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Abstract: Supercritical water desalination (SCWD) shows great potential in the treatment of high-salt
wastewater with zero liquid discharge. To investigate the salt precipitation behavior and mechanism
in supercritical water, experiments and molecular dynamics simulations (MDs) were used to study
the salting-out process of different salts in supercritical water. The equilibrium concentrations of
NaCl, KCl, CaCl2, Na2SO4, and Na2CO3 in supercritical water were experimentally measured. When
the temperature exceeded 693 K, the salt equilibrium concentration measured in the experiment was
less than 130 mg/L. The solubility decreased in the order of KCl > NaCl > CaCl2 > Na2SO4 > Na2CO3.
To elucidate the effects of different cations and anions in supercritical water on salt dissolution and
precipitation behavior, the potential energy, radial distribution function (RDF) and coordination
number in the system were obtained via molecular dynamics simulation. Experimental and MD
results showed that salt solubility has significant positive correlation with systemic potential energy
and hydration number. MD results indicated that a small ionic radius, large ionic charge, and low
hydration coordination number are favorable for inorganic salts to precipitate and crystallize since
these factors can strengthen the interaction between free ions and salt clusters. Moreover, due to
the formation of multilayer coordination structure, polyatomic ions can achieve a lower equilibrium
concentration than that of the corresponding monatomic ions.

Keywords: inorganic salts; supercritical water; molecular dynamics simulation; precipitation

1. Introduction

Due to the significant decrease in the number of hydrogen bonds and dielectric
constant, the dissolving property of supercritical water (T > 647 K, P > 22.1 MPa) approaches
a nonpolar solvent [1,2], which becomes immiscible with inorganic salts and thus leads
to the precipitation of inorganic salts from water [3–5]. On the basis of this principle,
supercritical water desalination (SCWD) has attracted increasing attention and is expected
to achieve zero liquid discharge compared with the traditional desalting process [6,7].
Odu et al. [8,9] proposed a supercritical seawater desalination process to obtain solid
salt products without the generation of a concentrated salt stream. In addition, through
the combination of SCWD and supercritical water oxidation (SCWO) [2–4], it is expected
that high-salt organic wastewater can be treated economically and efficiently. However,
the complexity of salt precipitation in supercritical water limits the development and
application of the SCWD process.

Many scholars have conducted extensive studies on the salting-out behavior in su-
percritical water. Zhang et al. [10] summarized and analyzed the precipitation behavior
and salting-out mechanism of inorganic salts in supercritical water through the phase
equilibrium, dissolution, crystallization, and deposition of salt. The mechanism of salt
deposition and phase behavior difference in supercritical water is still unclear, mainly due
to the harsh conditions involved in supercritical water, high requirements for experimental
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equipment, and many properties that are difficult to obtain directly through experiments.
Fortunately, molecular dynamics simulation (MD) research of the salting-out process has
gained increasing attention in recent years. The precipitation behavior of salts, especially
NaCl, has been studied by various groups under supercritical conditions. Yang et al. [11]
used the MD method to study the nucleation of NaCl at the solid–liquid interface of a
supersaturated solution. Focusing on changes in radial distribution function (RDF) and
velocity correlation function (VCF), a molecular dynamics investigation of NaCl–H2O solu-
tion from subcritical to supercritical conditions was carried out by Reagan and Harris [12].
The aqueous solution of sodium chloride under ambient temperature and supercritical
conditions was simulated by Koneshan and Rasaiah [13] through MD.

Lümmen et al. [14] simulated the aggregation process of FeCl2 clusters in supercritical
water by MD. During the whole time interval covered by the simulation, water molecules
were found in FeCl2 clusters, which is consistent with the existence of crystal water in
FeCl2 crystals grown from aqueous solution. After that, research [15] shows that particle
formation takes place within a few hundred ps after the jump from ambient to supereritical
condition, and found that the nucleation rate of FeCl2 is in the range of 1035–1037 m−3s−1.
In addition, Zhang et al. [16] simulated the agglomeration process of sodium carbonate
in supercritical water and proposed that electrostatic interactions are the principal factor
affecting the nucleation process of sodium carbonate. They found that, during the salting-
out process, the effect of temperature was greater than that of pressure, and a higher
temperature resulted in an increase in collision rate, facilitating forming the initial sodium
carbonate nucleus.

