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Abstract: During the material removal stage in stone rough processing, milling type has been widely
explored, which, however, may cause time and material consumption, as well as substantial stress
for the environment. To improve the material removal rate and waste reuse rate in the rough
processing stage for three-dimensional stone products with a special shape, in this paper, circular
saw disc cutting is explored to cut a convex polyhedron out of a blank box, which approaches a
target product. Unlike milling optimization, this problem cannot be well solved by mathematical
methods, which have to be solved by geometrical methods instead. An automatic block cutting
strategy is proposed intuitively by considering a series of geometrical optimization approaches
for the first time. To obtain a big removal block, constructing cutting planes based on convex
vertices is uniquely proposed. Specifically, the removal vertices (the maximum thickness of material
removal) are searched based on the octree algorithm, and the cutting plane is constructed based
on this thickness to guarantee a relatively big removal block. Moreover, to minimize the cutting
time, the geometrical characteristics of the intersecting convex polygon of the cutting plane with the
convex polyhedron are analyzed, accompanied by the constraints of the guillotine cutting mode. The
optimization algorithm determining the cutting path is presented with a feed direction accompanied
by the shortest cutting stroke, which confirms the shortest cutting time. From the big removal block
and shortest cutting time, the suboptimal solution of the average material removal rate (the ratio of
material removal volume to cutting time) is generated. Finally, the simulation is carried out on a
blank box to approach a bounding sphere both on MATLAB and the Vericut platform. In this case
study, for the removal of 85% of material with 19 cuts, the proposed cutting strategy achieves five
times higher the average material removal rate than that of one higher milling capacity case.

Keywords: block cutting; data reconstruction; convex polyhedron (CPH); convex polygon (CPG);
path optimization; average material removal rate (AMRR)

1. Introduction

The stone processing industry has adverse effects on the environment, economy and
sustainability. Stone processing causes heavy pollution from dust and CO2 emissions, and
high water and energy consumption, which brings tremendous pressure and threats to
the ecological environment, especially in natural stone mining areas [1]. On the other
hand, with the development of modern civilized society, the stone industry is indispensable
and has become increasingly important. Moreover, the demands and varieties of stone
products are increasing day by day. Therefore, the demand for the stone industry puts
forward higher requirements for stone processing, especially in the rough processing stage.
Building a green manufacturing system and process scheme, developing energy-saving
and emission reduction optimization technologies and improving the processing efficiency
of the stone industry have attracted more and more attention recently [1,2].
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In the machining process of special-shaped stone products, the traditional rough
processing adopts diamond wire sawing or circular sawing for simple tasks [2,3], or con-
ventional milling for simple tasks [4], or automatic milling for complex tasks [5] with
a diamond grinding wheel, etc., but such processing modes cannot realize automation
completely, or are accompanied by low waste utilization, a large processing time, high
consumption and serious tool wear even for straight cuts. Although the milling process
has reflected automation to some extent, a large amount of dust will be generated in the
machining process. The above mentioned processes can often not meet the needs of green
manufacturing and high-efficiency machining in the rough machining stage.

For a material removal optimization strategy, the analysis methods of different ma-
chining tools are completely different. Owning to the distinct advantages of having a big
cutting depth and high cutting linear velocity, the diamond circular saw blade is widely
used in the stone cutting process, which provides a possible way to achieve efficient green
processing [1,6]. It is noted that circular saws are known to likely be the cheapest and
fastest motorized saw available [7,8]. With the development of the multi axis linkage
technology of machining machinery, the applications of 5–6 axis NC machine tools and
robots, some interesting results have been reported in recent years on the material removal
method during the rough machining process using circular saw blades. In [1], an energy
consumption prediction model of the stone sawing process of a circular saw was proposed.
By predicting the power and energy consumption in the whole sawing process, the optimal
scheme considering the variable material removal rate (MRR) could be discussed for stone
processing to achieve energy saving and emission reduction. In [8], a technique to cut
freeform curves with a flexible circular saw was addressed by setting the width of the
cutting edge larger than the width of the saw body to ensure there was no friction between
the machined surface and the saw body while cutting. Moreover, cutting any polygon
down to an inner complex nonconvex shape was achieved by a sequence of straight cuts
with linear-time algorithms in [9], where the cuttability of a small saw and large saw was
analyzed attentively. Ref. [10] studied the algorithm for cutting polyhedral shapes with
a hot wire cutter, utilizing computational geometry techniques to solve the problems of
lines and segments in the cutting process. Particularly used in recent years when fabri-
cating freeform geometries, in order to find collision-free tangential cutting directions, a
conservative algorithm for line cutting with a wire cutter was presented by [11], which
provided advanced techniques to remove large amounts of material. Exploring the material
cutting of 2D or 3D geometric shapes, in [12], an approximation algorithm for cutting
out convex polygons was presented, which can cut convex polygons from the plane at a
minimum cost by designing an optimal cutting sequence. Their algorithm can achieve
a constant approximation ratio of the paper diameter to the polygon diameter. On the
basis of [12], in [13], an approximate algorithm for cutting out a convex polyhedron from
a sphere was surveyed, in which several approximate algorithms were discussed to find
the plane sequence with the minimum cutting cost. Ref. [14] proposed a method of 3D
curved block cutting analysis by utilizing the advantages of topology and computational
geometry in geological solid modeling, where 3D curved blocks were formed with less
calculation and memory. These studies not only provide feasibility for a stone cutting plan
with a diamond circular saw, but also provide a geometrical analysis method for solving
the geometrical characteristics of block cutting optimization strategies to some extent.

