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Abstract: Numerical and experimental investigations of armament systems are an important part
of modern design processes. The presented paper reports problems that were encountered on the
theoretical analysis of the performance of 35 mm anti-aircraft cannon and the way in which they were
solved. The first problem concerns the application of results of closed vessel tests of used propellant
in interior ballistics simulations. The use of a nonstandard form of the gas generation rate equation
solved this problem. The second problem concerned the assessment of projectile–barrel interaction.
The barrel resistance was estimated making use of finite element analysis. The third problem arose
from the need to determine the heat transfer from propellant gases to the barrel. The employed
formula for the heat exchange coefficient and 2D modelling of the heat conduction in the barrel
provided the solution. Selected elements of the theoretical model were validated by shooting range
experiments and data provided by the ammunition producer. Using the considered approach, crucial
ballistic parameters (maximum propellant gas pressure and muzzle velocity) were estimated with an
error of less than 6.0%, without application of additional fitting coefficients. The numerical estimation
of the barrel external surface temperature provided a relative discrepancy with the experimental data
lower than 6% and enabled the estimation of the critical burst length, equal to 14 shots.

Keywords: anti-aircraft cannon; interior ballistics modelling; barrel resistance; numerical simulations;
heat transfer in barrel

1. Introduction

Numerical and experimental investigations of interior ballistics phenomena are an
important part of modern armament design and the modernization process [1,2]. Results
of these works provide the set of data, necessary in mechanical and thermal examinations
of the under-investigation construction. Taking into account the limited number of reports
considering the middle-caliber gun (in the literature small arms and large-caliber guns,
e.g., 120 mm, were mainly considered), the aim of this paper is to present the problems
that the authors encountered on the theoretical analysis of the performance of 35 mm
anti-aircraft cannon and the way in which they were solved. The first problem was con-
nected with the characteristics of single-base propellant applied in the under-consideration
launching system. To obtain realistic values of these characteristics closed vessel tests were
performed. Their results enabled us to apply a nonstandard form of the gas production
equation for the interior ballistics simulations. In the simulations, the thermodynamic
lumped-parameter model of interior ballistics was applied. Many papers provide data
which confirm correctness and efficiency of such a modeling way (e.g., [3–7]).

The second problem concerned the assessment of the interaction between the projectile
and the barrel. In the classical approach [3] the proportionality between the projectile
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kinetic energy and the resistance work is assumed. This problem for artillery systems
was investigated theoretically more thoroughly by several scientific teams, e.g., [7–10].
Authors of [7] investigated numerically the influence of bore wear on the course of barrel
resistance force. In this model, the discussed force was included in the fictionally increased
projectile mass. As the result of FEA simulations, the influence of barrel bore length
and land height were estimated. It was concluded in [8] that, due to the large number
of parameters impacting on the barrel resistance force course, it is necessary to conduct
simulations of the projectile–barrel interaction for each investigated system. In paper [9]
the authors investigated the influence of the implemented computational method on
the results of simulations of the rotating band engraving process. All three considered
methods, i.e., Lagrangian finite element approach (FEM), meshless method (FEM-SPH), and
Lagrangian–Eulerian approach (CEL), provided similar results. Authors of [10] investigated
the influence of propellant charge mass on the barrel resistance force. As stated, the
pressure course has significant influence on the value of the investigated force. Moreover,
the qualitative course of resistance is similarly independent from the propellant charge
mass. Similar conclusions can be found in [11], where this effect was explained mainly by
the Poisson effect. All cited works showed that for the realistic assessment of the resistance
force finite element simulations are necessary. This way was chosen in this paper.

The third problem relates to the theoretical assessment of the critical burst length.
Calculations of the temperature distribution in the barrel are necessary for this assessment.
A relevant formula for calculation of the heat exchange coefficient value was chosen and
2D/3D heat conduction simulations were performed.

To validate the accepted solutions of the mentioned problems, experimental shooting
tests were performed. The producer’s ammunition data and measurements of the projectile
muzzle velocity allowed for validation of the interior ballistics model and the method
of assessment of the resistance force. Application of thermography provided data for
estimation of the thermal model correctness.

