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Abstract: Despite great efforts to develop a vaccine against human immunodeficiency virus (HIV),
which causes AIDS if untreated, no approved HIV vaccine is available to date. A promising class of
vaccines are virus-like particles (VLPs), which were shown to be very effective for the prevention of
other diseases. In this study, production of HI-VLPs using different 293F cell lines, followed by a three-
step purification of HI-VLPs, was conducted. The quality-by-design-based process development was
supported by process analytical technology (PAT). The HI-VLP concentration increased 12.5-fold
while >80% purity was achieved. This article reports on the first general process development and
optimization up to purification. Further research will focus on process development for polishing and
formulation up to lyophilization. In addition, process analytical technology and process modeling for
process automation and optimization by digital twins in the context of quality-by-design framework
will be developed.

Keywords: human immunodeficiency virus (HIV); virus-like particles (VLPs); process analytical
technology (PAT); process optimization; digital twin

1. Introduction

In more than twenty-five years of research, several candidate vaccines have been
developed against the human immunodeficiency virus (HIV) that causes acquired immun-
odeficiency syndrome (AIDS), but they have proven ineffective [1,2]. Therefore, further
vaccines need to be developed [2], and virus-like particles (VLPs) have shown promise as
an approach for antigen presentation [3].

VLPs are multiprotein or membrane structures that mimic the organization and con-
formation of authentic viruses. However, unlike natural viruses, they lack the viral genome.
Due to the absence of the viral genome, a VLP, unlike a virus, is replication-incompetent.
Thus, the risk of infecting a recipient is avoided, making VLPs ideal vaccine candidates.
Furthermore, the need for viral inactivation is eliminated [4].

Natural HIV-1 particles consist of the cleaved products of the three viral polyproteins
Gag, Pol and Env. The particles are surrounded by a lipid layer and carry the RNA
genomes within the Gag-formed capsid core. In mature HIV particles, the Gag protein
is proteolytically cleaved into its subunits: matrix (MA), capsid (CA) and nucleocapsid
(NC). In contrast, VLPs can be referred to as immature HIV-1-derived particles formed by
uncleaved Gag precursor proteins surrounded by a host cell lipid layer [5].

Compared to soluble antigens, which need to be injected with adjuvants to induce
a protective immune response, VLPs are able to elicit superior cellular and humoral re-
sponses [6,7]. Due to their repetitive structures and particulate natures, they are very
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efficiently taken up by antigen-presenting cells (APCs). This stimulates both a humoral
and a cellular immune response [5].

VLPs are produced using different types of expression systems. These include bacterial,
yeast, insect, mammalian and plant cells. Large-scale approaches for the production of
HIV-1-Gag VLPs exist, so far, mainly for the baculovirus expression system [8–11].

Production of VLPs in mammalian cells is associated with lower productivity yet
is capable of producing more complex enveloped VLPs such as HIV-1-Gag VLPs [12].
Human embryonic kidney 293 cells (HEK293) are particularly suitable because they are
easy to genetically manipulate, can grow in suspension cultures and can reach high cell
densities [13]. In addition, these 293F suspension cells are already established for the
production of many virus-based products such as viral vaccines and most viral vectors in the
industry [14–17]. Furthermore, 293 cells are rapidly being accepted in the industry because
they have been approved by the FDA and EMA for the production of the first adenovirus-
based gene therapy product (Gendicine®) in China and a therapeutic recombinant protein
(Xigris®) [13].

Despite the many advantages of mammalian cells as an expression system for HIV-
derived VLPs, few production methods have been described in the literature [2,18], espe-
cially for suspension cultures [13].

As enveloped nanoparticles, HIV-based VLPs require special requirements for the
downstream process conditions due to their sensibility regarding shear stress, pH and
osmotic pressure when compared to nonenveloped nanoparticles [5]. Harvest at lab-scale
is usually performed by low-speed centrifugation, which comes with the risk of product
loss [19]. As an alternative, depth filtration has often been applied, as it offers the advantage
of established scale-up methodologies and poses low risk to product retention if cut-offs
are chosen appropriately [20].

Isolation and first purification during early cell line optimization at lab-scale is often
achieved by ultracentrifugation. This difficult-to-scale-up technique often requires several
up to dozens of hours of process time, and product sampling is challenging if yield loss
is to be avoided. To date, either UF/DF, followed by AEXC or direct AEXC, is the most
chosen purification approach [21]. Performing UF/DF prior to AEXC offers the advantages
of fast concentration and quick change to more stable buffer conditions while significantly
reducing the load of side components. Special attention, however, needs to be attributed
towards shear stress, which is why hollow fiber modules are often preferred in this process
stage for enveloped viruses [2]. Early work on ATPE for HIV-derived VLP purification has
been published by Jacinto et al. [22], who demonstrated batch-scale ATPE optimization
based on microfluidic devices for HIV-VLP separation, as well as by Turpeinen et al. [23],
who developed a process for continuous purification of an enveloped viral particle utilizing
a 15 mL scale settler.