Since current studies in the open literature are mainly focused on a single type of salt,
a systematic comparison of different salts on their different solubilities in SCW with the
related mechanism analysis in salt precipitation is not available. To fill this gap, in this
paper, NaCl, KCl, CaCl2, Na2SO4, and Na2CO3 were selected as model salts, and through a
combination of experiment and molecular dynamic simulations, the influence of different
anions and cations on the dissolution and precipitation behavior of salt in supercritical
water is explored.

2. Experimental Process and Simulation Method
2.1. Experimental Device and Process

To avoid the corrosion problem by inorganic salts in supercritical water, the experimen-
tal device (Figure 1) was composed of Inconel 625 stainless steel with excellent corrosion
resistance. The internal volume of the reactor was 1000 mL (inner diameter, 100 mm; height,
250 mm). The temperature of the system is measured by thermocouple (±1 K), and the
temperature sensor is used for transmission and output recording. Temperature sensors
were installed in the front, middle, and rear sections of the preheater, in front of the reactor
where the fluid enters after preheating, and inside the reactor to effectively monitor and
control the temperature of the reaction system in real time. Pressure in the experimental
equipment is controlled and regulated by the high-pressure back pressure valve (R42LG-
BBG-11-11-P, Amflo, Shanghai, China). The pressure sensor (±0.1 MPa) installed above the
reactor can accurately measure and record the pressure of the reaction system. Salt crystals
precipitated from solution also affect the operation of the device and data measurement.
Therefore, a filter (SS10TF-MM-2, Swagelok, Solon, OH, USA) was installed in front of the
back pressure valve to ensure that the salt crystals did not flow out of the apparatus, which
would affect the validity of the experimental measurements. To ensure the safety of the
experiment, bursting discs are installed on the top of the reactor. When pressure in the
system is too high and exceeds the normal bearing range of the equipment (the design
pressure of the device is 30 MPa), the pressure can be released through the bursting disc to
avoid accidents.
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Figure 1. Flowchart of supercritical desalination device. 1, Tank; 2, high-pressure pump; 3, check 
valve; 4, preheater; 5, reactor with stirring device; 6, bursting disc; 7, filter; 8, condenser; 9, needle 
valve; 10, back pressure valve; 11, conductivity meter; 12, ball valve; 13, reservoir. 

Using a high-pressure pump (0–500 mL/min), the salt solution (1 wt %) was contin-
uously pumped from the water tank into the reactor, preheated to a temperature as high 
as 573 K, and then heated to the supercritical temperature by an electric heating furnace. 
Pressure in the reaction system was checked and adjusted to the investigated conditions 
by a back pressure valve. The effluent material was cooled to ambient temperature 
through a tubular condenser. Lastly, an online conductivity meter was installed as a rec-
ord of the conductivity of the fluid in real time to monitor the salt precipitation of the salts 
in supercritical water. 

To convert the experimentally measured conductivity into concentration, the rela-
tionship between salt concentration and solution conductivity was calibrated into a sec-
ond-order polynomial (see Equation (1)) [17]. The calibration curves between the concen-
tration and conductivity of different salts are shown in Figure 2. The detailed fitting pa-
rameters are listed in Table 1. 

S= A σ2 + B σ + C (1)

where S is the salt concentration (mg/L), σ is conductivity(μS/cm), and A, B, and C are the 
coefficients of the corresponding terms. 

Table 1. Fitting parameters for Equation (1). 

Salt A B C R2 
KCl 8.39 × 10−6 0.6130 −15.06 0.9998 

NaCl 2.99 × 10−5 0.5157 11.53 0.9987 
CaCl2 1.14 × 10−5 0.5744 −40.29 0.9999 

Na2SO4 2.66 × 10−5 0.7649 −2.66 1.0000 
Na2CO3 2.57 × 10−5 0.5699 −10.24 0.9998 

Figure 1. Flow chart of supercritical desalination device. 1, Tank; 2, high-pressure pump; 3, check
valve; 4, preheater; 5, reactor with stirring device; 6, bursting disc; 7, filter; 8, condenser; 9, needle
valve; 10, back pressure valve; 11, conductivity meter; 12, ball valve; 13, reservoir.