2. Experimental Investigations
2.1. Propellant Characteristics

Experimental investigations of propellant characteristics were based on classical closed
vessel tests [12]. Propellant gas pressure courses were provided making use of a 200 cm3

closed vessel HPI B180T (HPI, Austria) presented in Figure 1. The gas pressure value was
measured using an HPI 5QP6000M piezoelectric transducer (HPI, Austria), characterized
by a maximum measurement error of 1%.
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The considered propellant was a single-base one and its grains (shown in Figure 2)
were characterized by dimensions summarized in Table 1.
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Table 1. Propellant grain characteristics.

Parameter Value

Grain type single-perforated
External diameter [mm] 2
Perforation diameter [mm] 0.15
Grain length [mm] 2.8
Web thickness [mm] 0.925

In order to estimate the required characteristics, tests were conducted in conditions
of two values of loading density, i.e., 100 kg/m3 and 200 kg/m3. For each condition, two
tests were carried out. Pressure courses provided by these experiments are presented in
Figure 3.
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Using the methodology of heat losses correction described in [12,13], where losses
are estimated using the descending part of the pressure curve to assess the heat transfer
coefficient, the corrected values and courses were obtained. To correct the pressure curve,
the values of correction for each measured value should be calculated:

∆p(t) =
1
tr

t∫
tign

p(τ) dτ (1)

where p is pressure, t—time, tr—resultant characteristic time of pressure decrease, tign—
ignition time of propellant bed. The applied tr constant can be assessed using the follow-
ing formula:

tr =

td∫
tmax

p(t)dt

pmax − pd
(2)

where pmax is the maximum pressure, pd is a certain value on the descending part of
the pressure curve (assumed value was equal to 0.6 pmax), tmax and td denote the time
corresponding to the mentioned values of pressure.

The obtained maximum values of pressure (for the gas density characteristic for a
completely burnt propellant) enabled assessment of the equation of state (EOS) coefficients
using the least-squares approximation. In the presented considerations, the EOS, whose
source is the Noble–Abel equation, was applied [3,4]:

pg
(
ρg
)
=

RgTgρg

1− αρg
(3)

where Rg is the individual gas constant, Tg—gas temperature, ρg—gas density, α—co-
volume coefficient. The estimated values of the EOS coefficient are summarized in Table 2.
The letters E and Q denote the values obtained from uncorrected (E) and corrected for heat
loss experimental data. In further investigations, the second set of data was applied.

Table 2. Estimated equation of state parameters for propellant gases.

Parameter Value

(E) f = RgTg0 [kJ/kg] 826
(Q) f = RgTg0 [kJ/kg] 895
(E) α, [dm3/kg] 1.366
(Q) α, [dm3/kg] 1.153

In the above-presented table, Tg0 means the flame temperature of burning propellant.
Assuming the following burning law:

dz
dt

= G(z)patm

(
pg

patm

)n
(4)

where z denotes the relative burnt mass of propellant, t is time, G(z) is the dynamic vivacity
function, patm is the atmospheric pressure, pg is the propellant gases pressure and n is
the law exponent; it is possible to estimate the dynamic vivacity function course and the
burning law exponent [13]. In the presented paper this was performed making use of the
manipulated Equation (4):

log10(
dz
dt

) = log10(G(z)patm) + n log
(

pg

patm

)
(5)

Using values of dz/dt and pg for discrete values of z in the interval between 0.3
and 0.8, it is possible to estimate pressure exponent value n making use of the linear
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regression for each value of z. The estimated average value of n was equal to 0.961. The
dynamic vivacity course as the function of relative burnt propellant mass was evaluated
using Equation (4) and is presented in Figure 4. The first period of the burning process is
seriously disturbed by different course of the ignition process in closed vessel conditions in
comparison with ammunition. To minimalize this influence, the first segment of the G(z),
curve was approximated by linear function (red line).
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The values of dz/dt as a function of z and pg can be calculated using the relations:

dz/dt =
(
dz/dpg

)(
dpg/dt

)
(6)

z =
b1 ps

f + b2 ps
, ps = pg − pign, b1 =

1
∆
− 1

ρg
, b2 = α− 1

ρg
(7)

where pign is the pressure generated by the ignition system and ∆ is the loading density.
Pressure time derivative values are calculated based on the recorded pressure courses.