AEXC weak and strong AEX resins as well as membrane adsorbers and monoliths
have been investigated in the literature [24]. A summary of chromatography purification
studies can be found in the work of Segura et al. [25].

AEXC is, in most cases, followed by either a subsequent UF/DF or SEC for desalt-
ing/buffer exchange as well as for improving purity. Recently, Gonzales-Dominiguez at al.
published a purification framework consisting of harvest by depth filtration, purification
by AEXC, desalting by SEC and subsequent storage by lyophilization [26].

Quality-by-design (QbD) methods are required by regulatory authorities and are
becoming the standard in biopharmaceutical process development. QbD-based process
development can be used to establish causality between process parameters and relevant
product quality characteristics. The holistic QbD approach can ensure consistent product
quality from development to piloting to production [27,28]. QbD is based on a validated
design space in which consistent quality can be ensured to avoid out-of-specification (OOS)
batches [27,29]. The design space can be spanned by experiments or rigorous process
models. The workflow for developing a QbD process is shown in Figure 1 [30,31].
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Figure 1. Workflow of model validation based on a QbD-oriented approach. In the first step, the
QTPPs are defined. Subsequently, the CQAs are defined and a risk assessment of the influence of
various process parameters on the CQAs is carried out. The risk assessment results in a design space
for the process parameters to be investigated, which can be examined either via experiments or by
means of a rigorous process model. Based on the results, a control strategy is defined, which can be
continuously compared online via PAT with the actual state of the system. Strict implementation of
this strategy allows continuous process optimization.

CQAs are the basis for further process development and must be dynamically adapted
as new knowledge about the process or product is gained. They are obtained through
experiments and risk management [32,33]. The definition of the design space that fol-
lows the risk analysis is traditionally conducted experimentally. Design-of-experiments
(DoE) methods are usually used to reduce the experimental effort [34]. The final steps of
QbD-based process development are the development of a process analytical technology
(PAT)-supported control strategy and continuous improvement [32,35]. Process analytical
technology is not limited to in-line analytics, but by integrating it into the QbD concept, it
enables process control to generate real-time release tests (RTRTs). These enable a reduction
in the effort required for quality assurance and, at the same time, ensure sufficient product
quality [36].

In bioprocesses, process parameters such as cell density, product concentration and
nutrient concentration are currently determined by sampling from the bioreactor and
offline analysis, such as size exclusion chromatography or infrared spectroscopy [36–43].
Evidence of the feasibility of RTRT through online PAT tools is still pending. This leads to
multiparameter optimizations and a significant experimental effort [36].

One of the most widely used concepts for advanced process control is model pre-
dictive control (MPC) [44–48]. These MPCs manipulate the input variables to match the
desired setpoints while maintaining critical process constraints. This is conducted by
using process model optimization routines that predict future process behavior for the
next time frame [49,50]. Common drawbacks of these models are that the model results,
over time, deviate from the actual plant data due to aging, fouling or blockage phenomena
or the summation of prediction errors in cyclic processes [51]. This is usually remedied
by updating the internal model states, e.g., concentrations, with real plant data [52]. This
real-time plant data must be obtained via potentially time-consuming and invasive offline
analytics if PAT tools are not implemented, resulting in a gap between actual process data
and analytics [53,54]. This gap poses not only the risk of a mismatch between the current
process state and the model but also a general mismatch between the current process and
the process analytics that prevent data-driven process decisions, especially for continuous
processes. Implementing an advanced control strategy requires sensors, in-line or at-line
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analytics, to be selected in early process development. Initially, in-line studies naturally
started with the first unit, cultivation, either in fed-batch or perfusion mode, with a wide
range of applications [36,55–59]. For example, Raman, Fourier-transformed infrared (FTIR)
or fluorescence spectroscopy or recording spectra using a diode array detector (DAD) can
be used. It should be noted that the presence of too many minor components can reduce the
detection accuracy [60], which is why the combination of several spectroscopic techniques
was proposed to improve the detection accuracy [61]. The PAT approaches presented above
can be used in combination with a digital twin for advanced process control and in-line
process optimization [36,62]. Moreover, PAT can compensate inaccuracies of the model by
providing additional measurement data [36].

