilized for the structurally simple entities such as
the base and steering arm. Tetrahedral ten-node elements were used for the identification
platform. The target quality of mesh was set to 0.5, and high-quality mesh smoothing was
applied. The model was preliminarily divided into 127,497 units and 233,093 nodes. The
mesh quality is presented in Figure 9. Analysis of the mesh showed that the overall quality
was between 0.85 and 1, which satisfied the requirements (Figure 9).

Figure 9. Meshing quality. The overall quality of the mesh ranges between 0.85 and 1.

The mesh independence analysis was required to carry out using finite element
numerical simulation using the maximum static stress and displacement of the platform
as objects. The independence analysis was conducted with different mesh quantities,
including 29,636, 31,778, 43,797, 87,963, 119,415, and 165,115. The calculated values of the
objects under the condition of different mesh quantities are presented in Table 2.
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Table 2. Calculated values of the objects under the condition of different mesh quantities.

Mesh Quantity Maximum Static Stress
(MPa)

Maximum Displacement
(mm)

29,636 49.285 0.0439
31,778 37.456 0.0465
43,797 25.244 0.0393
87,963 20.001 0.0287
119,415 18.521 0.0311
165,115 18.524 0.0307

The values showed that the quantity of meshes brings about significant impact on
the numerical simulation results (Table 2). The maximum static stress and maximum
displacement were significantly different when the mesh quantity is below 110,000, relative
to the values obtained by applying dense grids. Notably, the values steeply increased with
increase in mesh quantity. Maximum static stress and maximum displacement showed
convergence when the mesh quantity was above 110,000. In summary, the findings showed
that the initial quantity of meshes (127,497 units and 233,093 nodes) met the independence
requirements of finite element analysis.

4.3. Stress Analysis

The gravity loads were set at appropriate positions in the sorting mechanism. The
overall stress map of the platform after mechanical analysis is shown in Figure 10. The
maximum stress was observed at the support arm of the steering gear and the contact
position of each connection, since the load of the upper structure produced torque. The
maximum stress was 31.086 MPa, which was significantly lower compared with the maxi-
mum allowable stress and the yield strength of the material. This implies that the design
met the strength requirements.

Figure 10. Stress analysis.

4.4. Displacement Analysis

The mechanism experienced a slight deformation because the platform was subjected
to the torque generated by the weight of each component [31]. The deformation gradually
increased from the bottom to the top, resulting in translation of the waste identification
platform. A linear relationship between the displacement and the distance to the base is
presented in Figure 11. A larger distance of an element from the base was correlated with a
higher total displacement. The displacement of the base was 0 mm, implying that the base
was stable. Maximum displacements were located at the four corners of the platform, with
a value of ∆X = 3.52 mm. The displacement of the entire sorting mechanism was minimal
and did not affect the posture of the identification platform. The displacement at the center
of the waste identification platform was 1.5–1.8 mm. The maximum displacement at the
corners was 1.75% of the size of the identification platform, thus it was neglected. These
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findings indicate that the displacement and the stability of the sorting mechanism met the
design requirements.

Figure 11. Displacement map of the platform.

5. Kinematic and Dynamic Simulation of the Sorting Mechanism

Kinematic and dynamic modeling and simulation were conducted to ensure that the
sorting mechanism met the design requirements. Kinematic and dynamic characteristics
curves were obtained by simulating the kinematic and dynamic parameters of the key
components of the sorting mechanism. This process was conducted to verify the feasibility
of the mechanism design and provide a theoretical basis for further optimization and
experiments. The garbage model was designed as a sphere with a diameter of 80 mm. The
sphere rolls down from the initial position on the slideway, at a 150 mm vertical height
from the bottom of the garbage identification table. The garbage identification platform
was horizontal and stationary at the initial state.

5.1. Constraints

A total of five fixed pairs were set up: slideway-ground, identification platform-upper
steering arm, upper steering gear-lower steering arm, lower steering gear-base, and base-
ground, according to the working conditions of the waste sorting mechanism. In addition,
two rotating pairs were set up, namely: the upper steering arm-upper steering gear and the
lower steering arm-lower steering gear. The constraints are listed in Table 3.

