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Abstract: Transient stability during grid fault is experienced differently in modern power systems,
especially in wind-turbine-dominated power systems. In this paper, transient behavior and stability
issues of a direct drive wind turbine during fault recovery in DC-link voltage control timescale
are studied. First, the motion equation model that depicts the phase and amplitude dynamics of
internal voltage driven by unbalanced active and reactive power is developed to physically depict
transient characteristics of the direct drive wind turbine itself. Considering transient switch control
induced by active power climbing, the two-stage model is employed. Based on the motion equation
model, transient behavior during fault recovery in a single machine infinite bus system is studied,
and the analysis is also divided into two stages: during and after active power climbing. During
active power climbing, a novel approximate analytical expression is proposed to clearly reveal the
frequency dynamics of the direct drive wind turbine, which is identified as approximate monotonicity
at excitation of active power climbing. After active power climbing, large-signal oscillation behavior
is concerned. A novel analysis idea combining time-frequency analysis based on Hilbert transform
and high order modes is employed to investigate and reveal the nonlinear oscillation, which is
characterized by time-varying oscillation frequency and amplitude attenuation ratio. It is found
that the nonlinear oscillation and even stability are related closely to the final point during active
power climbing. With a large active power climbing rate, the nonlinear oscillation may lose stability.
Simulated results based on MATLAB® are also presented to verify the theoretical analysis.

Keywords: direct drive wind turbine; grid fault; nonlinear oscillation; transient stability; time-
frequency analysis; transient switch

1. Introduction

With an increasing penetration of wind power integrated into modern power systems,
the dynamic issue of part grid tends to be dominated by wind turbines instead of tradi-
tional synchronous generators. Wind turbines have different dynamic characteristics than
synchronous generators, resulting in the system experiencing different dynamic issues.
Among different types of wind turbines, direct drives that have superior grid-connected
performance are increasingly installed. However, due to the reverse distribution of wind
resources and load centers, a large scale of direct drive wind turbines is installed in a weak
AC grid, bringing in strong interaction between the wind turbine and AC grid. The strong
dynamic interaction significantly challenges the safe and stable operation of the system,
necessitating the analysis.

Existing studies have paid much attention to the stability issue resulting from the
connection of wind turbines [1]. In [2–8], a small-signal oscillation problem related to wind
turbines integrated into a high impedance AC grid is investigated. Due to a wide band
control of equipment, oscillation is characterized by a multi-time scale, and oscillation
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frequency ranges from hundreds of Hz to several Hz. Previous works have carried out
detailed analyses about this. However, these works address the small-signal stability issue
with disturbance around the equilibrium point, and a linearized system is applicable for
analysis. In practice, faults, including wind turbine system faults and grid faults, are
common. Fault diagnosis and resilient control for a wind turbine system is a research
hotspot that has attracted massive research in recent years [9,10]. Except for this, transient
issue analysis during grid fault is also worthy of research. In [11], the rotor angle stability
of the synchronous generator affected by the dynamical characteristics of a wind turbine
is analyzed. The work is carried out from the viewpoint that synchronous generators are
dominant equipment, and the dynamics of wind turbines are only influential factors. This
is reasonable at a relatively low penetration of wind power. However, with the increasing
penetration of wind power, the dynamic issue of the part grid is dominated by wind
turbines instead of synchronous generators. Transient issue faces new challenges and
begins to be paid attention to. Transient stability dominated by the control of renewable
energy generating units are investigated in [12–17]. Analysis results show that similar
transient instability that is common in traditional synchronous generators also exists in
PLL-synchronized converters. The transient stability can be explored from the accelerating
and decelerating areas method. These analyses are based on a simplified control structure
and attempt to reveal transient instability mechanisms. Yet, practical control of wind
turbines is complex, even on a single time scale [3,8–11]. In this paper, transient behavior
during fault recovery in DC-link voltage control timescale is studied, with complex practical
control considered.

A deep understanding of an equipment’s characteristics is the precondition of dynamic
issue analysis. In order to investigate the dynamic behavior of a system dominated by
renewable energy, kinds of equipment models are proposed [18–21]. The impedance model
is developed and widely used in small-signal oscillation analysis. External characteristics
of equipment are investigated through impedance frequency spectrum with specific control
structure packing treatment [22–24]. At the time of bringing convenience, it has some
difficulty in mechanism explanation of the relationship between specific control loop and
oscillation. Based on this consideration, the motion equation model from the idea of
Newtonian mechanics is proposed to deeply study equipment’s characteristics [20,21]. By
establishing the relationship between unbalanced powers and dynamics of internal voltage,
the form of the motion equation model is similar to the rotor motion of a synchronous
generator, and equivalent inertia and damping can be obtained. Thus, oscillation with
increasing amplitude can be physically explored from the viewpoint of insufficient damping.
However, the two models are both applicable for small signal analysis. Under large-signal
disturbance, a new model is needed to study equipment’s transient characteristics. Based
on the advantage of the motion equation model in studying the equipment’s characteristics,
it is necessary to be popularized for the condition of large-signal disturbance. In this paper,
the transient motion equation model in the DC-Link voltage control time scale is developed
with transient switch control considered.