Using a high-pressure pump (0–500 mL/min), the salt solution (1 wt %) was contin-
uously pumped from the water tank into the reactor, preheated to a temperature as high
as 573 K, and then heated to the supercritical temperature by an electric heating furnace.
Pressure in the reaction system was checked and adjusted to the investigated conditions by
a back pressure valve. The effluent material was cooled to ambient temperature through
a tubular condenser. Lastly, an online conductivity meter was installed as a record of
the conductivity of the fluid in real time to monitor the salt precipitation of the salts in
supercritical water.

To convert the experimentally measured conductivity into concentration, the relation-
ship between salt concentration and solution conductivity was calibrated into a second-
order polynomial (see Equation (1)) [17]. The calibration curves between the concentration
and conductivity of different salts are shown in Figure 2. The detailed fitting parameters
are listed in Table 1.

S = A σ2+B σ + C (1)

where S is the salt concentration (mg/L), σ is conductivity(µS/cm), and A, B, and C are the
coefficients of the corresponding terms.

Table 1. Fitting parameters for Equation (1).

Salt A B C R2

KCl 8.39 × 10−6 0.6130 −15.06 0.9998
NaCl 2.99 × 10−5 0.5157 11.53 0.9987
CaCl2 1.14 × 10−5 0.5744 −40.29 0.9999

Na2SO4 2.66 × 10−5 0.7649 −2.66 1.0000
Na2CO3 2.57 × 10−5 0.5699 −10.24 0.9998
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based method, and the cutoff radius was half of the lattice. The equations of motion were 
solved by the Verlet leapfrog algorithm [25] with an integration time step of 0.5 fs. In ad-
dition, total simulation time was 2000 ps. The lattice structure adopted periodic boundary 
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3. Model and Theory 
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mance in the prediction of salt concentration [26−29]. It is based on the assumption that 
the formation of solid salt occurs through two steps: in Step 1, the saltwater complex phase 
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the salt phase. Equations (2) and (3) are a description of the above process: 
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where Mec+ and Xd– are cations and anions, respectively; a and b are the number of atoms 
in the salt molecules; c and d are the valences occupied by the corresponding ions; s and f 

Figure 2. Calibration between salt concentration and conductivity at ambient temperature
and pressure.

2.2. Molecular Dynamics Simulation

The molecular dynamics simulation was completed by the Forcite module in materials
design software package Materials Studio, developed by Accelrys. The molecular force field
was based on COMPASS II [18], which is the updated version of COMPASS [19], whose
validity for supercritical water property calculation has long been verified [20]. For ionic
species, a model consisting of the electrostatic term described by the Coulomb potential
and the van der Waals term described by the Lennard–Jones 9-6 potential was adopted [21].

The thermodynamic ensemble of the simulation system was according to the NPT
ensemble. The NHL method [22] was selected for temperature control, and the Berendsen
method [23] was selected for pressure control. Electrostatic interactions were calculated
using the Ewald method [24]. Van der Waals interactions were calculated using the atom-
based method, and the cutoff radius was half of the lattice. The equations of motion
were solved by the Verlet leapfrog algorithm [25] with an integration time step of 0.5 fs.
In addition, total simulation time was 2000 ps. The lattice structure adopted periodic
boundary conditions. Molecular dynamics simulations of various inorganic salts under
supercritical conditions (23 MPa, 673 K) are carried out to study and analyze the influence
of the difference between anions and cations on the dissolution and precipitation behavior
of inorganic salts in supercritical water.