Table 3. Number and types of the restraint pairs of the waste sorting mechanism.

Type Number DoF Constraint

Rotary hinge pair 2 5
Fixed hinge pair 5 6

5.2. Drive

The angular velocity drive was used during simulation of the waste sorting mecha-
nism [32], and the rotation speed was set to 50 ◦/s. The starting time of the steering gear
was delayed by t = 2 s to simulate the waste movement in the identification platform and
evaluate the feasibility of the structural design.

The driving function of the steering gear is presented below:

step (time, 2, 0, 2.5, 50 d) (1)

The driving function is shown in Figure 12. The motor started to work from t = 2 s
and reached a 50 ◦/s angular velocity at t = 2.5 s.
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Figure 12. Servo drive function curve. The motor is driven by angular velocity. The x-axis and y-axis
represent time and angular velocity, respectively. The angular velocity of the steering gear increases
from 0 ◦/s to 50 ◦/s within 5 s.

5.3. Contacts and Friction Coefficient

The contact force between the spherical waste and the identification platform is equal
to the sum of the elastic force and friction [33]. The impact function in Adams software
was adopted for calculation of the contact force between the sphere and the identification
platform [34–36]. Collision between the spherical waste and the platform was equivalent to
a nonlinear equivalent spring damping model based on the penetration depth [37,38]. The
impact function is expressed below:

Impact =
{

0
K(ql − q)e − Cmax

.
q× step(q, ql − d, 1, ql, 0)

(q > ql)
(q ≤ ql)

(2)

where q represents the distance variable,
.
q indicates the velocity variable, k represents the

stiffness coefficient, k =
√

16RE2/9, e indicates the exponent of force, Cmax represents
the maximum damping coefficient, and d indicates the cut-in amount when the damping
reaches the maximum. Calculation of the above parameters was conducted to define the
contacts. The final impact function is expressed as follows:

IMPACT (q,
.
q, ql, k, e, Cmax, d) (3)

DM and VR functions were used to determine the distance and velocity between the
two entities.

The stiffness coefficient k was expressed as shown in the equation below:

k =

√
16RE2

9
(4)

1
R

=
1

Rwaste
+

1
Rplatform

(5)

where Rwaste and Rplatform indicate the curvature radii of the two objects at the collision position.

1
E
=

(1− µ2
waste)

Ewaste
+

(1− µ2
platform)

Eplatform
(6)

where Ewaste and Eplatform represent the elastic moduli of the two objects; µwaste and µplatform
represent the Poisson’s ratios.

The maximum damping coefficient Cmax is obtained as follows:

Cmax = µδe (7)

where µ denotes the hysteresis damping factor, δ indicates the deformation of the colliding
object, and e represents the exponent of force.
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The values of the parameters of the impact function are presented in Table 4.

Table 4. Parameter values of the impact function.

Contact Entities Stiffness Coefficient Exponent of Force Maximum Damping Coefficient Depth (mm)

Spherical waste and slideway 5000.0 1.5 50 0.1
Spherical waste and platform 5000.0 1.5 100 0.1

The Coulomb function was used to calculate the friction between the contact surfaces,
which was equal to the product of the normal force and the friction coefficient. The static
friction coefficient was applied when the relative movement speed of the two surfaces was
less than the static friction conversion speed Vs. The kinetic friction coefficient was applied
when the relative movement speed was greater than the kinetic friction conversion speed
Va. The kinetic and static friction coefficients were associated with the material properties
and the surface roughness of the two objects. Q235 material was used for the garbage
identification station. The density of the Q235 material was 7.85 g/cm3, the elastic modulus
was 205 GPa, and the Poisson’s ratio was 0.29. Stainless steel was selected because the
middle section of the slideway was subjected to the impact load caused by falling materials
and required high corrosion resistance. The density of the stainless-steel material was
7.75 g/cm3, the Young’s modulus was 1.9 × 105 N/mm2, and the Poisson’s ratio was 0.305.
The ball was made of copper material, with a material density of 8.906 g/cm3, Young’s
modulus of 1.19 × 105 N/mm2, and Poisson’s ratio of 0.326. The values of the friction
coefficients used in this study are presented in Table 5:

Table 5. Friction coefficients of the spherical waste and the sorting system.