Despite some of the new algorithms and analysis methods being investigated in [11,14],
to the best of our knowledge, the theoretical research available on the optimization strategies
of block sawing with a circular saw blade for special-shaped stone in the rough machining
stage is currently sparse. This is due to the need to touch upon the convex polyhedron
(CPH) reconstruction techniques of computational geometry and computer graphics, and
the constraints of cutter head feeding along a straight line in the cutting process. The
geometric challenges have also been stated for multi axis machining including the material
properties, tools shapes, accessibility, collision detection, etc. [11]. Although line cutting [11]
was an available new and flexible style for automatic block cutting, the cutting technique
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was completely different from saw disc cutting. Consequently, these studies have motivated
us to find out more about block cutting optimization. According to the characteristics of the
stone rough machining stage, making full use of the advantages of the diamond circular saw
and taking into account the average material removal rate (AMRR) as the cost, we propose a
cutting optimization strategy for special-shaped stone blocks with a large material removal
amount and a short cutting time, so as to automatically realize removing materials with
high efficiency while ensuring energy saving and emission reduction.

The main contributions in this study can be summarized as follows: (i) In order to
automatically obtain a set of relatively optimal cutting planes to ensure a big removal block
for each cutting, the method of constructing a cutting plane (CP), in turn, is proposed
according to the geometrical characteristic of the CPH in space and with the data recon-
struction of the CPH, where the octree algorithm is used to search for the removal vertices
of the CPH for each cutting to reduce the amount of calculation. (ii) Except for the cutting
of a big block, another key point is to reduce the cutting time, whose optimization model is
thus established. The convex polygon (CPG) generated by the intersection of the CP with
the parent CPH is analyzed, where the optimization objective and optimization algorithm
for determining the feed direction and starting point of the cutting path are addressed to
produce the shortest cutting time. From (i) and (ii), the suboptimal solution of the AMRR
for block cutting is obtained.

Cutting strategies with a circular saw will play a particularly important role not only in
3D stone processing but also in wood, metal and harder diamond 3D processing. This strategy
may be not very satisfactory, nevertheless, which leads us to explore more feasible geometric
techniques for efficient 3D cutting, whether for convex or nonconvex polyhedrons.

The rest of this paper is organized as follows: In Section 2, preliminary information
regarding the block cutting mechanism is described. Section 3 addresses the reconstruction
description of the CPH with vertex–face information. Section 4 investigates the scheme to
design cuttable big blocks by constructing the CP. In Section 5, the cutting time optimization
method is presented by considering the geometrical analysis of the cutting path. Before the
conclusion in Section 7, validation studies are addressed in Section 6.

2. Preliminaries: Block Cutting Mechanism

The definitions of the symbols and units used are shown in Table 1.

Table 1. Nomenclature.

Symbols Quantity Unit Symbols Quantity Unit

Q0
Blank box

(Blank workpiece) / Pcsi
Vertex set of

intersetion CPG /

Qi−1 Parent CPH / Si The ith intersection CPG /

Qi Child CPH / T Homogeneous
transformation matrix /

QM Final CPH / R Radius of sawblade mm

Qri
Removal block by the

ith cutting / v f Feeding speed mm/min

π Cutting plane / Vri
The ith material
removal volume mm3

πi The ith CP / Ti The ith cutting time min
Pi−1 Vertex set of Qi−1 / W Width of CPG mm

Pri
Removal vertex set of

the ith cutting / Li Cutting path mm/min

In the rough machining process of removing materials, due to the significant differ-
ences in shape between the original blank and the final product, rapidly removing most
of the extra materials on the original blank to form a rough blank has become one of the
most important processes. For any 3D special-shaped product, in the rough machining
stage of removing materials, it can be representatively wrapped as a compact bounding
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sphere (BS) or bounding ellipsoid (BE) to perform further cutting exploration. A BS or BE is
selected depending on the 3D shape of the special-shaped product. If the product is a thin,
long shape we would choose the corresponding blank box and a BE as a target to perform
the rough cutting, conversely, for a short, round shape we would choose a BS. We would
hope not to have any unnecessary material consumption. For instance, in Figure 1, the 3D
symmetrical penguin and its BS are shown simultaneously.
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Hence, when confirming the machining allowance, this paper considers the compact
BS to be a typical target shape for the rough cutting of a blank CPH (a blank box), Q0, which
reflects the oriented bounding box (OBB) of the BS This guarantees the efficient removal
of the extra materials without overcutting and excessive material consumption. In the
blank CPH cutting, we need to design the optimal cutting strategy to cut out the final CPH,
QM, from Q0 to approximate the target BS, as shown in the cutting schematic diagram
in Figure 2, thus satisfying the characteristics of the circular saw processing. To solve
this problem, the cutting process should be analyzed and monitored, not only combining
the theory from computational geometry and computer graphics, but also taking into
account the technique of the processing plan and design, which may bring complexity
and challenges to the design and implementation of the cutting strategy. If πi denotes the
ith CP, the cutting optimization process reflects a series of optimization processes of πi
intersections with the CPH and the optimization process of each cutting path. The problem
of the material removal following cutting can be described as follows:

• Reconstruction description of the CPH: During a continuous block cutting process,
it is inevitable to be confronted with the problem of the CPH reconstruction and
intersection calculation between a plane and the CPH combining with computational
geometry. Therefore, it is important but challenging to update the CPH information
including removal vertices, intersection vertices, intersection faces and updated faces
using an appropriate, available data structure. We hope these can be efficiently imple-
mented to carry out dynamic data storage so that any queries about the workpiece
during the cutting process can be answered with the need for less data and calculation.
Meanwhile, the visual image of the live cutting can be displayed to demonstrate the
reconstruction of the CPH after each cutting.

• Design cuttable big blocks: For block cutting, aiming for the highest efficiency for the
removal of materials, it is better when removal blocks are designed larger, and as far
as possible, with the minimum number of cutting times. The difficult question is how
to construct the CP so as to determine the angle of the circular saw, which is related to
the vertices of the blank CPH and the BS surface.