Although large signal analysis is difficult due to the non-negligible influence of non-
linearity, kinds of meaningful methods are proposed to address the issue [25–32]. The
methods based on computational intelligence may be powerful for the analysis and control
of a complex, large-scale system [25–27]. However, they may have difficulty explaining
the stability mechanism and influence factor concerned by this paper. Time-frequency
analysis based on the Hilbert transform is usually employed to analyze low-frequency and
sub-synchronous nonlinear oscillation in traditional power systems [28,29]. Based on data
from transient simulations, instantaneous attributes of oscillation behavior can be identified.
In addition to numerical analysis, the inclusion of higher-order terms is usually used to
evaluate accurate modal characteristics that linear analysis can not provide [30,31]. Based
on the Normal Form theory, higher-order modal interactions resulting from the influence
of nonlinearity can be revealed. By combining the two methods, nonlinear oscillation can
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be deeply investigated [32]. This paper draws lessons from the two methods and carries
out large-signal oscillation analysis during fault recovery.

The rest part of this paper is organized as follows. In Section 2, transient switch control
of direct drive wind turbine is investigated. Then motion equation model during fault
recovery is developed in Section 3. Based on the developed model, transient behavior
analysis in a simple system is carried out in Section 4. Finally, conclusions are drawn in
Section 5.

2. Transient Switch Control of Direct Drive Wind Turbine

When grid faults occur, the wind turbine usually undergoes complex transient switch
control to support the grid or protect the wind turbine itself. Figure 1 shows the typical
auxiliary control and circuit referred to [33,34]. Due to this concerning issue, the control in
electromagnetic time scale receives special attention.
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Figure 1. Typical auxiliary control and circuit in response to grid faults.

As shown in Figure 1, the whole process in response to grid faults can be divided
into three stages according to that grid faults are detected and then cleared, which is as
shown in Figure 2. Each stage employs a different control structure in order to satisfy
different requirements.
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Before grid fault, active and reactive current orders are controlled by DC-Link voltage
control and terminal voltage control, respectively. Due to the limited capacity of the grid
side converter, active power priority is usually utilized in current limit logic.

In the case that grid faults are detected, states of DC-Link voltage control and terminal
voltage control before the grid fault are frozen first. Grid side converter takes the role of
supporting grid voltage and injects reactive current as required by grid codes. In order
to reduce the system stress during grid faults, the active current order is limited by a
cap (upper limit) through Low Voltage Power Logic (LVPL) [34]. In normal operating
conditions, there is no cap. When the voltage falls, a cap is calculated and applied. Thus,
the dynamics of the active current order are influenced by the amplitude of terminal
voltage during a deep grid fault. Referring to possible DC-Link overvoltage resulting from
limited active power transfer, a hysteresis controller based on chopper-controlled resistors
is employed to stabilize DC-Link voltage in the set narrowband.

When grid faults are cleared, active and reactive current orders are re-controlled by
DC-Link voltage control and terminal voltage control, respectively. However, a ramp rate
limit is applied to the active current order rate of increase to reduce system stress [34].
Since active current order during the grid fault is usually very small, it increases with time
according to the ramp rate limit in a short time during fault recovery. When it reaches
about the frozen value before the grid fault, the active current order begins to be adjusted
by DC-Link voltage control. As a result, the transient process during fault recovery can
be further divided into two stages: during and after active power climbing. A switched
system should be employed to portray the transient behavior during fault recovery.

3. Developed Motion Equation Model

Since direct drive wind turbines employ a power electronic converter as a grid-
connected interface, their transient characteristic is dominated by complex control. In
order to physically study the transient characteristic, a motion equation model based on
Newton mechanics is proposed, which establishes the relationship of internal voltage dy-
namics induced by unbalanced powers. Then the transient characteristic of the direct drive
wind turbine can be explored from the equivalent motion driven by unbalanced powers.
Concerning the transient switch control during fault recovery, the transient analysis should
be divided into two stages: during and after active power climbing. The switched system
should be employed to depict transient characteristics. During active power climbing,
active current order increases with time according to the ramp rate limit, and DC-Link
voltage control does not take effect. After active power climbing, active current order
begins to be adjusted by DC-Link voltage control.