2.2. Ballistics Characteristics

Ballistics characteristics needed for validation of the theoretical model were deter-
mined during in-field shooting. Test were carried out using the measurement set presented
in Figure 5. Applied Doppler radar Weibel SL-525PE (Weibel, Lillerød, Denmark) and
the high-speed camera Phantom v1612 (Vision Research, Wayne, NJ, USA) allowed for
measurements of muzzle velocity, which was estimated based on 7 rounds. Doppler radar
was located at the cannon. In accordance with the producer’s data and known discrepancy
between muzzle velocity and the value extrapolated to the muzzle using Doppler radar
data (from external ballistics region), the maximum error of the muzzle velocity estima-
tion can be equal to 1%, which results in approximately 10 m/s overestimation for the
considered velocity range. In order to minimize the measurement error, the high-speed
camera was positioned 15 meters from the muzzle (perpendicular to the barrel axis). Ad-
ditional application of the thermographic camera FLIR E60 (FLIR, Wilsonville, ON, USA)
was used to measure the temperature increase of the external barrel wall surface. Supple-
mentary tests conducted in laboratory conditions allowed for estimation of temperature
measurement accuracy of the applied approach. Comparison with values registered by the
K-type thermocouple provided maximum discrepancy with the thermographic method
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equal to 2 ◦C for the under-investigation temperature range (15–50 ◦C). For all registered
values, the thermographic results were overestimated, but the temperature differences were
characterized by a lower value of uncertainty. Field measurements were carried out in a
burst regime of fire, i.e., 6-round bursts from a distance of 3 m. To improve the correctness
of measurements, a linear gauge was applied in the FLIR software. For each burst, the
resultant temperature increase was estimated, which enabled the estimation of the mean
temperature changes for each shot. To provide data for the validation of the theoretical
model, the temperature increase of the selected barrel region (Figure 6) was estimated.
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The conducted experimental investigations provided data of the projectile muzzle
velocity. Results of measurements conducted using the high-speed camera and Doppler
radar are summarized in Table 3. The results obtained using the camera confirm the
correctness of the radar measurements, which were applied in the model validation.
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Table 3. Results of velocity measurements.

No. of Shots Value of Projectile Velocity [m/s]

High Speed Camera Doppler Radar *

1 1172 1175
2 1170 1170
3 1175 1180
4 1170 1178
5 1174 1171
6 1173 1182
7 1162 1160

average 1170.9 1173.7
standard deviation 4.34 7.50

max–min 13 22
* Measurements of Doppler radar were applied in the further model validation. The high-speed camera measure-
ments were applied to verify the radar results in case of a disturbed radar signal.

After the experimental investigations of the projectile velocity for single shots, mea-
surements of the increase of the barrel temperature for the burst fire were carried out.
Exemplary temperature distribution on the barrel external surface is presented in Figure 7.
The values of changes of temperature for the applied gauge are summarized in Table 4.
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Table 4. Results of temperature measurements.

No. of Shots in Burst Value of Temperature [deg. C] Temperature
Increase [deg. C]

Before Burst After Burst

6 20.4 58.0 37.6
6 29.3 78.9 49.6
6 60.4 101.4 41.0

average temperature
increase for burst 42.7

max–min 12.0

3. Numerical Simulations

Considered in this paper model of interior ballistics is the lumped-parameters model [14],
based on the thermodynamic approach to modelling interior ballistics phenomena. In com-
parison with the classical approach, presented in [3], the model includes the explicit form of
secondary works carried out by propellant gases. This fact forced the necessity to estimate
the barrel resistance force, which was assessed in a numerical way.

3.1. Interior Ballistics Model

The model is represented by the set of ordinary differential equations, expressing the
fundamental conservation laws:

• Projectile trajectory equation:

vp =
dlp

dt
(8)

where vp is the projectile velocity, lp is its displacement, t stands for time.
• Projectile equation of motion [4]:

dvp

dt
=

(pp − pbr − pair)sp

mp
(9)

where pp is the propellant gas pressure acting on the projectile base, pbr is the barrel
resistance pressure, pair is the pressure of air compressed in front of the projectile, sp is
the projectile cross-section area and mp is the projectile mass.

Due to the existence of gas pressure gradient, the value of pressure acting on the
projectile base was estimated making use of the following relation [4]:

pp = pg +

(
ω(pbr + pair)

3mp

)
/
(

1 +
ω

3mp

)
(10)

where pg is the average propellant gas pressure and ω is the propellant mass.
The pressure of air in front of the projectile, pair, was estimated using the following

relation [14]:

pair = patm + v2
pρ0

γair + 1
4

+

√
v4

pρ2
0

(
γair + 1

4

)2
+ v2

pγairρ0 patm (11)

where ρ0 is the initial air density and γair is the air heat capacity ratio.