Therefore, the aim of this study was to develop a process optimized with respect to cell
number and product concentration for the production of HIV-VLPs in human suspension
293F cells. For this purpose, a concept for cell separation and product purification as well
as concentration by a combination of ultra- and diafiltration (UF/DF), followed by anion
exchange chromatography, was developed, as shown in Figure 2. To demonstrate QbD-
based development, including the provision of real-time control strategies, spectroscopic
technologies were investigated for their suitability for process monitoring and control.
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Figure 2. Process flow diagram showing the production and subsequent three-step purification of
HIV-Gag VLPs. Capture is achieved by depth filtration, ultrafiltration/diafiltration (UF/DF) is used
for concentration and initial purification, and anion exchange chromatography is used for further
purification and concentration of HIV-Gag VLPs.

2. Materials and Methods
2.1. Fed-Batch Cultivation

Three different stable recombinant producer cell lines were used: 293FwtGag cells,
which express Gag precursor proteins derived from the HIV-1 molecular clone NL4.3,
293FMos1.Gag cells, which produce Gag proteins composed of mosaic epitopes originating
from different HIV-1 variants, and 293FMos1.Gag/Mos2S.Env, which coexpress mosaic
Env proteins [6,63,64].

The cells were cultured in a 2 L glass bioreactor at 37 ◦C, pH 7.1, 60% relative oxygen
saturation based on air saturation. A segmented three-blade impeller with a blade pitch of
30◦ was used as the stirrer, which was operated constantly at 433 rpm. Cell concentration
was determined once a day using the trypan blue exclusion method and a CEDEX XS
(Roche Holding, Basel, Switzerland) for automated counting of the cells. Glucose and lac-
tate concentrations were determined daily from clarified cell culture samples by enzymatic
measurement using a LaboTRACE Compact (TRACE Analytics GmbH, Braunschweig,
Germany). Feeding was started after 3–4 days when the glucose concentration had dropped
to <2 g/L. Different base and feed media, as well as different feeding strategies regard-
ing glucose addition, were tested during the optimization of the cultivation as detailed
in Table 1.



Processes 2022, 10, 419 5 of 22

Table 1. Base and feed media and target glucose concentration after feed addition of the seven
fed-batch cultivations.

Cultivation Cell Line Base Medium Feed Medium Glucose Target Concentration
after Feed Addition (g/L)

1 293FwtGag PM PM 6
2 293FwtGag PM Feed Supplement 6
3 293FwtGag SMD Feed Supplement 6
4 293FMos1.Gag SMD Feed Supplement 3–3.5
5 293FMos1.Gag SMD Feed Supplement 2.5–3
6 293FMos1.Gag SMD Cell Boost 6 2.5–3
7 293FMos1.Gag/Mos2S.Env SMD Feed Supplement 2.5–3

2.2. Depth Filtration

Cell separation and initial purification of the product were performed using depth
filters having different pore sizes. All filters used, including cut-off and manufacturer, can
be found in Table 2.

Table 2. Depth filters tested for clarification of cell culture broth.

Filter Cut-Off (µm) Manufacturer

Millistak+D0HC 0.55–9 Merck KGaA, Darmstadt, Germany

PDP8 6–30

Pall Corporation, Port Washington, NY, USAPDK5 1.5–20
PDH4 0.5–15
Bio20 0.4–1

The depth filtration section consisted of a LaPrep P130 HPLC pump (VWR Interna-
tional GmbH, Radnor, PA, USA) and one, two or three depth filters connected in series.
Pressure sensors were installed upstream and downstream of the filters. The flow rate was
measured using a mass flow controller. The pump was controlled using a PID-controller
in LabVision software to achieve a constant LMH of 60 L·m−2·h−1., and the fermentation
broth was continuously stirred using a magnetic stir plate to prevent the cells from settling
during the experiment. Filters were flushed with water according to the manufacturer’s
instructions before use.

2.3. Ultra- and Diafiltration

Initial product purification and subsequent concentration were conducted using a
Sartorius SARTOFLOW® Slice 200 benchtop system (Sartorius, Göttingen, Germany) and a
hollow fiber module with a pore size of 0.05 µm (MIDIKROS 20 cm 0.05 µm PS 0.5 mm;
Repligen Corporation, Waltham, MA, USA). The starting medium was the fermentation
broth harvested at the end of the fed-batch cultivations, which was pooled and, in some
cases, already prepurified by centrifugation at 500 g or by depth filtration (see Section 3.2).
The obtained solution was filtered using the Millistark+ DOHC depth filter (Merck KGaA,
Darmstadt, Germany) before performing UF/DF. First, a concentration was performed
and a sample of the permeate was taken to track any possible product loss. Then, a buffer
change was performed using seven diafiltration volumes, corresponding to a residual salt
content of 0.8%, to the Tosoh SEC buffer. The experiments were carried out according to a
three-stage experimental design (Table 3), with 350 mL serving as the initial volume in each
case. The transmembrane pressure, the flow rate and the concentration factor were varied.
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Table 3. Experimental plan to characterize the concentration step by ultrafiltration.