3. Model and Theory
3.1. Thermodynamic Phase Equilibrium

On the basis of the phase equilibrium of the solid salt and supercritical water phases, a
semiempirical and semitheoretical calculation model was proposed with good performance
in the prediction of salt concentration [26–29]. It is based on the assumption that the
formation of solid salt occurs through two steps: in Step 1, the saltwater complex phase is
formed, and in Step 2, the saltwater is disassociated, which leads to the precipitation of the
salt phase. Equations (2) and (3) are a description of the above process:

a·Mec+∗m·H2O(f) + b·Xd−∗n·H2O(f) � MeaXb∗p·H2O(f) (2)

MeaXb∗p·H2O(f) � MeaXb(s)+p·H2O(f) (3)

where Mec+ and Xd– are cations and anions, respectively; a and b are the number of atoms
in the salt molecules; c and d are the valences occupied by the corresponding ions; s and f
represent the solid phase and supercritical fluid phase, respectively; and n, m, and p refer
to the number of water molecules required for solvation.
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The phase equilibrium constant was defined according to Equation (3):

Ks =
αMeaXb(s)·α

p
H2O(f)

αMeaXb∗p·H2O(f)
(4)

Here, α is the activity coefficient for the components in the equilibrium system.
To simplify this model, we assumed the following:

1. Activity coefficient of solid salt is 1;
2. The interaction between particles in supercritical water was ignored;
3. The fluid phase is an ideal fluid.

The activity coefficient of the solvated salt was thus approximately replaced by the
concentration of the salt, and the activity coefficient of water was approximately expressed
as the density of the pure solvent. The approximate expression of the saltwater complex
dissolution equilibrium constant is

K∗
s ≈

1·ρp
H2O(f)

CMeaXb∗p·H2O(f)
(5)

Here, ρ is the density.
The transformation of Expression (5) can be obtained:

ρp
H2O(f) = K∗

s· CMeaXb∗p·H2O(f) (6)

Equilibrium constant K∗
s is expressed by the Arrhenius equation:

K∗
s = exp

(
−∆Gsolv

RT

)
= exp

(
−∆Hsolv

RT
+

∆Ssolv
R

)
(7)

Substituting Equation (7) into Equation (6) gives

ln CMeaXb∗p·H2O(f)= p lnρH2O(f) +
∆Hsolv

RT
− ∆Ssolv

R
(8)

where R refers to the universal gas constant, T is the system temperature, Gsolv the Gibbs
free energy, Hsolv the enthalpy of the solvent, and Ssolv the entropy of the solvent.

3.2. Potential Energy of the Solution

In the electrolyte solution, there are two main interactions with the ions: one is the
mutual attraction between ions, which acts as an ion association; the other is between
ions and water, which acts as ionic hydration [4] and is quantitatively indicated as the
binding energy (Ebind) of the system. Zhang et al. [16] analyzed the binding energy of
Na2CO3 and K2CO3, and found that binding energy and solubility are positively related.
However, considering this, for different types of salt, the solubility of the salt should also
be introduced for the stability of the salt cluster structure. With stable clusters, it is easy
to resist hydration and maintain the shape, and easy to precipitate out of the solution,
showing low solubility.

The stability of the cluster structure can be represented by the potential energy of the
salt (Esalt). The greater the potential energy is, the stronger the interaction between the ions
in the cluster, and the more stable the structure. Taking into account the two competing
effects and assuming the potential energy (Ewater) of the water is not much different, the
total potential energy of the solution (Esolution) is obtained from the energies of dissolution
and precipitation differences of the salt:

Esolution= Esalt+Ewater − Ebind (9)
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Esolution in Equation (9) is an important parameter for microscopic interactions [16],
which is mainly composed of chemical bond energies, including cross-term interactions
(Ecross) and valence interactions (Evalence), and chemical nonbond energies, including
van der Waals interactions (Evan), electrostatic interactions (Eelect), and hydrogen bonds
(EH-bond). Since the number and strength of hydrogen bonds in the supercritical system
drop sharply, the influence of hydrogen bonds is so small that it is negligible. Therefore,
the potential energy is lastly calculated as Equation (10):

E ≈ Ecross+Evalence+Evan+Eelect (10)