3.1. Motion Equation Model in Stage of Active Power Climbing

Based on Figure 1, the dynamics of the wind turbine’s internal voltage in the stage
of active power climbing are dominated by terminal voltage control and a phase-locked
loop, as shown in Figure 3. Since the two control loops are in response to dynamics of
terminal voltage and then adjust current orders, the modeling work is mainly composed of
two parts. One is that the phase and amplitude dynamics of terminal voltage should be
obtained through active and reactive power (P,Q). Based on this, a model can be developed
in the form that dynamics are induced by unbalanced powers, and the model has good
portability due to no relationship with the information of the network. The other is that
internal voltage should be calculated through current orders since the internal voltage is
selected to represent the external characteristic of the wind turbine.
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First, the relationship of terminal voltage with active and reactive power output is
calculated. According to the circuit topology in Figure 1, the output power is represented by

P =
EVt sin(θe − θt)

X f
(1)

Q =

[
E2 − EVt cos(θe − θt)

]
X f

(2)

Then, combining (1) and (2), phase and amplitude dynamics of terminal voltage can
be obtained by

θt = θe − arctan

 PX f(
E2 − QX f

)
 (3)

Vt =

√
P2X f

2 +
(

E2 − QX f

)2

E
(4)

Thus, information on terminal voltage can be replaced by internal voltage and active
and reactive power output.

Second, the internal voltage should be calculated through current orders. It is known
that current orders adjusted by control loops are in the PLL reference frame. Based on the
circuit relationship in Figure 1, the dq component of internal voltage can be calculated by

Ed = Vt cos θ
p
t − X f Iq (5)

Eq = Vt sin θ
p
t + X f Id (6)

Through polar coordinates transformation, amplitude and phase (that is, relative to
d-axis of PLL) of internal voltage can be obtained by

E =
√

Ed
2 + Eq2 (7)

θ
p
e = a tan

(
Eq

Ed

)
(8)

Due to the employed PLL synchronization, the phase of internal voltage is composed
of two parts: the synchronous phase provided by PLL and the phase that is relative to PLL,
as represented by

θe = θ
p
e + θp (9)
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Based on the above deduction, the developed motion equation mode during active
power climbing is shown in Figure 4. It is clearly seen that the dynamics of internal voltage
can be studied from the equivalent motion driven by unbalanced active and reactive power.
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3.2. Motion Equation Model after Active Power Climbing

When the active current order approaches frozen value before grid fault, ramp rate
limit will be out of action, and DC-Link voltage control begins to take effect. Thus the
influence of DC-Link voltage control on dynamics of internal voltage should be considered
after active power climbing.

In this case, when electromagnetic power injected into the power grid is not equal
to feed power from the machine side, the DC-link capacitor will go through charging
or discharging. Then the active current will be adjusted and thus significantly influence
phase dynamics. This indicates that unbalanced active power drives the motion of phase,
although the relationship between them is complex. Moreover, when DC-Link voltage
exceeds the limit value, the chopper will take effect, and consumed power by the chopper
should be taken into account. Based on Figure 4, the motion equation model after active
power climbing can be easy to be obtained, as shown in Figure 5.
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3.3. Equipment’s Transient Characteristic Analysis

Based on the developed motion equation model in Figures 4 and 5, it is known that
wind turbine is very different from traditional synchronous generators and its transient
characteristic are much more complex, which can be concluded as

(1) Discontinuity. Unlike the synchronous generators that can employ a unified
model for electromechanical transient analysis in different fault stages, the developed
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motion equation model of the direct drive wind turbine is discontinuous due to transient
switch control.

(2) Nonlinearity. In transient stability analysis of traditional power systems, nonlinear-
ity mainly results from the network, which lies in the power angle curve, and the linear
rotor motion model is used to depict the equipment’s transient characteristic. However, the
wind turbine’s motion equation model is characterized by strong nonlinearity, and nonlin-
earity is mainly embodied in the following three aspects: polar transformation, PLL, and
replacing terminal voltage information. The main types of nonlinearity are trigonometric
and square functions.

(3) High order. Due to the complex control of wind turbines, the relationship be-
tween unbalanced power and internal voltage is characterized by high order. As a result,
the inertia that is used to depict the relationship between unbalanced active power and
phase dynamics is variable. This is different from a synchronous generator, which has
constant inertia.

(4) Strong Coupling. In a wind turbine, phase dynamics are strongly coupled with
amplitude dynamics, and the coupling that mainly results from the control of the wind
turbine is implemented in an orthogonal coordinate system, while amplitude and phase
are obtained from the polar coordinate system. Compared with a synchronous generator
that directly controls amplitude and phase, the coupling in a wind turbine is stronger.