Static Coefficient Dynamic Coefficient Static Slip Velocity
(mm/s)

Dynamic Slip
Velocity (mm/s)

0.8 0.85 0.1 1.0

5.4. Analysis of Waste Displacement Curve

The coordinate system of the 3D model is presented in Figure 13. The x-axis in the
figure represents the horizontal direction of the slideway, the y-axis is perpendicular to
the x-axis on the horizontal plane, and the z-axis indicates the vertical direction. The
process of waste rolling from the initial position to the identification platform to complete
waste classification was simulated in this coordinate system. Further, the kinematics and
dynamics simulations of the process were analyzed.

Figure 13. Coordinate system of the model.

The center of mass displacement of the waste in the sorting process is shown in
Figure 14. The gravitational potential energy was converted into kinetic energy as the
spherical waste rolled down the slideway, and the waste infiltrated the identification
platform at an initial speed of about 1.02 m/s at t = 0.28 s. The Y-axis displacement indicates
that the displacement of the center of mass in the Y-axis within 0–2 s was markedly small,
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with a maximum displacement of 23.3 mm. The X-axis and Z-axis displacement curves
indicate that the waste reached the central trough area of the platform for the first time
within 0–2 s. The center of mass was 30 mm higher than the bottom of the platform and
less than the maximum height of the platform when the waste flowed to the slope opposite
to the slideway for the first time. This implies that the waste did not fall out of the platform
due to inertia, indicating the platform effectively reduced the initial kinetic energy of
the waste.

Figure 14. Displacement curve of the waste during the sorting process. The x-axis represents time,
and the y-axis indicates the position coordinates of the material center of mass on each axis of the
ground coordinate system: (a) X-axis direction; (b) Y-axis direction; (c) Z-axis direction.

The displacement-time relationship for free fall is expressed as follows:

s = v0t +
1
2

gt2 (8)
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The z-axis displacement when the waste was in free fall was parabolic. The simulation
and the z-axis displacement curve show that the waste completely left the identification
platform at 3.02 s, then fell into the corresponding waste bin to complete the sorting.
Therefore, the identification platform did not hinder the falling of the waste during sorting
owing to the steep inclination of the slopes, and the sorting mechanism completed the
sorting task.

The waste moved back to the identification platform through gravity and inertia. The
x-axis and z-axis displacement curves indicate that the height of the waste on the slopes
gradually decreased under the frictional resistance, and the fluctuations in the x and z
displacements significantly decreased until the waste moved slowly in a reciprocating
motion in the central area of the platform. This process allowed verification of the waste-
stabilizing performance of the platform. The waste stabilization ensured stability and
position of the waste for image collection.

5.5. Analysis of Velocity Curve of the Waste and the Sorting Platform

The waste velocity curves presented in Figures 15 and 16 revealed that the waste
reached the identification platform at an initial speed of about 1.02 m/sec at t = 0.28 s.
The maximum velocity of the waste for the period between 0–2 s was at t = 0.34 s when
the waste reached the central area of the platform for the first time. The waste velocity
decreased from 1441 mm/s to 828 mm/s, owing to the vertical reaction force at the bottom
of the platform. Subsequently, the waste velocity continued to change along the waveform,
and the peak values gradually decreased to a small value. The findings showed that the
identification platform reached the preset stable rotational speed after only 0.5 s in the
flipping process (Figure 17). Notably, the acceleration time was short, and the required
torque was small.

Figure 15. Waste velocity curve. The x-axis represents time, and the y-axis denotes the size of the
garbage combined velocity.