• Optimize cutting time: The cutting time under the condition with a constant feed
speed can be confirmed by investigating the cutting path. Therefore, in order to obtain
the shortest cutting time, it is necessary to analyze the geometrical characteristics of
the CPG generated by the intersection of the CP with the CPH, so as to calculate the
cutting feed direction and cutting point of the shortest path under constraints.
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In the real machining process, it is necessary to comprehensively consider the ma-
chining efficiency and machining allowance alongside the capacity of the machine tools
or robots. Therefore, the optimization strategy of 3D block cutting discussed in the paper
makes the following assumptions: (1) The BS of the special-shaped product is regarded
as the shape of the target object; (2) the convex polyhedral block is cuttable by a circular
saw when its angle satisfies the geometrical constraints of the mechanism of the machine
tools or robots and it is set up properly. (3) In the cutting process, there is no interference
between the cutter and the stone. Moreover there are no obstacles around.

3. Reconstruction Description of the CPH

The essence of the removal of material when block cutting is found in the process of
the intersection of the CP with the parent CPH to produce the child CPH. The vertices,
edges and faces of the CPH will be updated dynamically in the cutting process, which
is a complex process with tremendous and heavy computation and data storage [14,15].
In order to realize continuous cutting and the dynamic visual effect automatically, the
updating of information with a relatively simple data structure is introduced to reconstruct
the CPH in the updating process.

3.1. Data Structure of CPH

In the cutting process, updating the polyhedron experiences tedious and algorith-
mically complex updates of the data structure, which is used to describe the significant
geometrical features of the convex polyhedron and bounding sphere [14]. As the cutting
is completed, the cut edge causes changes in the number of faces, edges and vertices on
the child polyhedron. In the literature, some data structures for a polyhedron in 3D space
have been proposed, such as single level, 2 or 3 levels or half-edge data structures [15,16],
which are for a face list, vertex–face list, vertex–edge–face list or doubly connected edge
list. In order to realize the dynamic storage, querying and management of polyhedron data
efficiently, a double level data structure for the vertex–face list is established, as shown in
Figure 3, to describe the geometrical characteristics of the polyhedron, which retains the
vertex–face information to guarantee that the volume of the CPH can be calculated and
the cutting calculation can be implemented dynamically with a relatively small calculation
and amount of storage. Here, every vertex and face of a polyhedron are indexed separately
and the array data of each face lists the allocated vertices of each face so that they meet in a
counter clockwise (CCW) order. Namely, the vertices are listed in a CCW order and the
array of face lists is filled with the index of the vertex list.
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3.2. CPH Model Reconstruction

Based on the vertex–face data structure, the reconstruction process of the CPH is
as follows: Let i = 1, 2, . . . , M denote the number of cuts. Given (i − 1)th vertex set
Pi−1 =

{
Pi−1,1, Pi−1,2, . . . Pi−1,k . . .

}
of the parent polyhedron Qi−1 and the ith CP πi in 3D

space, where k denotes k-th vertex. It is then possible to compute renewed vertex and
face lists of the cutting process when the removal vertices and intersection face of Qi−1
are confirmed; in this way, we complete the dynamic data management of the continuous
cutting process and the quantitative evaluation of the cutting algorithm. The updating
process follows three steps:

Step1: Judge removal vertices
In order to yield the update vertices in the cutting process, the first thing is to judge

the vertices to cut off. Intuitively, from the schematic diagram of block cutting as shown in
Figure 2, πi for each cutting divides the whole space into two half spaces [15,17]. According
to binary space partition algorithm (BSP), the positive and negative half space can be
defined by the normal vector of πi as the boundary. The half space pointed by the normal
vector is the positive half space, which is the half space to be removed, and vice versa, the
negative half space is the reserved CPH part, which is the child CPH. Aiming at vertex
set Pi−1 =

{
Pi−1,1, Pi−1,2, . . . Pi−1,k . . .

}
of the parent CPH, the vertex partition equation is

established as follows 
πi = KAi · x + KBi · y + KCi · z + KDi
πik > 0, Pi−1,k ∈ Pri
πik ≤ 0, Pi−1,k /∈ Pri

(1)

where KAi, KBi, KCi, KDi represent the equation coefficients of πi; πik are the solutions of the
plane equation for each vertex of Qi−1; hence, the removal vertex set Pri = {Pri1, Pri2, · · · , Prin}
by the ith cutting can be obtained, and n is the number of vertices to be cut off.

Step2: Calculate intersection vertices (CPG)
If one knows the vertices that should be removed, the edges that should be cut can

be deduced. This means that the CP can be calculated based on some of that information.
For each cutting, one CP intersects with one CPH, then an intersection CPG is generated.
Calculating CPG vertices need to judge the edges of the CP intersecting with the parent
CPH and find its intersection. As can be seen from Section 3.1, the data structure stores the
vertex–face list, ignoring the storage of the edge list. However, the face list is composed of
vertices allocated by the right-hand rule. Therefore, we can connect two adjacent vertices
in the face list to determine the edges. To judge whether the edge of the parent CPH
intersects with πi, Equation (1) can be used. If the two vertices of the edge are located on
the positive and negative half space of the CP separately, the edge is intersected by the CP.
Otherwise, there is no intersection. In addition, by vector parallel condition, the equation
of the intersection edges of the CPH can be written as follows(

x− xiq
)

miq
=

(y− yiq)

niq
=

(z− ziq)

piq
(2)

where (xiq, yiq, ziq) is any vertex on the intersection edge Eiq of the parent CPH,
−→siq = (miq, niq, piq) is the direction vector of Eiq by calculating two adjacent vertices,
and q = 1, 2, . . . , h represents the number of the intersection edges of ith cutting.
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For the intersection edges of the parent CPH and the CP, the intersection point can
be solved by synthesizing Equations (1) and (2). The vertex set of the intersection CPG is
expressed as Pcsi = {Pcsi1, Pcsi2, · · · , Pcsih}. It is worth noting that since each edge of the
CPH is shared by two faces, they intersect with the CP to obtain the intersection point.
After yielding the intersection point, we first store and query the intersection calculation in
the temporary list before obtaining all intersection points in one cutting, then update the
vertex list to avoid redundant and incorrect calculations.