4. Transient Analysis in Single-Machine Infinite-Bus System

Based on the developed motion equation model, transient analysis during fault recov-
ery in a typical single-machine infinite-bus (SMIB) system shown in Figure 6 is carried out.
A three-phase ground fault is set at one line, and after a certain time, the faulted line is cut
off. In this paper, we assume that a stable operating point has been achieved during a grid
fault, and transient behavior during fault recovery is mainly concerned.
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Figure 6. Single type-4 wind turbine infinite-bus (SMIB) system.

The transient analysis idea during fault recovery is shown in Figure 7. It is assumed
that the system achieves a stable state at point a during grid fault. When the fault is cleared,
the system goes through the transient process from point a to equilibrium point c after grid
fault. However, due to the transient switch control introduced by active power climbing,
the transient process is divided into two stages: during and after active power climbing. In
the two stages, the network equations are the same. However, the motion equation models
of direct drive wind turbines are different, resulting in state trajectories that are dominated
by different dynamic equations. In the stage of active power climbing, the state trajectory
moves from point a driven by the motion equation model and network equation in the
stage of active power climbing. When the active current order reaches about the frozen
value before grid fault, the stage ends, and the final state is the initial state of the second
stage. After active power climbing, the system goes through the transition process from
the final state in the stage of active power climbing to a stable equilibrium point after a
grid fault. Due to the strong nonlinearity, the dynamic behavior and even stability issue in
the second stage is significantly influenced by the final state in the stage of active power
climbing. According to the attraction region theory of nonlinear system, there exists an
attraction region in state space for the stable equilibrium point. Only if the initial state lies
in the attraction region can the system keep transient stable. Otherwise, transient instability
will occur. Since the initial state in the second stage during fault recovery is determined by
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the final state in the first stage, the dynamic behavior in the stage of active power climbing
will have much influence on the dynamic behavior and transient stability issue after active
power climbing.
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4.1. Transient Analysis in Stage of Active Power Climbing

In the stage of active power climbing, closed-loop dynamics of internal voltage can
be investigated by combining the motion equation model and network model. Simpli-
fied network topology is shown in Figure 8, and the grid is represented by its Thevenin
equivalent circuit. When considering transient behavior in the DC-link voltage control
time scale, fast dynamics of the network are neglected, and an algebraic equation is used to
calculate power through voltage vectors [8]. In Figure 9, it is shown that phase dynamics of
internal voltage are induced by time-varying excitation from the active current order. In
the model, the time-varying excitation can be further replaced by the integral calculus of
constant kramp.
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It is known that phase of internal voltage is composed of two parts: θp that is dom-
inated by PLL and θ

p
E of internal voltage relative to PLL. Both of them are induced by

active current order excitation. Since θp is directly related with Vtq, its dynamics can be
investigated based on the relationship of Vtq and the active current order. Utilizing terminal
voltage Vt and grid voltage Ug in Figure 8, active power can be represented by

P =
VtUg sin θt

Xg
(10)

In addition to this, active power can also be calculated through d-axis and q-axis
current, which is obtained by

P = Ug Ip
d cos θp − Ug Ip

q sin θp (11)

Since the phase of terminal voltage is also composed of two parts: θp and θ
p
t of terminal

voltage relative to PLL, Vtsinθt in (10) has another form represented by

Vt sin θt = Vt sin θ
p
t cos θp + Vt cos θ

p
t sin θp (12)

Combing (10)–(12), relationship of Vtq and active current order excitation is obtained by

Vtq = Xg

∫
krampdt − Ug sin θp (13)

Further, differentiating (13), the following expression can be obtained.

dVtq

dt
= krampXg − ωpUg cos θp (14)

Then the frequency dynamics of internal voltage dominated by PLL can be shown in
Figure 10. It is a step response of a third-order nonlinear dynamical system, and excitation
is related with Xg and kramp. Nonlinearity exists in red dashed line frame in Figure 10.
In addition to these, the initial states in Figure 10 reflect the influence of states during
grid fault on the step response, and the initial states of θp and Vtq are represented by
(15) and (16), which is calculated based on the state-equation during grid fault [13]. Since
it is assumed that steady states are achieved during grid fault, the initial integral state of
PLL’s PI controller is usually zero.