4. Results and Discussion
4.1. Precipitation Process Simulation

As shown in Figure 3a, at 0 ps, free Na+ and Cl− were randomly distributed and
surrounded by water molecules to form solvated hydrated ions. At 60 ps, the hydrogen
bond network in the system was quickly destroyed, and the electrostatic shielding effect
of hydrated ions was reduced. The positive and negative ions attracted each other, col-
lided and formed nucleus under electrostatic interactions. Compared with Figure 3b, the
difference was that Na2SO4 aggregated faster and formed a nucleus at approximately
40 ps. After 500 ps, the cluster structure existed stably under supercritical conditions, and
the cluster structure of Na2SO4 was more compact than that of NaCl, indicating that the
cluster structure of Na2SO4 was more stable, which resulted in a much lower equilibrium
concentration of Na2SO4. As with NaCl and Na2SO4, the deposition process in supercritical
water is extremely fast for various other inorganic salts, and the phenomenon of cluster
aggregation occurred within tens of picoseconds.
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4.2. Equilibrium Concentration of Different Salts

The equilibrium concentrations of different inorganic salts in the range of 653–693 K
under 23 MPa were experimentally measured. Figure 4 shows that the solubility of inor-
ganic salts under supercritical conditions is extremely low, and its trend with temperature is
consistent. With increasing temperature (decreasing density), concentration decreases and
gradually tends to be flat, which is consistent with most related studies [1,27,30]. Especially
in the supercritical state (P = 23 MPa, T = 693 K), the concentration is less than 130 mg/kg.
Experimental data were fitted and calculated by combining Equation (8) obtained from
electrolyte equilibrium theory to predict the further equilibrium concentration of salt in
supercritical water (shown by the dashed line in Figure 4). The fitting effect was very good,
which indicated that the model could describe the salt precipitation process in supercritical
water well. Both the experimental data and fitting results indicated that the solubility of
salt decreases with a decrease in water density, which can be explained as the electrostatic
shielding effect of water molecules on ion weakening, which is more conducive to ion
collision and the association to form initial cluster crystals. Therefore, the higher the tem-
perature (the lower the density) was, the lower the concentration that reached equilibrium.
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However, there were great differences in the equilibrium concentrations of various
inorganic salts, especially for types I and II salts classified according to the salt phase behav-
ior by Valyashko et al. [31], and the concentration difference was even greater. Figure 5a,b
show that the equilibrium solubility of NaCl, KCl, and CaCl2, which belong to the same
type I salt, was significantly higher than that of Na2SO4 and Na2CO3, which belong to type
II salt. At the same time, for salts with the same anion/cation, results enable us to establish
a trend in the equilibrium solubility in the following decreasing order: K+ > Na+ > Ca2+ for
various salts of Cl− and Cl− > SO4

2− > CO3
2− for salts of Na+.

4.3. Stability of Salt Cluster Structure

In order to reveal the difference in salt precipitation behavior in different systems,
the interaction between particles in the system was investigated by molecular dynamics
simulation. Potential energy in the salt solution under supercritical conditions obtained by
molecular dynamics simulation showed that the energy of the cross-term and the energy of
the valence interaction had negligible changes. In addition, the change in van der Waals
energy was small compared with the change in electrostatic energy. Therefore, the potential
energy is mainly affected by electrostatic interactions. Since ions mainly exist in the form
of ion clusters in supercritical water, the solubility of salt in supercritical water is mainly
determined by the stability of the cluster structure.
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As shown in Figure 6, the total potential energy of each system was stable after 500 ps.
The potential energy was negative, indicating that there was attraction between salt particles
in the supercritical system. In addition, the relative size of the potential energy had the trend
of Na2CO3 < Na2SO4 < CaCl2 < NaCl < KCl. Figure 7 shows the mean of the total potential
energy in steady-state time obtained by MD and the equilibrium concentration measured
experimentally of different inorganic salt systems. There was significant positive correlation
between equilibrium concentration and total potential energy. Attraction between ions
increased with the increase in the absolute value of potential energy, which led to the easy
association of ions into ion clusters, and maintained a stable structure. Thus, it is easier for
Na2CO3 to precipitate from the solution and show the lowest solubility, which explains the
difference in solubility of various inorganic salts in supercritical water as S(KCl) > S(NaCl)
> S(CaCl2) > S(Na2SO4) > S(Na2CO3).