Step3: Update faces of child CPH
Based on steps 1 and 2, the faces of the child CPH can be constructed. As can be seen

from Figure 2, the vertices in the negative half space of πi and the intersection points in
the parent CPH constitute the vertex list of the child CPH. Hence, one can see that the
faces in the child CPH can also be divided into two categories: one is the original face
(remained face, e.g., A′D′DA in Figure 2) or a part of the original face (renewed face,
e.g., A′ABPcs23Pcs22 in Figure 2) of the parent CPH, and the other is the new face of the
intersection CPG, e.g., Pcs21Pcs22Pcs23Pcs24 in Figure 2. To construct the first type face, we
need to delete the vertices of the parent CPH on the basis of steps 1 and 2, and reserve or add
the vertices that do not belong to the data set Pri to the child CPH. If the adjacent vertices lie
on both sides of the CP, the indices of the intersection point Pcsi = {Pcsi1, Pcsi2, · · · , Pcsih} are
added to the face list of the child CPH replacing data information of all Pri and replenishing
renewed vertex indices in the corresponding face list.

To construct the second type face, since a disordered vertices set of the intersection
CPG has been obtained in step 2, and the data structure follows CCW order rule, it is
necessary to reorder the CPG vertices obtained in step 2. It is difficult to sort a random
point with a feature in 3D space even if they are in one plane. Therefore, utilizing a uniform
linear coordinate transformation method, we hope that the 3D data description of the
CPG vertices can be converted into a 2D data description in a plane to analyze where the
centroid (xc, yc, zc) of the transformed CPG coincides with the coordinate origin. If the
normal vector Ni of the CPG, as shown in Figure 4, which is calculated from the vertices of
CPG, is not perpendicular to any plane of XOY, YOZ and XOZ in frame O of CPH, it is
possible to express the coordinate transformation between the frames O and O′. Let the
centroid O′ be the origin of the frame of the CPG, and the normal vector Ni be a coordinate
axis. Referring to Figure 4, frame O′ is obtained from the frame O by translating it along
X, Y and Z axes by xc, yc and zc, respectively, followed by two times rotation of β about
Z and γ about X with respect to the current frames. Therefore, the 4× 4 homogeneous
transformation matrix can be written as T = TPc · Rβ · Rγ where

Rβ =


cos β sin β 0 0
− sin β cos β 0 0

0 0 1 0
0 0 0 1

, Rγ =


1 0 0 0
0 cos γ sin γ 0
0 − sin γ cos γ 0
0 0 0 1

, TPc =


1 0 0 xc

0 1 0 yc

0 0 1 zc

0 0 0 1



Processes 2022, 10, x FOR PEER REVIEW 8 of 19 
 

 

lie in plane X′O′Y′, Y′O′Z′ or X′O′Z′ of the coordinate system with the centroid origin, so 

that its vertices can be sorted simply according to the angle between the vector of the 

origin to the corresponding vertex and the Z′, X′ or Y′ axis. Otherwise, the vertices of the 

CPG can be sorted directly based on the axes of the CPH without coordinate transfor-

mation. At this point, the vertex list of the second type face has been updated completely. 

Z

X

Y
O

O

X

Y

Z
i

N
γ
β

 

Figure 4. Coordinate description. 

The dynamic updating algorithm of the CPH, i.e., the CPH list updating, can be sum-

marized as follows (Algorithm 1): 

Algorithm 1 CPH List Updating. 

Input:  Vertex-Face List of Qi−1, πi 

Output: Vertex-Face List of Qi 

1:  function ConstructCPHList(Vertex-Face List of Qi−1 ,πi ) 

2:  // Construct the Vertex-Face List of the first type face of Qi 

3:  for all F in Face List of Qi−1 do 

4:  for all vertexi−1,j in Fm do 

5:  vertexi−1,j ←Vertex of Qi−1[Fm [j]] //Index the corresponding vertex 

6:  vertexi−1,j+1 ←Vertex of Qi−1[Fm [j + 1]] 

7:  if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1) ≤ 0 then//Two vertices are in negative half-space 

8:  Vertex List of Qi ←vertexi−1,j , vertexi−1,j+1 

9:  Face List of Qi ←indexes of vertexi−1,j and vertexi−1,j+1  

10:  else if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1 ) > 0 then//Two vertices lie on either side of πi 

11:  Ei−1,j ←line(vertexi−1,j, vertexi−1,j+1 ) 

12:  Pcsij ←Ei−1,j ∩ πi //Find the intersection of Ei−1,j and πi 

13:  if Pcsij   T empList then 

14:  T empList←Pcsij //T empList is used to store the Pcsij 

15:  Vertex List of Qi ←Pcsij 

16:  end if 

17:  Face List of Qi ←index of Pcsij 

18:  end if 

19:  end for 

20:  end for 

21:  // Construct the Vertex-Face List of the second type face of Qi 

22:  [Ni ]←ComputeNormalVector(Pcsi) 

23:  [Pcsi ]←3DCoordinateTransformation(Ni, Pcsi) //3D Coordinate transformation for vertex sorting 

24:  Face List of Qi ←index of Pcsi 

25:  return Vertex-Face List of Qi 

26: end function 

Figure 4. Coordinate description.