θp_initial = a sin

(
Xg f Id f 0

Ud f

)
(15)

Vtq_initial = Xg Id f 0 − Ug sin
(

θp_initial

)
(16)
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where Ud f and Xg f are Thevenin equivalents of grid and Id f 0 is the active current order,
which are all during grid fault.
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For convenience, assume that deep voltage sag is considered and the active current
order during grid fault is zero. Thus, Vtq will not jump and keep zero at the beginning
of fault recovery. Since the initial state of θp is also zero, Vtq begins to increase driving
by krampXg − ωpUgcosθp, and then ωp and θp both increase from the zero initial state.
However, in a short period of time, θp is very small and Ugcosθp is approximate to be
constant Ug. Thus, the nonlinear part in the red dashed line frame can be replaced by
a constant and ωp is approximate to be the step response of the second-order system as
represented by

ωp_approximation = L−1

[
kp_plls + ki_pll

s2 + kp_plls + ki_pll

krampXg

s

]
(17)

As time prolongs, θp becomes large, and the influence of the nonlinear part should be
considered. At this time, due to the fast response of PLL, dynamical regulation resulted in a
large deviation of krampXg and ωpUgcosθp can be thought to be finished and approximation
of krampXg ≈ ωpUgcosθp is reasonable. Thus, the dynamics of ωp can be represented by the
quasi-steady-state solution shown below.

ωp_quasi_steady_state =
krampXg

Ug cos
(∫

ωp
) (18)

Based on the above, the dynamics of ωp, in the whole stage of active power climbing,
can be approximately represented by

ωp ≈ ωp_approximation + ωp_quasi_steady_state − krampXg (19)

In the initial stage, it can be depicted by the step response of the second-order system,
and then the quasi-steady-state solution reflects the subsequent dynamics. Further, the
quasi-steady-state solution also has an approximate relationship represented by∫ (

krampXg
)
dt ≈

∫ (
ωpUg cos θp

)
dt (20)

Then θp at the end of active power climbing can be estimated by

θ1s = a sin
(

Xg Id0

Ug

)
(21)
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ωp reaches the maximum at this time, which is represented by

ωp_max ≈
(
krampXg

)(
Ug cos θ1s

) (22)

Simulated results verified the analysis is shown in Figure 11. Since θp is integral of ωp,
dynamics of θp is charactered by monotonous increase. Further analysis reveals that the
influence of states of amplitude branch on the oscillation in the second stage is very small.
Thus dynamics of the amplitude branch in the first stage will not be deeply investigated.

Processes 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

However, in a short period of time, 𝜃௣ is very small and 𝑈௚𝑐𝑜𝑠𝜃௣ is approximate to be 
constant 𝑈௚. Thus, the nonlinear part in the red dashed line frame can be replaced by a 
constant and 𝜔௣ is approximate to be the step response of the second-order system as 
represented by 𝜔௣_௔௣௣௥௢௫௜௠௔௧௜௢௡ = 𝐿ିଵ ቈ 𝑘௣ _௣௟௟𝑠 + 𝑘௜ _௣௟௟𝑠ଶ + 𝑘௣ _௣௟௟𝑠 + 𝑘௜ _௣௟௟ 𝑘௥௔௠௣𝑋௚𝑠 ቉ (17) 

As time prolongs, 𝜃௣ becomes large, and the influence of the nonlinear part should 
be considered. At this time, due to the fast response of PLL, dynamical regulation resulted 
in a large deviation of 𝑘௥௔௠௣𝑋௚ and 𝜔௣𝑈௚𝑐𝑜𝑠𝜃௣ can be thought to be finished and ap-
proximation of 𝑘௥௔௠௣𝑋௚ ≈ 𝜔௣𝑈௚𝑐𝑜𝑠𝜃௣  is reasonable. Thus, the dynamics of 𝜔௣  can be 
represented by the quasi-steady-state solution shown below. 𝜔௣_௤௨௔௦௜ _ ௦௧௘௔ௗ௬ _ ௦௧௔௧௘ = 𝑘௥௔௠௣𝑋௚𝑈௚ cos൫׬𝜔௣൯ (18) 

Based on the above, the dynamics of 𝜔௣, in the whole stage of active power climbing, 
can be approximately represented by 𝜔௣ ≈ 𝜔௣ _௔௣௣௥௢௫௜௠௔௧௜௢௡ + 𝜔௣ _௤௨௔௦௜ _ ௦௧௘௔ௗ௬ _ ௦௧௔௧௘ − 𝑘௥௔௠௣𝑋௚ (19) 

In the initial stage, it can be depicted by the step response of the second-order system, 
and then the quasi-steady-state solution reflects the subsequent dynamics. Further, the 
quasi-steady-state solution also has an approximate relationship represented by න൫𝑘௥௔௠௣𝑋௚൯𝑑𝑡 ≈ න൫𝜔௣𝑈௚ cos 𝜃௣൯ 𝑑𝑡 (20) 

Then 𝜃௣ at the end of active power climbing can be estimated by 𝜃ଵ௦ = 𝑎 sin ቆ𝑋௚𝐼ௗ଴𝑈௚ ቇ (21) 𝜔௣ reaches the maximum at this time, which is represented by 𝜔௣_௠௔௫ ≈ ൫𝑘௥௔௠௣𝑋௚൯൫𝑈௚ cos 𝜃ଵ௦൯ (22) 

Simulated results verified the analysis is shown in Figure 11. Since 𝜃௣ is integral of 𝜔௣, dynamics of 𝜃௣ is charactered by monotonous increase. Further analysis reveals that 
the influence of states of amplitude branch on the oscillation in the second stage is very 
small. Thus dynamics of the amplitude branch in the first stage will not be deeply inves-
tigated. 