Figure 16. Comparison of the sub-velocity curves of the garbage along with the x, y, and z directions.
The sub-velocity of the garbage along the y-axis is stable before the sorting device performs the
dumping action, and there is a small deviation around vy = 0. The sub-velocity curve of the garbage
along with the x-axis and z-axis assumes a wave shape.
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Figure 17. Flipping speed of the sorting mechanism.

5.6. Verification of Numerical Modeling Procedure by Analysis of Velocity Curve of a Prototype
Waste and the Sorting Platform

A prototype was fabricated and tested to verify the feasibility of the numerical mod-
eling procedure. A representation of the experimental sorting mechanism is shown in
Figure 18. The experimental setup mainly comprised the slideway, the two-DoF parallel
platform, and the surveillance camera. The slideway consists of a stainless-steel sheet and
a fixed bracket for angle adjustment. The inclination angle of the slideway was set to 15◦,
which was consistent with the simulation setting. The two-DoF parallel platform comprised
the base, the driving steering gear, the rocker bracket, and the waste identification platform.
Q235 steel was used for construction of the steering gear and identification platform. More-
over, Q345 steel was used for construction of the base. The platform was horizontal and
stationary during the experiment. A surveillance camera was placed directly above the
platform and shot vertically down to monitor the motion state of the sphere. The dimension
parameters and process settings were similar to those used in the numerical simulation.

Figure 18. A representation of the experimental sorting mechanism. It comprises the slideway, the
two-DoF parallel platform, and the surveillance camera.

The velocity curve of sphere according to kinematic and dynamic simulation is pre-
sented in Figure 19. Analysis showed that the sphere stabilized after 18.68 s. The velocity
curve of the sphere before stabilization assumed the shape of a simple harmonic vibration.

In the prototype test, the copper sphere was 80 mm in diameter. The copper sphere
rolled down from the initial position on the slideway, at a 150 mm vertical height from the
bottom of the garbage identification table. A stopwatch was used to determine the time
taken for the copper sphere to stabilize at the identification platform. Ten measurements
were conducted for the rolling of the copper sphere and the average was calculated. The
measurements presented in Table 6 revealed that the average time taken for the spherical
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waste to stabilize was 19.698 s. The time taken for the spherical garbage or copper sphere
to stabilize on the identification platform for prototype test and numerical simulation were
19.698 s and 18.68 s, respectively. The relative error was 5.4%, implying that the numerical
modeling procedure was reliable.

Figure 19. The velocity curve of the sphere. The x-axis represents time, and the y-axis denotes the
size of the garbage combined velocity. It takes 18.68 s for the sphere to stabilize.

Table 6. Time taken for the spherical waste to stabilize at the identification platform.

SERIAL NUMBER 1 2 3 4 5 6 7 8 9 10 Average

Measurement (s) 19.80 20.51 18.45 19.02 20.78 20.88 19.53 19.64 18.81 19.56 19.698

The velocity curve of the sphere in the x-axis direction obtained through kinematic and
dynamic simulation is presented in Figure 20. The curve exhibited a sinusoidal waveform
with decreasing amplitude centered around Vx = 0.

Figure 20. A velocity curve of the sphere in the x-axis direction.

The video of the test obtained using the surveillance camera was processed based
on frames, with the eighth group of measurement as subject. The time when the velocity
in the x direction was zero was recorded in each reciprocating motion of the sphere,
then compared with the time points obtained from numerical simulation under the same
condition. A line graph comprising the first fourteen time points was generated to validate
the numerical modeling procedure, which is shown in Figure 21.

In summary, the findings from the prototype testing indicate that the numerical
modeling procedure using Adams software is reliable and can be implemented for waste
management and sorting.
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Figure 21. Line graph comparing the time point obtained from numerical simulation and prototype
test when Vx = 0. The x-axis represents serial number of the time point, and the y-axis denotes the
time when the velocity of sphere becomes zero in the x-axis direction. The maximum absolute error
of the 14 points is 1.02 s, with a relative error of 13%. The absolute error of other time points is below
0.67 s, which satisfies the requirements of the prototype.