• Propellant gases generation rate equation (4).
• Equation defining the gas temperature changes rate [14]:

dTg

dt
=

ω dz
dt
(
qpow − cvgTg

)
+
(
cvgω + cvairmair

)
Tg

dξ
dt −

dWsum
dt − dHout

dt
cvgω(z− ξ) + cvairmair(1− ξ)

(12)
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where Tg is the propellant gases temperature, ω is the propellant mass, qpow is the
isochoric heat of combustion, cvg denotes the specific heat of propellant gases at
constant volume, Wsum is the total work made by gases, ξ is the relative mass of
outflowed gases, mair is the mass of air initially present in the case, cvair is the air
specific heat at constant volume, Hout is the enthalpy of outflowing gases. Moreover,
the following differential equations describing the enthalpy of outflowing gases were
applied [14]:

dHout

dt
=
(
cpgω + cpairmair

)
Tg

dξ

dt
(13)

where cpg and cpair are the specific heat of the propellant gases and air at constant
pressure, respectively. The rate of change of the total work made by gases was
expressed by the following differential equation:

dWsum

dt
=

dEkin
dt

+
dWbr

dt
+

dWair
dt

+
dWterm

dt
(14)

where Ekin is the total kinetic energy of projectile and propellant-gas mixture, Wbr is
the work done against barrel resistance, Wair is the work done against the pressure of
air in front of the projectile, Wterm is the heat losses. The above-described change rates
can be estimated by the following formulae [3,4,14]:

dEkin
dt

=

(
Ip

4π2

η2 + mp +
ω

3

)
vp

dvp

dt
(15)

dWbr
dt

= sp pbrvp (16)

dWair
dt

= sp pairvp (17)

dWterm

dt
=
∫

s int

hterm
(
Tg − Tbs

)
ds (18)

where Ip is the projectile moment of inertia, η denotes the rifling twist, sint is the
heat exchange surface, hterm is the heat transfer coefficient, Tbs is the barrel internal
wall temperature. The heat transfer coefficient was estimated using the form of
approximation available in the literature for pipe interior flows [15,16]:

hterm(x, t) = 0.023Re0.8Pr0.3 (19)

Re =
ρgasvgasdb

µgas
(20)

where x is the axial coordinate, db denotes barrel internal diameter, µgas is the dynamic
viscosity coefficient of propellant gases, vgas is the propellant gases velocity.

Coefficients of the above-mentioned expression were estimated making use of the
approximate propellant gases composition, summarized in Table 5 [17,18]. Diffusive
transport coefficients were assessed using the molar fraction weighted averaging of the
temperature functions of the dynamic viscosity and thermal conductivity of pure species.
Estimated functions are presented in Figure 8 [18].
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Table 5. Approximate propellant gas composition.

Compound Mass Fraction [%] Molar Fraction [%]

CO2 17.4 9.4
CO 53.0 44.9

H2O 15.8 20.8
H2 1.2 14.2
N2 12.6 10.7
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In order to include the internal barrel wall temperature changes, the two-dimensional
Fourier–Kirchhoff equation was solved:

∂Tb(x, r, t)
∂t

=
1

cbρb

(
1
r

∂

∂r

(
λbr

∂T
∂r

)
+

∂

∂x

(
λb

∂T
∂x

))
(21)

where Tb is the barrel material temperature, r is the radial coordinate, λb denotes the
barrel material thermal conductivity, cb is the specific heat and ρb denotes the barrel
material density.

The above-presented equation was supplemented by the condition of initial tempera-
ture (300 K) and the following boundary condition on the internal barrel surface:(→

n sur f · ∇Tb

)
sur f

= −hterm

λb

(
Tbs − Tg

)
(22)

where
→
n sur f in the vector normal to the surface.

• Propellant gases outflow equation [3,14]:

dξ(t)
dt

=
sp

ω + mair

(
2

γg + 1

) 1
γg−1

√
2γg

γg + 1
pg√
RgTg

(23)

where γg is the propellant gases heat capacity ratio.
• Equation of state in form (1). To include the influence of the multicomponent nature

of the mixture, Dalton’s law was applied. In the case of air, the perfect gas equation of
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state was assumed (i.e., α = 0). The propellant gases density was estimated using the
following relation [14]:

ρg =
ω · z

W0 − ω
δ (1− z)

(24)

The above-presented system of equations allows for estimation of the crucial ballistic
parameters of the barrel launching system, i.e., time courses of the gas pressure and
projectile velocity.