 
Figure 11. Frequency response of internal voltage dominated by PLL. 

ramp g
k X

(Id0— Idf0)/kramp

pω
_ _ _p qusai steady stateω
_p approximationω

0 0.02 0.04 0.06 0.08 0.1 0.120
2
4
6
8
10
12

Time[s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s]

1s
cosθ

ramp g

g

k X

U

Figure 11. Frequency response of internal voltage dominated by PLL.

From Figure 10, active power climbing rate kramp has much influence on frequency
response of internal voltage dominated by PLL. By numerical calculation, the frequency
response at different active power climbing rates is shown in Figure 12. It is seen that the
frequency offset tends to be large at the end of active power climbing with the increase in
active power climbing rate. Since the final state in the stage determines the initial state after
active power climbing, it is indicated that the initial state in the second stage will deviate
from the equilibrium point far away with the increase in active power climbing rate, which
will deteriorate the transient behavior and even bring transient instability issue after active
power climbing.
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4.2. Nonlinear Oscillation Analysis after Active Power Climbing

Based on the motion equation model in Figure 5, it is known that the open-loop
characteristics of a wind turbine are depicted by two input and two output nonlinear
transfer functions. In order to qualitatively investigate the influence of nonlinearity on
large-signal oscillation behavior, single input and single output dynamical equation are
employed for convenience based on a hypothesis. Here open-loop phase dynamics induced
by unbalanced active power are investigated, as shown in Figure 13.
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The nonlinear function has three types: sin, asin, and square root. The influence
of nonlinear function on open-loop characteristics can be reflected by (23). The small
increase in the amount of output relative to the small increase in the amount of input at
different operating points at a disturbed trajectory is different. The complexity induced by
nonlinearity has resulted from this.

sin(xi + ∆x) = sin xi + (cos xi)∆x (23)

However, based on the geometric interpretation of the Euler integral, short time
window dynamics around any operating point at a disturbed trajectory can be represented
by a time-varying linear equation and constant excitation. The linear equation is obtained
by linearization at the studied operating point, which usually is not the equilibrium point.
Thus, open-loop characteristics in a short time window can be represented by (24).

∆θe = G(s, Xi)∆P (24)

Since G(s, Xi) is related with operating point Xi, it is not constant and changes with
time. When the disturbance is small, it means that Xi is very close to the equilibrium point
Xe and the influence of change of Xi on G(s, Xi) is so small that it can be neglected. As a
result, G(s, Xi) is fixed, and small-signal dynamics have constant oscillation modes. Ampli-
tude attenuation and the oscillation frequency are fixed. However, when the disturbance
is large, G(s, Xi) changes a lot with time. It is known that short time window oscillation
characteristics are related with G(s, Xi). Thus large-signal oscillation characteristics may be
very different from small-signal oscillation, and its amplitude attenuation and oscillation
frequency are not fixed.

sin(xe + x) = sin xe + (cos xe)x − 0.5(sin xe)x2 + O
(

x2
)

(25)

Further, the influence of nonlinear function on open-loop characteristics can be inves-
tigated from the viewpoint of Taylor’s high-order expansion. From (25), it is known that
the output of a nonlinear function has other frequency components even if the input is a
single frequency sinusoidal signal, and as the amplitude of the input signal increases, other
frequency components in the output signal tend to be large. Due to these characteristics,
closed-loop oscillation behavior will be more complex.

In order to study closed-loop oscillation behavior, the motion equation model in
Figure 5 is combined with the network model in Figure 8. Oscillatory modes of linearized
system at equilibrium point are listed in Table 1. It is shown that the linearized system
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is poor damping and mode three dominates the small-signal oscillation. Comparative
simulated results shown in Figure 14 reveals that large signal oscillation characteristics
(amplitude attenuation and oscillation frequency) are different from that of linear oscillation.
In order to further investigate the large-signal oscillation characteristics, time-frequency
analysis based on the Hilbert transform [31] is employed.

Table 1. Oscillatory modes of equilibrium point after active power climbing.

Mode Eigenvalue Freq.(Hz) Damping Ratio

1 −100 ± 99j 15.8 71%
2 −29.4 ± 35j 5.6 64%
3 −0.6 ± 67.9j 10.8 1.3%
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nonlinear system and linearized system at equilibrium point.