Rβ, Ry and TPc denote the rotation and translation transformation matrices separately.
Completing the transformation to reach frame O′ from frame O, the vertices of CPG lie in



Processes 2022, 10, 695 8 of 18

plane X′O′Y′, Y′O′Z′ or X′O′Z′ of the coordinate system with the centroid origin, so that its
vertices can be sorted simply according to the angle between the vector of the origin to the
corresponding vertex and the Z′, X′ or Y′ axis. Otherwise, the vertices of the CPG can be
sorted directly based on the axes of the CPH without coordinate transformation. At this
point, the vertex list of the second type face has been updated completely.

The dynamic updating algorithm of the CPH, i.e., the CPH list updating, can be
summarized as follows (Algorithm 1):

Algorithm 1 CPH List Updating.

Input: Vertex-Face List of Qi−1, πi
Output: Vertex-Face List of Qi
1: function ConstructCPHList(Vertex-Face List of Qi−1 ,πi )
2: // Construct the Vertex-Face List of the first type face of Qi
3: for all F in Face List of Qi−1 do
4: for all vertexi−1,j in Fm do
5: vertexi−1,j ←Vertex of Qi−1[Fm [j]] //Index the corresponding vertex
6: vertexi−1,j+1 ←Vertex of Qi−1[Fm [j + 1]]
7: if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1) ≤ 0 then//Two vertices are in negative half-space
8: Vertex List of Qi ←vertexi−1,j , vertexi−1,j+1
9: Face List of Qi ←indexes of vertexi−1,j and vertexi−1,j+1
10: else if πi (vertexi−1,j ) ≤ 0 ∧ πi (vertexi−1,j+1 ) > 0 then//Two vertices lie on either side of πi
11: Ei−1,j ←line(vertexi−1,j, vertexi−1,j+1 )
12: Pcsij ←Ei−1,j ∩ πi //Find the intersection of Ei−1,j and πi
13: if Pcsij /∈ T empList then
14: T empList←Pcsij //T empList is used to store the Pcsij
15: Vertex List of Qi ←Pcsij
16: end if
17: Face List of Qi ←index of Pcsij
18: end if
19: end for
20: end for
21: // Construct the Vertex-Face List of the second type face of Qi
22: [Ni ]←ComputeNormalVector(Pcsi)
23: [Pcsi ]←3DCoordinateTransformation(Ni, Pcsi) //3D Coordinate transformation for vertex sorting
24: Face List of Qi ←index of Pcsi
25: return Vertex-Face List of Qi
26: end function

4. Design Cuttable Big Blocks

In order to realize a high efficiency of cutting, we propose a strategy including a set of
reasonable cutting schemes to ensure a large amount of cutting materials with a shorter
cutting time. The cost of one cut is the MRR (i.e., the ratio of removal block volume to
cutting time) originated by the saw disc intersecting with Qi−1. Our objective is to find a
series of cuts whose total cost–AMRR is relatively large. First, in order to obtain a large
material removal amount, according to the geometrical characteristics of the symmetric
convex bounding box and the BS, the removal vertices of the CPH are searched whose
distance from the surface of the BS is at maximum. The direction is regarded as the normal
vector of the CP for each cut. After that, the CP is constructed based on the extracted
normal vector at the corresponding tangent point on the surface of the BS. It is noted that,
in this process, to ensure a small machining allowance and no overcut at the same time, the
data amount of the BS saved in the triangular mesh format with a certain accuracy is not
optimistic. In particular, due to the increase in the convex vertices after being cut again and
again, the search process causes a problem by requiring a large amount of calculation, thus
increasing the burden of searching. The octree decomposition of the 3D model to reduce
the computational complexity has been considered in many applications [18–20], such as
image processing, collision detection algorithms, mesh generation procedures, and so on,
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which allows the search time to be easily reduced. For this reason, for each cutting, the
algorithm of the octree partition is introduced to divide the OBB and BS into subdivisions at
the same time, in order to search for the vertices of the CPH that are to be removed, which
will reduce the load of the calculation and increase the speed and the search efficiency.

4.1. Octree Space Partition

To build an octree for the given set of 3D mesh points in the geometric space, firstly,
it is necessary to decide the root node, which can be defined as an OBB. Then, we can
subdivide it into multi-level equally sized cubes, called octants as shown in Figure 5, where
each cube region in the space is a node of the octree [18,21]. Different from the binary tree,
in which each node has two branches, each node of the octree has eight branches. The
octree representation of 3D objects recursively subdivides the root cubic data into eight
sub-cube arrays.
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Based on the above description, we need to build a compact OBB wrapping the BS
with a reasonable machining allowance. Generally, the size of the blank workpiece is
selected as the size of the OBB. From this point, a compact CPH QM, bounding the target
BS, can be cut out from the blank workpiece (box). Therefore, we obtain the root node
of the octree, which contains a data set PΣ consisting of all points of the blank workpiece
and spherical shell of the BS. Then, we calculate the geometrical centroid (xbc, ybc, zbc)
of the blank workpiece, which overlaps the center of the BS. Based on this, PΣ can be
generally decomposed. The subdivision nodes of the octree are recursively divided along
the three coordinate axes according to the octree depth, which are determined according
to the labeled sub-cube, while any point P(xs, ys, zs) of the data set are subdivided into a
different sub-cube according to the coordinate location. When the number of the octree
level increases, the cost of the octree storage occupation and node query time consumption
will also increase. Comprehensively considering the factors of the search efficiencyand
node query time in this paper, an octree with a depth of two levels and eight subspaces
is established, which subdivides all the data in the data set into eight groups, assigning
the node cubes Go(o = 1, 2, . . . , 8) of the subdivision depending on the coordinate range,
respectively, as in Equation (3). Since each octree node has eight branches, it is convenient
to number a child node using an appropriate index ranging from one to eight. This index
denotes the subregion covered by each child. An example of the space partition of a BB
and BS is shown in Figure 6, which is used to reduce the calculation amount for searching
in the subdivision region. The data points in each sub-cube are shown in a different color.
For complex cases of octrees with many levels, we can divide subdivision by discussing
solid angles distributed in a corresponding space region.
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G1 : {P ∈ PΣ : xs < xbc ∧ ys < ybc ∧ zs > zbc}
G2 : {P ∈ PΣ : xs < xbc ∧ ys > ybc ∧ zs > zbc}
G3 : {P ∈ PΣ : xs > xbc ∧ ys > ybc ∧ zs > zbc}
G4 : {P ∈ PΣ : xs > xbc ∧ ys < ybc ∧ zs > zbc}
G5 : {P ∈ PΣ : xs < xbc ∧ ys > ybc ∧ zs < zbc}
G6 : {P ∈ PΣ : xs > xbc ∧ ys > ybc ∧ zs < zbc}
G7 : {P ∈ PΣ : xs < xbc ∧ ys < ybc ∧ zs < zbc}
G8 : {P ∈ PΣ : xs > xbc ∧ ys < ybc ∧ zs < zbc}