3.2. Projectile–Barrel Interaction Model

As mentioned in the previous subsection, the interior ballistics model requires the
value of the barrel resistance force. Finite element analysis was used for determining it. The
geometry of the TPT ammunition produced by MESKO (Poland) was taken into account.
The basic data of the under-investigation system are summarized in Table 6.

To conduct numerical simulations, the CAD geometry of the real model (Figure 9a) was
simplified and meshed (Figure 9b). Geometry simplifications included barrel shortening to
1200 mm bore (to ensure an acceptable simulation time) and reduction of chamfers (to en-
sure satisfactory mesh quality). The applied mesh consisted mainly of hexahedral elements.
Considering the results of [9], the classical Lagrangian FEM formulation was applied.
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In the presented investigations, the barrel was made of steel, which was assumed to
be elastic-perfectly-plastic. Similar assumptions were made for the projectile body—made
of steel and aluminum alloy. The crucial element, i.e., the rotating band was made of OFHC
copper, which was assumed to be elastic-plastic material. In order to take into account the
high strain rate and thermal effects the Johnson–Cook model was used to assess the yield
stress of the material [19]:

Y = (A + Bεn)
(

1 + C ln
.
ε
∗)

(1− T∗m) (25)

T∗ =
T − T0

Tm − T0
,

.
ε
∗
=

.
ε
.
ε0

(26)

where A, B, C, n, and m denote model parameters, ε is the strain, T is the material temperature.

Table 6. Basic data of the under-investigation system [20].

Parameter Value

Barrel caliber [mm] 35
Barrel length [mm] 3150
Rifling twist [deg] linearly variable from 0 to 6.5
Projectile mass [g] ~550

Projectile muzzle velocity obtained using
ballistic barrel [m/s] 1180 ± 15

Average maximum gas pressure estimated
based on series of shots [MPa] ≤420

Furthermore, the Johnson–Cook failure model was applied. In this case the failure
parameter is estimated by the following expression [19,21]:

D = ∑ ∆D = ∑
∆εpl

εJC
f

(27)

where ∆εpl is the effective plastic strain increment. The effective plastic strain at failure is
estimated by:

εJC
f = [D1 + D2 exp(D3σ∗)]

(
1 + D4 ln

.
ε
∗)

(1 + D5T∗) (28)

where D1, D2, D3, D4 are the model parameters, σ* is the stress triaxiality.
In the presented model, the following main boundary conditions were applied:

• fixed barrel inlet;
• gas pressure acting on the projectile bottom;
• all parts of the projectile tied;
• contact between the rotating band and the barrel imposed with a penalty-based

formulation including erosion of the failed elements.

As the initial condition, the initial velocity of all parts was assumed to be equal to zero.
For a projectile displacement greater than 1200 mm (i.e., after the engraving process,

for medium and low pressure acting on the projectile bottom), the barrel resistance force
was extrapolated proportionally to the pressure acting on the projectile bottom [11]. The
proportionality factor was estimated satisfying the barrel resistance force continuity.

3.3. 3-Dimensional Heat Transfer Model

To provide data for validation of the heat exchange model, FE simulations of heat
transfer in the second half (near muzzle region) of the barrel were conducted. The aim of this
part of the calculations, was the estimation of the barrel external wall surface temperature
increase as a function of time. The reason for commercial code application (Ansys for
meshing and LS-DYNA for heat transfer problem simulations) is the generally complicated
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shape of the barrel. The applied design has an important impact on the thermal capacity
of the barrel. Moreover, the commercial code allowed for verification of the heat transfer
problem solution algorithm, applied in the interior ballistics model. Due to the quasi-
axisymmetric shape of the barrel in the second-half area it was also possible to consider the
2D model for verification purposes. During the simulations, the FE models presented in
Figure 10 were investigated. In the case of the 3D model, the symmetry of the investigated
thermal problem allowed for application of a quarter of the full geometry, ensuring a shorter
time for computations. Similar numerical investigations of the 2D heat transfer problem for
the 35 mm barrel launching system were considered in papers [22,23]. Due to the unphysical
model formulation, i.e., short and intensive rectangular approximation of internal surface
thermal loading, the authors of the mentioned papers obtained unrealistic results (barrel
internal surface temperature of 2200 K, which exceeds the material melting temperature).
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3.4. Model Parameters and Results of Numerical Simulations