Since damping ratios of modes one and two are large, the oscillation component
dominated by them will attenuate quickly, and the obtained simulated responses can
be thought to be a single component from the viewpoint of a nonstationary signal. The
single-component large-signal oscillation has the unified form represented by

x(t) = Ae
∫

α(t)dt cos
(∫

ω(t)dt
)

(26)

Here α(t) and ω(t) are defined as instantaneous amplitude attenuation ratio and
oscillation frequency, respectively. If the oscillation is linear, α(t) and ω(t) are constantly
determined by mode three. However, due to nonlinearity, α(t) and ω(t) change with
time. In order to obtain α(t) and ω(t), Hilbert transform of x(t) is utilized and y(t) can be
attained represented by

y(t) = Ae
∫

α(t)dt sin
(∫

ω(t)dt
)

(27)

Based on x(t) and y(t), the amplitude dynamics A(t) and phase dynamics θ(t) can be
represented by

A(t) = Ae
∫

α(t)dt =

√
x(t)2 + y(t)2 (28)

θ(t) =
∫

ω(t)dt = arctan
(

y(t)
x(t)

)
(29)
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Then α(t) and ω(t) can be calculated by

α(t) =
dA(t)/dt

A(t)
(30)

ω(t) =
dθ(t)/dt

θ(t)
(31)

Based on the Hilbert transform, the obtained instantaneous amplitude attenuation
ratio α(t) and oscillation frequency ω(t) are shown in Figure 15. It is known that α(t) and
ω(t) are both not constant and change with time. Further, α(t) and ω(t) oscillates around
mode 3. This also verifies the idea of piecewise linearization with short time window. Since
the short time window open-loop characteristics are determined by G(s, Xi) and states
Xi oscillates around equilibrium point, instantaneous amplitude attenuation ratio, and
oscillation frequency are inevitable to change around mode three with time. Figure 15 also
shows that α(t) varies a lot around real part of mode three. This reveals that α(t) is very
sensitive to change of states. Integral of α(t) reflects attenuation of amplitude. Figure 16
shows that

∫
α(t)dt tends to be larger than

∫
α0dt as time increases. This reveals that the

nonlinearity deteriorates amplitude attenuation.
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Time-frequency analysis digs deep into the nonlinear oscillation characteristics. In
order to further carry out the mechanism explanation, Taylor’s high-order expansion joint
with the analysis idea of Normal Form is employed. From (25), it is known that Taylor’s
high-order expansion can achieve a good approximation of nonlinear function, and the
order of high order term is related to the disturbance. Here second-order approximation is
considered, and dynamics of the jth state can be represented by

dxj

dt
≈ f j(Xe) + Aj(X − Xe) + 0.5(X − Xe)

T H j(X − Xe) (32)

Where Aj is the jth row of the Jacobian matrix [∂ f /∂X], and H j is the Hessian ma-
trix. Comparative simulated results among the original nonlinear system, first-order and
second-order approximated systems are shown in Figure 17. It is known that second-
order approximation almost achieves the same dynamical response as that of the original
nonlinear system.
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Inspired by the analysis idea of Normal Form, analysis of the second-order approx-
imated system can further explain nonlinear oscillation characteristics. The idea of Nor-
mal Form is that by the nonlinear transform of state variables, second-order terms in
a state-space equation can be eliminated and an approximate solution of the nonlin-
ear system is obtained, and the oscillation behavior is dominated by individual system
modes, λ1, λ2, · · · , λn that are calculated by Jacobian matrix and second-order modes,
λ1 + λ1, λ1 + λ2, · · · , λn−1 + λn, λn + λn. However, the base of the solution of Normal
Form is still eigenvalues of the linearized system at the equilibrium point, and the obtaining
of an approximate solution is under the condition that the influence of higher-order terms
is neglected. These are reasons for the approximate solution’s error. Since the approxi-
mate solution is not the target here and just an analysis idea is employed, the base of the
solution can be selected in aid of Fourier and prony analysis, and oscillation behavior is
still dominated by individual system modes and second-order modes. Fourier spectra
in Figure 18 reveal that the second-order mode exists, and its frequency is almost twice
the base dominant mode’s. The second-order mode results from the nonlinear modal
interaction of the base dominant mode. Due to the existence of the second-order mode
component, the instantaneous oscillation frequency changes with time can be explained,
which can also be understood from (33) and Figure 19. Further, prony analysis results in
Table 2 show that the nonlinear oscillation is dominated by two modes: poor damping base
mode and second-order mode, which is the combination of the poor damping base mode.
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The real part of the base mode is smaller than that of the linear system. This further verifies
that nonlinearity deteriorates amplitude attenuation.

x(t) = Ae
∫

α(t)dt cos(
∫

ω(t)dt)
≈ A1e−α1t cos(ω1t + θ1) + A2e−2α1t cos(2ω1t + θ2)

(33)
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Table 2. Prony analysis results of nonlinear oscillation response.