(3)
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4.2. Construct Cutting Plane

To achieve a short total cutting time, under the principle of “cutting big blocks as few
times as possible” in the cutting process, we construct a series of CPs to ensure that the
material amount is removed as much as possible. The idea is to intuitively remove the most
convex vertex of the convex blocks from a practical point of view. Firstly, the maximum
distance dimax from the vertex of the parent CPH Qi−1 to the surface of the BS can be found.
On the basis of Section 4.1, we can subdivide the vertices of Qi−1 into the sub-cube region
Go by the octree algorithm. Then, each do in the sub-cube Go can be further calculated,
where do is defined as the distance of a normal vector on the BS to the vertex of Qi−1 in
the Go. As shown in Figure 7, from the schematic diagram of cutting, we can see a data
point on the surface of the BS is represented as Pti, and a corresponding vertex of Qi−1 is

represented as Pvi, where the normal vector of the tangent plane at Pti is
−−−→
PtiPvi and the

distance |PtiPvi| is do in Go. Choosing the maximum value of {do} as the cutting thickness
dimax of the removal block, in that way the tangent plane of the BS at the corresponding Pti

is selected as the CP πi.
−−−→
PtiPvi indicates Ni(Ai, Bi, Ci) also.
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The coefficient of πi in Equation (1) can be calculated based on the point Pvi or Pti
and normal vector Ni(Ai, Bi, Ci). For instance, a CP πi is shown in Figure 7 constructed in
the sub-cube region G4. The cutting along πi will produce a big block removal effect by
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adjusting the orientation of the disc saw. Accordingly, using the CPH-updating algorithm
of Section 3, the child CPH Qi can be obtained.

4.3. Calculate Material Removal Volume (MRV)

Some methods have been proposed to calculate the volume of the CPH [16,22,23]. Com-
bining these, we introduce a volume calculation method using vertex coordinates and face
information. As above mentioned, the vertices of the removal block are
Pri = {Pri1, Pri2, · · · , Prin} and Pcsi = {Pcsi1, Pcsi2, · · · , Pcsih}; nevertheless, for the con-
venience of describing the calculation of the volume of the block to be removed, Qri, we
assume it has nl polygonal faces Sr1, Sr2, · · · , Srl , · · · each with a different amount of nq
vertices Pr1, Pr2, · · · , Prq, · · · . The simplest contour of Qri is a pyramid feature. If Qri is
not a pyramid, we can decompose the polyhedron Qri into multiple pyramids Qril with
a common tip Op in a geometrical centroid of Qri as shown in Figure 8. After that, to
obtain the volume of the pyramid, if Srl is not a triangle, we can take the polygon Srl
and decompose it into triangles from any vertex as a common vertex Pr1. The vertices
Pr1, Pr,q−1, Pr,q of each triangle are kept in a CCW order to the triangles with respect to their
outward direction. Moreover, the triangle arrays are stored in the vertex order of CPG.
Eventually, a pyramid Qril is decomposed into multiple tetrahedrons Op − Pr1Pr,q−1Prq
with a common pyramid tip. When Op is assigned at the origin, one-sixth of the mixed

product of
−−−→
OpPr1,

−−−−−→
OpPr,q−1,

−−−→
OpPr,q, namely, one-sixth of the dot product between the normal

vector of each triangle ∆
(

Pr1, Pr,q−1, Pr,q
)

and any vector of
−−−→
OpPr1,

−−−−−→
OpPr,q−1,

−−−→
OpPr,q, can be

denoted as the determinant

1
6

D
(

Pr1Pr,q−1Pr,q
)
=

1
6

∣∣∣∣∣∣
xr1 xr,q−1 xr,q
yr1 yr,q−1 yr,q
zr1 zr,q−1 zr,q

∣∣∣∣∣∣
which is the volume of Op − Pr1Pr,q−1Prq. Thus, by the vector method the following volume
equation of the pyramid Qril for the face Srl can be derived

VSrl =
nq

∑
q=2

V
(
OpPr1Pr,q−1Prq

)
=

nq

∑
q=2

1
6

D
(

Pr1Pr,q−1Pr,q
)

(4)
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Obviously, the volume equation of the polyhedron Qri is

Vci =
nl

∑
l=1

VSrl =
nl

∑
l=1

nq

∑
q=2

1
6

D
(

Pr1Pr,q−1Pr,q
)

(5)

From the above, we can see that it is easier to calculate the CPH volume from the face
index and all vertex information on the faces with less calculation. Of course, one can also
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finally calculate the total removal volume directly from the remaining block. Here, in order
to observe each cutting, we choose to analyze the removal block each time.

5. Optimize Cutting Time

When the material removal volume is constant, the shorter the cutting time is and
the greater the MMR is. In order to minimize the cutting time, we summarize the cutting
process into the second problem finding the shortest path. By analyzing the geometrical
characteristics of the CPG, a path optimization algorithm to determine the feed direction
and cutting point is proposed.