6. Multivariate Optimization of the Waste Separation and Sorting Mechanisms
6.1. Sensitivity Analysis

Waste movement can affect the color, shape, and other characteristics during waste
identification [39]. Therefore, the stability of the waste should be maintained during image
collection. In the present study, multi-variable optimization was conducted using the
Adams software program [40,41] to shorten the time taken for stabilization of the waste to
improve efficiency of the system. Sensitivity analysis was conducted firstly to describe and
elucidate the waste separation and sorting mechanisms.

Local sensitivity analyses involved a small perturbation near input values to explore
the effect on the output value [42]. Slideway obliquity, first-stage inclination angle, second-
stage inclination angle, and third-stage inclination angle were set as the input values. The
time taken for the spherical waste to stabilize at the center of the identification platform
was set as the output value. Morris screening was used to carry out the local sensitivity
analyses, which were carried out for the former four parameters [43]. The local sensitivity
was calculated using the formula below:

S =

n−1
∑

i=0

(Yi+1−Yi)/Y0
Pi+1−Pi

n− 1
(9)

where S denotes the sensitivity factor; Y0 represents the initial value of the output value; Yi
indicates the output; Pi represents the percent change of input parameters relative to initial
input; n denotes the running times.

The fixed step size of the parameter perturbation was set to 5% for second-stage
inclination angle and third-stage inclination angle, as well as 10% for slideway obliquity
and first-stage inclination angle. The value range and initial value are shown in Table 7.

The values of sensitivity factors are presented in Table 8. The sensitivity level of the
four parameters was evaluated according to references [44]. The findings showed that all
four parameters affect the output of the model as sensitivity factors, which can be applied
as design variables in the following multivariate optimization.
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Table 7. Variation range and initial value of four parameters.

Parameters Variation Range Initial Value Fixed Step Size

Slideway obliquity 15◦/90◦ 15◦ 10%
First-stage inclination angle 10◦/30◦ 10◦ 10%

Second-stage inclination angle 30◦/55◦ 40◦ 5%
Third-stage inclination angle 55◦/75◦ 55◦ 5%

Table 8. Calculated values of sensitivity factors and evaluation of sensitivity level.

Parameters Sensitivity Factor Sensitivity Level

Slideway obliquity −0.3175 Sensitive
First-stage inclination angle −0.53125 Sensitive

Second-stage inclination angle 0.35375 Sensitive
Third-stage inclination angle −0.681 Sensitive

6.2. Multivariate Optimization

The objective function and constraint equations are expressed as shown below:

min g = min TIME = G(d1, d2, d3, d4) (10)

s.t.


f1(d1, d2, d3, d4) ≤ 0
f2(d1, d2, d3, d4) ≤ 0
...
fm(d1, d2, d3, d4) ≤ 0

(11)

where g denotes the time objective function, required to reach a minimum value; di repre-
sents a design variable; fi indicates the constraint equation; m represents the number of
constraint equations.

The optimization target was to reduce the time taken for the spherical waste to sta-
bilize at the center of the identification platform. The measurement function MODEL_1.
FUNCTION_MEA_2 is defined as follows:

Function = abs(VX(laji.cm)) + abs(VY(laji.cm)) + abs(VZ(laji.cm))
+abs(AX(laji.cm)) + abs(AY(laji.cm)) + abs(AZ(laji.cm))

(12)

The sensor was set, the MODEL_1. FUNCTION_MEA_2 function was called, and the
threshold was set to 0. The simulation was terminated, and the time was recorded when
the measurement function value was less than or equal to the threshold.

The slope angle of the slideway and the inclination angle of the three-stage slopes of
the platform were selected for optimization. The bottom of the slideway and one side of
the identification platform were in a coincident relationship, and the initial angle relative to
the horizontal plane was 15◦ throughout the simulation. The allowable range was 15◦–90◦.
The angles relative to the horizontal plane were 30◦, 55◦, and 66◦ from the bottom to the
top for the three-stage slopes of the identification platform. The angles were varied by
a range between 10◦ and 75◦ while maintaining the increasing trend. One optimization
objective and four input variables were used in the simulation. The optimization variables
are presented in Table 9.

Table 9. Values of the optimization variables.