Mode Eigenvalue Freq.(Hz) Damping Ratio

3 −0.32 ± 60j 10 0.53%
3,3 −0.75 ± 127j 21 0.59%

4.3. Influence of Ramp Rate Limit in First Stage on Oscillation Behavior in Second Stage

Based on the above analysis, it is known that the large signal oscillation behavior
after active power climbing is very different from linear oscillation. Due to the influence
of nonlinearity, its instantaneous amplitude attenuation ratio and oscillation frequency
change with time, and the size of fluctuation is related to the state at the end of active
power climbing. The above analysis further reveals that the comprehensive effect of the
time-varying amplitude attenuation ratio is to deteriorate amplitude attenuation. When
the initial state is far away from the equilibrium point in the second stage, oscillation with
increasing amplitude may occur.
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Since the initial state after active power climbing is dependent on the final state
during active power climbing, transient behavior during the stage of active power climbing
influences the subsequent oscillation. Based on the analysis in Section 4.1, it is known that
initial states after active power climbing tend to be far away from the equilibrium point
when kramp increases. As a result, when kramp is large, the influence of nonlinearity on
large-signal oscillation behavior is strong. Since the comprehensive effect of nonlinearity is
to deteriorate amplitude attenuation based on the analysis in Section 4.2, it is indicated that
the nonlinear oscillation after active power climbing decays slowly and even diverges with
the increase in active power climbing rate. Comparative simulated results at different ramp
rate limit based on MATLAB® is shown in Figure 20. It is seen that the frequency offset
at the end of active power climbing tends to be large, and then the subsequent oscillation
after active power climbing tends to decay slowly and even diverges with the increase of
active power climbing rate, which verifies the above theoretical analysis.
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5. Conclusions

In this paper, transient stability of direct drive wind turbine in DC-link voltage control
timescale during LVRT is studied, with practice transient switch control considered. A
novel two-stage motion equation model that depicts the phase and amplitude dynamics
of internal voltage driven by unbalanced active and reactive power is developed firstly
to physically study the transient characteristics of a direct drive wind turbine. Then the
transient behavior during fault recovery is explored based on the developed model. When
considering discontinuity resulting from the transient switch control, the whole transient
process during fault recovery is divided into two stages: during and after active power
climbing. In the first stage, frequency dynamics of a direct drive wind turbine at the
excitation of active power climbing are studied. A novel approximate analytical expression
is proposed to clearly reveal the transient frequency response and the influence of the active
power climbing rate on it. After active power climbing, a novel analysis idea combining
time-frequency analysis based on the Hilbert transform and high order modes is employed
to investigate and reveal the nonlinear oscillation. The influence of transient behavior in
the stage of active power climbing on the nonlinear oscillation after active power climbing
is also explored. The conclusions and key findings are as follows.
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(1) During active power climbing, an approximate monotonic increase in the wind
turbine’s angular frequency is identified at the excitation of active power climbing. With
the increase in active power climbing rate, the frequency offset at the end of active power
climbing tends to be large.

(2) After active power climbing, nonlinear oscillation characterized by time-varying
oscillation frequency and amplitude attenuation ratio is revealed. It is found that the
comprehensive effect of the time-varying amplitude attenuation ratio is to deteriorate
amplitude attenuation. When the initial state tends to be far away from the equilibrium
point in this stage, the nonlinear oscillation tends to decay slowly and even diverge,
bringing in transient instability.

(3) The final state during active power climbing determines the initial state after active
power climbing. With the increase in active power climbing rate, the final state during
active power climbing will deviate from the equilibrium point after active power climbing
far away. Then the amplitude attenuation of the nonlinear oscillation deteriorates, and
oscillation with increasing amplitude is easier to occur.
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Nomenclature

Symbol Explanation
E GSC internal voltage vector
V t Terminal voltage vector
Ug Equivalent grid voltage vector
I Current vector across filter inductor
P,Q Active and reactive power output of GSC
Xg Equivalent grid inductor
Xf Grid-side filter inductor
θp PLL output angle relative to grid voltage
ωp Angular velocity of PLL relative to grid voltage
kramp Ramp rate limit
Trv, kv Parameters of AVC’s controller
kp_dc, ki_dc Parameters of DVC’s PI controller
kp_pll, ki_pll Parameters of PLL’s PI controller
Subscripts: dq components in PLL reference frame
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