5.1. Time Optimization Model

By cutting with a guillotine style accompanying the aforementioned strategy, the CPH
is completely separated into two convex blocks: one is the removal block Qri and the other
is the child CPH Qi−1. To sum each Vci of Qri, we can obtain the total MRV. Due to the
cutting block being relatively big, we establish the objective function with minimum cutting
time as follows

min
M
∑

i=1
(Ti), Ti =

Li
v f

s.t. πi = KAi · xi + KBi · yi + KCi · zi + KDi

Q0 =
z
∩

m=1
F0m

{Si, Qi} = Qi−1 ∩ πi
Li = W(Si)
Li < R

(6)

where M is the aforementioned number of cuts, generated automatically according to the
required material removal percentage (MRP). Ti is the time consumed at ith cutting. Li is the
feed stroke along each cutting path. v f is the feed speed, which is normally set as a constant.
R is the radius of the circular saw blade. F0m represents a face of the Q0, and m is the face
number of the initial blank box, selected as six here. Si is the intersection CPG generated by
the ith cut. The width W of Si needs to be calculated by the optimization algorithm.

Assuming the time consumption of the motion in space is ignored, the cutting time is
only related to the feed stroke along the intersection with the CPG, which is decided by the
geometrical characteristics of the CPG satisfying the shape constraint of the circular saw at
the same time.

5.2. Intersection CPG Analysis

It can be seen from Section 5.1 that in order to obtain the shortest cutting time, it is
necessary to seek out the shortest cutting path on the CPG. Through analysis, it can be found
that here the path is generally characterized by the span of the CPG along a certain direction.
Therefore, confirming the shortest cutting path can be worked out using the minimum
span (i.e., width) of the CPG [24]. In recent years, the width calculation of the CPG has
been widely used in collision detection and other calculations [19], but few researches and
applications have explored its use in the field of machining. For the intersection CPG Si,
its width is defined as the minimum distance between the supporting parallel lines of Si,
decided by the vertex–edge (V–E) pairs here, in which the relative edge is formed by the
intersection of two faces. The vertices set of the CPG is Pcsi =

{
Pcsij

}
, j = 1 · · · h. The

width calculation is as follows. Utilizing the supporting parallel lines, the V–E pairs can
be scanned to obtain the maximum distance Dj = max

{
Dj,j+1

}
between any vertices of

Pcsi and one edge or extended edge Ej,j+1 in O(h) time for each edge, which is the span of
one edge. Once the scan is completed, we can compare each of these pairs

{
Dj
}

and note
the smallest span distances, min

{
Dj
}

. As a result, that distance is the width W(Si), whose
direction decides an initial feed direction. Here, the corresponding vertex is represented by
Pdj, and the corresponded edge is Ew. For instance, in Figure 9, for the intersection CPG
Pcs1Pcs2Pcs3Pcs4, the width is D4,3(W).
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5.3. Cutting Path Optimization

According to the analysis of the CPG in Section 5.2, if the width direction of the CPG
is used as the cutting feed direction, and the relative vertex and the perpendicular point
on the edge are chosen as the starting point and ending point of the cutting, respectively,
then sometimes, the cutting requirements are unable to be met. In other words, the cutting
range of the circular saw is not able to cover the whole CPG area without a guillotine
cut; an example as shown in Figure 10a. Therefore, a bounding rectangle method of the
CPG is proposed to determine the feed direction and starting point for the cut, as shown
in Figure 10b, where the black dash line is the bounding rectangle of the CPG, and the
red dash line demonstrates the feed direction. From the length Ew and width W of the
bounding rectangle, we can calculate its centroid Or. Along Or, the vertical line to Ew can
be drawn, intersecting Ew with point Ps, and intersecting the opposite edge with point Pe.
Ps and Pe are chosen as the starting point and the ending point of the cut respectively. The
vector direction from Ps to Pe is the optimal feeding direction here. If the cutting with Pe
fails to cut through the block, a certain cut depth compensation should be considered to
recalculate Pe, which can be found by calculating the intersection chord length between the
edge PePdj and the circular saw, achieved by using the bottom vertices of the polygon.
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6. Simulation Results and Analysis
6.1. Simulation Verification

A minimum BS of a three-dimensional penguin is used as the target for the block
cutting simulation. The triangular mesh model of the BS with a radius 200 mm is generated
by using CAD/CAM software, which is stored in STL format. All of the data is loaded on to
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the MATLAB platform, which is used to verify the proposed strategy, thus benefiting from
the powerful computing and drawing ability of MATLAB. In order to avoid any impact on
the finished machined product due to the brittle fracturing of materials in the machining
process, and ensuring a certain machining allowance, we select a 400 × 400 × 400 mm3