Combined with the analysis of cation radius (Table 2), K+ had a larger radius, so the
electrostatic interaction with Cl− was the weakest, and solubility was thus the largest.
Na+ and Ca2+ have similar ionic radii, and both are smaller than K+. Therefore, Na+

is affected by the ionic radius, which causes the electrostatic attraction of Na+–Cl− and
Ca2+–Cl− to be stronger than that of K+–Cl−, showing that the solubility is lower than that
of K+. However, Ca2+ has more charges and greater electrostatic attraction with Cl−, so
it is more prone to precipitation behavior than K+ or Na+. As the cations are the same,
according to their ionic radius, carbonate has a smaller ionic radius than that of sulfate and
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is easier to crystallize, so there was the result of S(Na2CO3) < S(Na2SO4). Chloride ions
have fewer binding sites as monoatomic ions than they do as polyatomic ion groups, and
have the weakest ability to attract cations [28].
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Table 2. Radius of different cations.

Cations. K+ Na+ Ca2+

r (nm) 0.138 0.102 0.100

4.4. RDF and Coordination Number

To further study the interaction between particles in different salt systems from the
microstructure, the radial distribution functions of each system were compared. The radial
distribution function is defined as the probability density of a given particle relative to the
random density of the system at the distance from the center r to ∆r:

g(r)AB =
V
NB

nB(r, ∆r)
4πr2∆r

(11)

where V is the total volume of the system, NB refers to the number of particles of B in the
system, and nB(r,∆r) is the number of particles from r to r+∆r.
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The radial distribution function g(r) can also be used to quantitatively calculate the
coordination number NAB of the B particles around the A particles:

NAB= 4πρB

∫ r

0
r2gAB(r)dr (12)

ρB is the volume density of B particles.

4.4.1. Ion–Ion Interactions

For the analysis of the microstructure, the way to fix one anion/cation identically and
change the other ion is used to compare the performance differences of different ions. The
radial distribution function between Cl− and each cation is presented in Figure 8a. Due to
the difference in the radius of each ion and the effect of the electrostatic force, peak position
and shape vary. The more left the peak position is, the stronger the interaction force and
the closer the agglomeration are. The peak position of Na+ (0.265 nm) was less than that
of K+ (0.295 nm), which is mainly ascribed to the small ion radius of Na+. The ionic radii
of Ca2+ and Na+ are similar, but Ca2+ is a divalent ion, and the electrostatic attraction
between Ca2+ and Cl− is stronger. In addition, according to the coordination number of
each cation in the first coordination layer of Cl− (Table 3), Ca2+ has more coordination
numbers, indicating that it has a stronger ability to bind Cl– and a more stable group
cluster structure.

Table 3. Coordination numbers of the cations in the first coordination layer.

Salt Coordination Layer Interval r (nm) n

K+–Cl− 0–0.425 1.896
Na+–Cl− 0–0.385 2.154
Ca2+–Cl– 0–0.385 2.876

From the radial distribution functions of Na+ and various anions (Figure 8b), it can
still be considered that each anion combines with Na+ to form ion clusters. The number
of peaks directly reflects the change in architecture with distance. Generally, the more
peaks there are, the more layers of coordination structure are considered, and the range
of coordination layers can be determined by trough position. According to the number
of peaks, compared with monoatomic ions such as Cl−, SO4

2− and CO3
2− have multiple

peak positions. SO4
2− and CO3

2−, as polyatomic ion groups, have the ability to attract
more Na+ and have more layers of coordination structure than Cl− does. Thus, their cluster
structure is more stable. The end position of the coordination layer is established according
to the trough position, and the range of the coordination layer between different ion pairs
and coordination numbers of each layer are obtained, as shown in Table 4. SO4

2− and
CO3

2− attract more Na+ in the short range (0–1.000 nm), forming a larger and more compact
cluster structure. This can explain the relatively lower solubility of Na2SO4 and Na2CO3
in supercritical water, and why Na2SO4 and Na2CO3 behave as type II salts. The phase
behavior is attributed to the stronger interaction between SO4

2−/CO3
2− and Na+, so they

are more prone to crystallization.
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Table 4. Anion coordination numbers.