Numerical simulations of the under-investigation phenomena were conducted in
the iterative way (using the method of successive approximation). Results of the interior
ballistics model were implemented as the above-mentioned boundary condition in the
FE simulations conducted with LS-DYNA explicit code [24]. This approach, using the
projectile equation of motion, allowed for iterative estimation of the barrel resistance force
and, using the interior ballistics model, the courses of gas pressure and projectile velocity as
a function of projectile displacement and time. The calculation process was conducted for
Courant–Friedrichs–Lewy number CFL = 0.7. The mesh sensitivity analysis provided an ac-
ceptable value of the rotating band elements dimension, equal to 0.13 mm. Material models
parameters applied during simulations were summarized in Tables 7 and 8 [19,21,25,26]
and the parameters characterizing the under-investigation launching system are presented
in Table 9.
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Table 7. Constitutive model parameters applied during simulations.

Parameter Value

Material OFHC Copper Steel Aluminum Alloy

Material density [kg/m3] 8960 7850 2710
Young’s modulus [GPa] 124 210 69

Poisson’s ratio 0.34 0.30 0.30
Specific heat [J/(kg·K)] 383
Shear modulus [GPa] 45
Yield strength [MPa] 830

Melting temperature [K] 1356
Initial (room) temperature [K] 300

Constant A [MPa] 90
Constant B [MPa] 292

Constant C [-] 0.025
Exponent n [-] 0.31
Exponent m [-] 1.09

Reference strain rate
.
ε0 [s−1] 1

Table 8. Johnson–Cook failure model parameters for OFHC copper.

Parameter D1 D2 D3 D4 D5

Value [-] 0.540 4.889 −3.030 0.014 1.120

Table 9. Launching system parameters applied in simulations.

Parameter Value

Initial chamber volume W0 [dm3] 0.360
Projectile displacement to the muzzle lm [mm] 2930

Projectile mass mp [kg] 0.550
Propellant mass ω [kg] 0.345

Propellant “force” f [kJ/kg] 895
Co-volume coefficient α [dm3/kg] 1.153

Burning law exponent n [-] 0.961
Propellant gases specific heat ratio γg [-] 1.2

Propellant heat of combustion qpow [MJ/kg] 4.48
Propellant density δ [kg/m3] 1550

Gas constant of propellant gases Rg [J/kg·K] 350
Gas constant of air Rair [J/kg·K] 287

Isochoric specific heat of propellant gases cvg [J/kg·K] 1750
Isochoric specific heat of air cv air [J/kg·K] 750

Primer pressure pign [MPa] 7

In the case of the 2D self-developed and 3D commercial codes heat transfer model,
the temperature dependent material properties summarized in Table 10 were applied.
Due to the availability of limited data at this stage of the investigations, the simplified
simple approximations of thermal conductivity and specific heat (Figure 11) were ap-
plied [22,23,27,28]. During the numerical simulations, taking into account the high rate of
temperature changes, aa temperature increase limit during one time step was imposed. The
computations were carried out for the time sufficient to reach the maximum temperature
at the external barrel surface. Mesh size sensitivity analysis conducted for single shot
allowed for the assumption of the element size applied during simulations. Results of
the influence of mesh size on the interior barrel surface maximum temperature (obtained
during preliminary numerical tests), which is the most sensitive on grid dimension, are
presented in Figure 12. The estimated optimal value was equal to 0.0375 mm and the
applied elements were hexahedral. During the simulations the implicit scheme was applied
(diagonal scaled conjugate gradient iterative solver).
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Table 10. Barrel material thermophysical properties and values of temperature of processes.

Parameter Value

Material density [kg/m3] 7850
Thermal conductivity [W/(m·K)] 19 + 0.014(T-293)