Input Variables Initial Value Variation Range

Slideway obliquity 15◦ 15◦/90◦

First-stage inclination angle 21◦ 10◦/30◦

Second-stage inclination angle 55◦ 30◦/55◦

Third-stage inclination angle 75◦ 55◦/75◦
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6.3. Optimization Results

The optimization was completed after four iterations. The minimum time obtained
after each iteration is presented in Figure 22. The shortest time was 3.94 s, which was
35.4% less compared with the time required for the original structure (6.09996 s). Time and
variables before and after optimization are presented in Table 10.

Figure 22. Variation curve of the optimization target in the iterative process. The x-axis represents
the number of iterations, and the y-axis indicates the time taken by the spherical material to fall from
the top of the slideway to stably rest at the center of the identification table, which represents, the
objective function value.

Table 10. Waste sorting time and variables before and after optimization.

Before Optimization After Optimization

OBJECTIVE-Time 6.0999 s 3.94 s
Slideway obliquity 15◦ 15.0011◦

First-stage inclination angle 30◦ 30◦

Second-stage inclination angle 55◦ 54.9995◦

Third-stage inclination angle 66◦ 66.1187◦

The velocity curves of the spherical waste before and after optimization are shown in
Figure 23. Each waveform represents a reciprocating movement cycle of the waste for the
recognition platform. The motion of the waste in the first six reciprocating cycles was the
same before and after optimization. The velocity of the waste for the seventh reciprocating
motion was significantly reduced after optimization, with a reciprocating period of 0.8385 s,
which was 0.2785 s longer relative to the period before optimization. Moreover, the waste
velocity decreased to 0 mm/s at t = 3.09 s before optimization, whereas the time decreased
to 0.657 s after optimization.

Figure 23. Comparison of the velocity of the spherical waste before and after optimization. The
time taken by the spherical material to roll down from the top of the slideway to the stable and
stationary position at the center of the identification table was shorter after optimization, and the
speed convergence effect significantly improved.



Processes 2022, 10, 1020 21 of 23

7. Conclusions

A waste separation and sorting equipment was designed for small-scale waste sorting
systems in the present study. In addition, numerical simulation analysis was conducted, and
the system structure was optimized. The major findings of this study are presented below.

(1) Waste separation and sorting equipment was designed for small-scale waste sorting
systems for effective disposal of multiple types of waste. Findings from the simula-
tion and experiment indicated that the mechanisms met the strength and structural
requirements. These findings provide a foundation for reliability evaluation of the
mechanism and subsequent applications.

(2) A dynamic simulation was performed to simulate the movement of spherical waste in
the sorting mechanism. The simulation results revealed that all waste–including the
waste with the most unstable spherical shapes–did not fall out of the identification
platform. This implies that the waste identification platform was effective in receiving
and handling different types of waste. The simulation displacement curves demon-
strated that the waste was stabilized at the center of the identification platform within
a short time, resulting in rapid and accurate waste image collection.

(3) The designed waste sorting system achieved waste separation and feeding, as well
as waste sorting and disposal using low amount of output power, implying that it
is economical.

(4) The waste sorting time was reduced by 35.4% after optimization, which significantly
increased the operating efficiency of the system.

(5) Although the automatic sorting and processing of multiple wastes was achieved
through the conveyor belt, the equipment had some limitations. For example, the
waste required artificial distribution in the various compartments of the conveyor
belt. Moreover, the amount of garbage presented to the equipment was constrained
by the length of the conveyor belt, therefore, it could not be mixed or packaged. In
addition, the machine vision technology for monitoring dynamic targets and the image
processing technology for managing blurred ghost images used in the algorithms
were not been fully explored in the present study. Therefore, further studies should
explore these techniques to further improve the system processing speed.

(6) Static analysis, strength check, and simulation of the mechanism were conducted. Al-
though a rough functional evaluation of the prototype was conducted, systematic and
comprehensive experimental testing was not performed in this study. Further studies
should be designed to conduct comprehensive experimental tests and evaluations of
the prototype.
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