Coordination Layer Salt Coordination Layer
Interval r (nm) n

Layer 1
Cl−–Na+ 0–0.385 2.154

SO4
2––Na+ 0–0.245 1.262

CO3
2−–Na+ 0–0.315 3.834

Layer 2
Cl−–Na+ 0.385–1.000 4.444

SO4
2––Na+ 0.245–0.365 2.576

CO3
2−–Na+ 0.315–0.415 2.590

Layer 3 and above
Cl––Na+ / /

SO4
2−–Na+ 0.365–1.000 14.951

CO3
2−–Na+ 0.415–1.000 13.524

∑ n
Cl−–Na+

0–1.000
6.60

SO4
2−–Na+ 18.79

CO3
2−–Na+ 19.95

4.4.2. Ion–H2O Molecule Interactions

Classic solvation theory proposes that the main reason for the dissolution of solutes in
water is the formation of hydrated particles between ions and water molecules [10]. Water



Processes 2022, 10, 423 12 of 15

has a strong electrostatic shielding effect on the charge of ions, which prevents anions
and cations from combining to form ion clusters due to electrostatic forces. Therefore,
it is necessary to analyze the interaction between ions and water. Molecular dynamics
simulation analysis of the radial distribution function of each ion and water molecule
(Figure 9) sowed that in the range (0.3–0.4 nm) outside the first coordination layer of anions
and cations, the trend of the hydration number for the cations was K+ > Na+ > Ca2+, and
the hydration number trend for anions was Cl− > SO4

2− > CO3
2−.
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Further analysis of the hydration number of each ion approximately in the range of
0.3–0.4 nm shows that the hydration number and solubility trend of each ion are basically
the same (see Table 5); thus, the electrostatic shielding effect of water molecules on ion pairs
is related to the hydrate number outside the first coordination layer of cation and anion
ions. Therefore, the ion pair can further attract more anions and cations under the action
of electrostatic forces to form larger clusters. The hydration number of Ca2+ is somewhat
unique. This is primarily because Ca2+ with two positive charges has a strong ability to
attract water molecules, but its ability to attract Cl− is stronger. Under the influence of
competition, Ca2+ attracts more Cl− to form ion clusters, resulting in a low solubility.
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Table 5. Coordination number between ion and water.

Salt n

K+–H2O 2.444
Na+–H2O 1.786
Ca2+–H2O 1.793
Cl−–H2O 2.441

SO4
2−–H2O 2.152

CO3
2−–H2O 1.952

According to the molecular dynamics data, the total hydration number of each salt
in Equations (2) and (3) was calculated and compared with the equilibrium concentration
obtained by the experiment (Figure 10). As predicted by classical solvent theory, equilib-
rium salt concentration has significant positive correlation with hydration number. This
indicates that the electrostatic shielding effect of water molecules plays a critical role in the
equilibrium concentration of different salts in supercritical water.
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5. Conclusions

This article explored differences in salting-out behavior of different salts in supercritical
water through experiments and molecular simulations. Major findings are listed below:

1. Under the supercritical conditions of 693 K and 23 MPa, the concentration of NaCl
(typical class I salt) was approximately 100 mg/L, and that of Na2SO4 (typical class II
salt) was approximately 20 mg/L, which is 3–4 orders of magnitude lower than the
solubility under environmental conditions (300–400 g/L).

2. The solubilities of different salts are quite different; in descending order, they are
KCl > NaCl > CaCl2 > Na2SO4 > Na2CO3.

3. Molecular dynamics simulation results showed that the equilibrium salt concentra-
tion is controlled by the ion radius, amplitude of charge, and coordination number.
Generally, salt concentration decreases with decreasing ion radius and hydration
coordination number, but with increasing charge. For class II salts such as SO4

2− and
CO3

2− having multilayer coordination structures, their cluster structures are usually
tighter, and their solubilities are normally lower than those of class I salts.
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