Hardening temperature [K] 1200–1250
Tempering temperature [K] 800–930
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The results of numerical considerations, the ballistic curves (courses of projectile
velocity and gas pressure as the function of time) were estimated and are presented in
Figure 13. As can be observed, for so high a propellant mass, it is necessary to include
the propellant gas pressure gradient. It is of note, that the obtained maximum pressure
obtained in simulations (395 MPa) is acceptably close to the producer’s data mentioned in
Table 6 (420 MPa), ensuring approx. 6.0% of discrepancy. The muzzle velocity provided by
simulations was equal to 1129 m/s, giving 3.8% discrepancy with the experimental value
without application of fitting coefficients.
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Moreover, the barrel resistance pressure (defined as the resistant force divided by
the barrel cross-section area) as the function of projectile displacement was estimated and
is presented in Figure 14. Two important extrema of considered pressure can be noticed
there. The first one (approx. 72 MPa) corresponds to the deformation of the projectile body
threshold (presented in Figure 15). The second extremum (approx. 55 MPa) is the result of
the maximum projectile acceleration generated by the maximum value of propellant gas
pressure [11].
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Coupling of mechanical and thermal problems enabled estimation of the barrel internal
surface heat loading for two cross-sections. The first one corresponds to the cross-section
which was investigated using a thermographic technique and characterized by the lowest
heat capacity. On the other hand, the second one is the most thermally loaded cross-section
close to the chamber and characterized by the largest heat capacity due to l the large barrel
wall thickness. The courses of heat flux at the considered surfaces for the 6-round burst
are presented in Figure 16. As can be seen, the gas-barrel heat transfer intensity decreases
for each shot, which is the result of the barrel surface temperature increase during firing.
The observed transferred heat value reduction coefficient (relative to the first shot), defined
using the following formula:

rn =

∫
time o f shot n

hterm(Tg − Tbs)dt∫
time o f shot 1

hterm(Tg − Tbs)dt
(29)

can be treated as high and equal to 0.91 for the second shot and 0.76 for the sixth shot. These
high values are the result of relatively long intervals between shots (0.11 s) and the high
internal surface cooling rate generated by significant heat flux divergence in the barrel wall.
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As the main result of the thermal model simulations, the temperature courses for the
internal surfaces for the first and second cross-sections were estimated and are presented
in Figure 17. As it can be observed, for each considered shot in the case of the most loaded
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cross-section, the maximum material temperature exceeds the phase transition tempera-
ture. The observed rapid cooling of the material ensured by heat transport in the barrel
allows for hardening of the material, without significant changes of material properties
relative to its initial conditions. On the other hand, for the second cross-section, the phase
transition temperature was not reached in the considered case, but the cooling process was
comparably fast relative to the first investigated cross-section. The temperature course
for the external barrel surface of the first considered cross-section applied in the model
validation is presented in Figure 18. The slowly-changing character of the temperature
increasing process (temperature raising time equal to 23 s), gives the basis for estimation of
the sampling rate during further experimental investigations with temperature registration.
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The provided maximum values of the external barrel surface temperature seem to
be real and are equal for the under-consideration barrel region—40.2 K. Moreover, two
considered approaches (2D and 3D) provided approximately the same values of temper-
ature changes (the noticed discrepancy in peak value was equal to approx. 2%), which
positively verified both models. The obtained order of magnitude for temperature increase
are comparable with the results obtained by other researchers, who investigated artillery
systems, e.g., [28–31].

The results of the transient thermal analyses were necessary for estimation of the
critical burst length. To estimate this limit, we can formulate and apply two main criteria.
First, when the temperature introduces a serious decrease of material strength, it can be
observed above 670–770 K (400–500 deg. C [32]). Taking into account this statement, the
critical burst length is the number of shots which produces a temperature of 770 K in the
barrel material at the beginning of the next shot, which can overload the material due to
the propellant gas pressure.

The second formulated criterion is based on material transitions and defines the
critical length as the number of shots which generates the temperature of the upper limit
of the tempering process (930 K) in the whole investigated barrel cross-section after burst.
The considered conditions would ensure a sufficiently slow cooling rate to temper the
under-investigation material. The above mentioned temperature and the tempering process
would introduce changes in comparison with the process applied by the producer. Taking
into account the minimum of the above-mentioned values, the first criterion should be
applied in the under-consideration problem.

The considered element, i.e., the critical burst length estimation, is important in the
case of the anti-aircraft middle-caliber cannon due to its high fire rate and low mass,
which is not observed in the case of large-caliber guns (e.g., howitzers or tank guns, which
normally shoot several rounds per minute).

4. Discussion

The applied numerical model of the interior ballistics phenomena seems to provide
realistic results. The obtained maximal value of propellant gas pressure corresponds with
the producer’s data, providing 6% of relative discrepancy independently of the applied heat
transfer coefficient definition. A similar discrepancy with experimental data is noticeable
in values of muzzle velocity. Comparison of experimentally obtained data with the results
of numerical simulations shows underestimation of the estimated values, providing 4.8%
relative discrepancy (56 m/s) for the applied assumptions.