blank box, considering that polyhedron is able to be cut by a large enough circular saw. To
verify the proposed strategy for the general cutting condition, the sawing parameters are
given as follows: a rotation speed of the saw blade is 1400 r/min; the radius of the circular
saw blade is 400 mm; the feed speed is set to 180 mm/min. When the MRP reaches 85% of
the total materials that should be removed, the cutting search stops. Importing the data set
of the BS, the data of the spatial region is subdivided according to the octree algorithm in
Section 4.1. For contrast, the simulation experiments are carried out with and without the
octree partition. The search time after data partition is reduced by 31.64% compared with
that without data partition. Some effect graphs of the workpiece’s dynamic reconstruction
during cutting are shown in Figure 11, resulting in a total of 19 cuts. It can be seen from
Figure 11c that the contour of the CPH after cutting is closer to the target BS. Through the
visualization analysis, it can be seen that there is no overcutting phenomenon in the sawing
process, and the proposed methods are feasible. Figure 12 shows the cutting time after
optimization, which is less than or equal to that before optimization. Moreover, we can
find that the total cutting time after path optimization is about 21.3 min, which is about
11.33% less than that without optimization. In Figure 13, the MRV based on the maximum
removal thickness and MRR are shown, where, in order to show these clearly, the blue
solid line and red dash line have been employed to illustrate them with different labels
on the left and right longitudinal axes, respectively. One can see that after nine cuts, more
than 70% of MRP has been reached. After this the increase in MRP becomes slower with
the increase in cutting time, i.e., the removal volume of each cut becomes smaller. This is
an inevitable result of block cutting, in which each cut leads to the rough blank moving
closer and closer to the target BS. By balancing the cutting times and the removal volume,
in this study, we targeted 85% of the total MRP according to some engineering experience
in the milling process [5] and the characteristics of the saw disc. After 19 cuts, the MRV
reaches 2.6× 107mm3, accounting for about 85.34% of the total blank materials that should
be removed. Accordingly, there is no need to set a higher desired MRP for rough cutting.
Through the further analysis of Figure 13 (the 12th–14th cuts bring an increase in MRV),
it can be seen that the cutting algorithm based on the maximum thickness of the removal
block cannot completely ensure the complete removal of the material for each cutting, but
it is nearly at maximum, which is why we also call this process the relatively big block
cutting method. The reason that this phenomenon arises is because the contour of the
removal block becomes more and more irregular with the increase in the number of cuts.
Therefore, the maximum thickness of the removed block materials only reflects a relatively
big block not the maximum removal amount.
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Additionally, an accurate simulation model of the NC (numerical control) machine
tool is established with a 5-axis cutting characteristic and circular saw blade as a simulation
platform in a Vericut environment. Given the same cutting parameters as above mentioned,
the cutting simulations are performed by a generated G code on the NC cutting machine
model to verify the proposed cutting strategy. Some cutting results are shown in Figure 14.
The cutting time displayed in the Vericut environment is about 23.4 min. Ignoring the
travel time in space, it is almost the same as the cutting time in the MATLAB platform.
Moreover, compared with the reconstructed CPH of each cut in the MATLAB platform, the
features of each CPH processed by the 5-axis NC machine tool in the Vericut platform are
roughly the same in shape and size, which further verifies the effectiveness and feasibility
of the cutting strategy for removing blocks proposed in the paper.
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6.2. Comparison of Sawing and Milling

For the removal of materials during stone rough machining, a milling mode is often
employed in the newest automatic level. In order to verify the effectiveness of the block
cutting strategy proposed in the paper, the milling mode with a high capacity during
stone rough machining is chosen as a comparison. The milling parameters are given as
follows [5]: a rotation speed of 6000 r/min; a milling depth of ap = 2 mm; a milling width
of aw = 30 mm, which is the tool diameter of a diamond grinding wheel; a feed speed of
v f = 4000 mm/min. For the same MRV 2.6× 107 mm3, the milling time is 108.4 min and
the AMRR is 2.4× 105 mm3/min. In this case, compared with the cutting results, it can
be seen that the AMRR of the cutting strategy is more than five times that of the milling.
The main reason of the difference is that milling is limited by its processing mode and
milling depth. For the case of removing the materials of a big block, layered milling must
be adopted, which consumes a lot of time and produces dust. However, the block sawing
method with a saw blade can directly carry out the cutting operation with a large feed
stroke and a large block thickness; thereby, the efficiency can be significantly improved. For
special shapes, if a higher cutting performance saw blade [25] is employed, AMRR will be
improved further. More tool cases with different machining capacities in the simulation
will be performed in the future.

7. Conclusions and Future Scope

To address block cutting with a saw disc in the 3D space usually needs with a lot of
hard labor and time. This article has addressed a series of works concerned with analyzing
the geometrical characteristics of convex polyhedrons and convex polygons in order to
complete block cutting automatically and rapidly. This has made efficient and continuous
block cutting available. The optimization strategy for cutting a convex polyhedron out of a
blank box has been presented by combining computational geometric theory and computer
graphics knowledge. Dynamic cutting data management has been implemented with
the vertex–face polyhedron data structure, which means the convex polyhedron model
reconstruction is completed in the updating process. A range of cutting planes with the
maximum thickness of the removal block have been constructed, and the space partition
with the octree algorithm has been used in the process of searching for the vertices to be
removed, which can reduce the search time. The geometrical characteristics of the convex
polygon cutting plane generated by the cutting intersection have also been analyzed, and
the method for an optimized cutting time has been presented. Finally, the suboptimal
solution of the average material removal rate at the rough machining stage has been
quantitatively analyzed. Simulation and comparison results in MATLAB and the Vericut
platform have been provided to demonstrate the effectiveness of the proposed strategy. In
particular, the Vericut platform is able to reflect the real processing environment. We have
investigated a block cutting strategy with a practicable automatic strategy for the first time.
Realistically, it is necessary to utilize multi axis machine tools or robots with good capacity.

In this work, our discussion concentrated on the problem of cutting a symmetric
convex polyhedron with a bounding sphere target. However, there are some directions
that can be extended further: (i) While we constructed cutting planes, we selected the
suboptimal solutions with relatively big blocks and high efficiency. This leads us to think
deeply about the optimal methods for constructing a cuttable maximum block for each
cutting; (ii) as well as typical bounding sphere targets, we can explore the changing factors
that affect the AMRR when cutting the symmetric convex polyhedron with bounding
ellipsoid targets; (iii) as only one high capacity milling comparison has been completed,
some different saw disc parameters and milling modes can be analyzed to obtain a more
general conclusion of the higher MRR with block cutting under a similar mechanical
level; (iv) instead of the bounding sphere and the bounding ellipsoid, we can explore
cutting strategies according to the target polyhedrons of the compact bounding convex or
nonconvex contours of special-shaped products.

Finally, we hope this work can stimulate research and applications in this field.
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