The first reason for the observed discrepancies can be associated with the modelling
of the propellant burning process. The dynamic vivacity curve shown in Figure 4 is
determined not only by the geometry of the propellant grains but also by the ignition
process of the propellant bed. This process in the closed vessel differs form that in the
case chamber.

The second reason for the discrepancies is associated with the modeling of the rotating
band–barrel interaction. The implemented model does not include the band wearing pro-
cess, which would decrease the barrel resistance force for the post-maximum period of shot
and provide a higher value of muzzle velocity. Moreover, barrel resistance extrapolation
could additionally introduce some error. In accordance with the literature, for moderate
values of propellant pressure, the used extrapolation can be applied [11], but it is only a
rough estimation of the under-consideration force.

Worth noticing is the significant value of the barrel resistance. The classical approach,
described in [3], assumes proportionality between the kinetic energy of the projectile and
the resistance work. The same refers to the heat losses. Plots shown in Figure 19, based
on the results of simulations, prove, that these assumptions are very far from the real
conditions. Therefore, the barrel resistance and the heat losses should be included in the
explicit forms, as was done in this paper. The implemented iterative approach simplifies
the simulation process. The final results were obtained after the second iteration of the FEA
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calculations. Moreover, it was observed, that for first FEA iteration the barrel material can
be assumed to be rigid, which significantly reduces the computational cost of the whole
process without noticeable differences in the obtained results.
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Numerical estimation of the barrel temperature increase ensured that the results
agreed well with the experimental data. Application of expression (14) resulted in only 6%
underestimation of temperature increase (in comparison with the mean value). Estimated
values of the temperature increase were included in the experimental data dispersion
interval. Moreover, the estimated high values of the transferred heat reduction coefficient
(24), suggest the possibility of application of the heat flux estimated for a single shot in
the thermal analyses for only very short bursts (e.g., three shots) in the case of similar
medium-caliber launching systems.

One of the most important points of the presented paper, i.e., estimation of the critical
burst length, was carried out making use of the iterative process. Conducted simulations for
long bursts allowed for the assessment of the critical length, which was equal to approx. 14
shots. Results of calculations of the radial distribution of the barrel material temperature for
the most loaded region in the cases of 14- and 20-shot bursts are presented in Figure 20. As
can be noticed for the 14-shot burst, the narrow layer (0.2 mm) at the barrel interior surface
starts to reach a temperature above 770 K. The estimated number of shots (especially the
20-round series for which the overheated layer is characterized by a thickness of 1.2 mm)
can be dangerous for the barrel construction and can intensify the barrel wearing process.
The obtained value of the critical burst corresponds with the recommendations of the
producer. The time gap should be applied after 15-shots for an intensive fire regime to
allow for temperature equalization.
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Considering the possible influence of the barrel external surface cooling conditions
on results of measurements (e.g., wind etc.) it is reasonable to investigate the influence of
the external heat transfer coefficient on the results of the calculations. The dependence of
this parameters on the external surface temperature increase is presented in Figure 21. As
expected, the influence of the considered parameter is relatively low and can be treated as
less than 3% with respect to the initially assumed value for the extremely high heat transfer
coefficient (50 W/m2K). Moreover, the estimated value is not dependent on the applied
internal heat flux definition.
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5. Conclusions

The conducted investigations provided the following conclusions:

• data obtained directly from closed vessel tests enable modeling of the interior ballistics
problems for artillery systems (due to relatively coarse propellant grains), providing
sufficient accuracy of the theoretical results;

• interior ballistics models should include the barrel resistance force in the explicit
form [4]. The interaction process is extended, and it is not possible to approximate it
using only the start pressure and the modified projectile mass [3];

• as a novelty, we can conclude, that the applied iterative process of barrel resistance
estimation and involving it in a numerical model (hybrid approach) seems to provide
an acceptable force estimation without fully-coupled models;

• the theoretical estimation of barrel temperature increase (using simplified expressions
defining heat flux between gases and barrel surface) provided acceptable discrepancy
with the experimental data and can be recommended in similar analyses;

• heat transfer between the propellant gases and the barrel wall is one of the most
important losses and it is necessary to include this effect in simulations of interior
ballistics of artillery (even middle caliber) systems;

• the conducted analyses enabled estimation of the critical burst length, equal to ca. 14
shots, which agrees with the producer’s recommendations. In our opinion, the fire
regime proposed by the producer should not be changed.
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