Experiment TMP (bar) Shear Rate (s−1) Concentration Factor (-)

1 1.5 3738 7
2 1.5 3738 3
3 1.5 1249 3
4 0.5 1249 3
5 0.5 3738 7
6 0.5 1249 7
7 0.5 3738 3
8 1.5 1249 7

2.4. Anion-Exchange Chromatography

After concentration and diafiltration, the product phase was loaded onto two an-
ion exchange columns without further sample preparation. Screening and fractionation
were performed on a weak anion exchange resin (Fractogel® DEAE, Merck KGaA, Darm-
stadt, Germany) and a strong anion exchange resin (POROS™ GoPure™ HQ, Thermo
Fisher Scientific Inc., Waltham, MA, USA). For the step elution assay, both columns were
equilibrated with 10 column volumes of 95% mobile phase A (50 mM 2-(4-(2-hydroxyethyl)-
1-piperazinyl)-ethanesulfonic acid (HEPES), pH 7.2) and 5% mobile phase B (50 mM HEPES,
2000 mM NaCl, pH 7.2), resulting in a concentration of 100 mM NaCl as equilibration
condition. 1 mL (1 CV) of UF/DF product was injected for screening, while 5 mL (5 CV)
was loaded for preparative fractionation experiments. Elution was performed in steps
of 300 (15% MPB), 700 (35% MPB), 900 (45% MPB), 1200 (60% MPB) and 2000 mM NaCl
(100% MPB), with a holding time of 10 CV each. After elution, re-equilibration was per-
formed for another 10 CV. The flow rate was set to 1 CV/min, resulting in a total procedure
time of 70 min. After each elution, sanitization was performed with 1 M NaOH for at least
10 CV. For fractionation, UV extinction was observed at 280 nm. In addition, UV absorbance
at 260 nm was recorded as a complementary wavelength. Fractions from the flowthrough
(FT) and each elution step (E1 to E5) were sampled. The methodology is based on work
published by Pereira Aguilar et al. [65] and González-Domínguez et al. [26].

2.5. Processing of Spectral Data

The spectra were processed and analyzed using Unscrambler® X (Camo Analytics AS,
Oslo, Norway). The raw spectra were analyzed using descriptive statistics to determine an
appropriate preprocessing strategy. An important tool was the scattering effect plot, which
plots the spectra against the mean spectrum and shows the type of distortion effects present
in the spectra. Preprocessing was adjusted to the effects that occur, such as additive and
multiplicative effects, to extract the maximum information content. Elimination of additive
effects was conducted by deriving the spectra, performing the first derivation. Multiplica-
tive effects were removed by applying the standard normal variant (SNV) method. If both
effects occurred, both approaches were combined, with a derivation first and then the SNV
applied to the spectra. To minimize noise, the number of smoothing points during the
derivation was dynamically adjusted to the degree of noise. The pretreated spectra were
then used to correlate changes in concentrations with changes in spectral intensity in spe-
cific spectral regions using partial least squares regression (PLSR). A detailed description of
the basics of PLSR was published by Esbensen et al. [66]. In the regression, the number of
main components was limited to a maximum of 5 factors to prevent overfitting of the data.
Using the spectral line loading plot, the score plot and the plot of the described variance
against the number of principal components, the quality of the model was assessed.

2.6. SEC Analysis

Size exclusion chromatography was used for the product analysis. The TSKgel
G5000PWXL (7.8 × 300 mm; 10 µm; Tosoh Bioscience LLC, Montgomeryville, PA, USA)
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was used for this purpose. Elution was isocratic at a flow rate of 0.2 mL·min−1, with the
elution buffer consisting of 50 mM HEPES and 100 mM NaCl, which had a pH of 7.2.

2.7. p24 ELISA

p24 enzyme-linked immunosorbent assay (p24 ELISA) was performed for detec-
tion of VLP. The ELISA kit VPK-108-H (HIV p24 ELISA, 96 Assays) was purchased
from BioCat GmbH (Heidelberg, Germany). The assay was performed according to the
manufacturer’s instructions.

3. Results and Discussion
3.1. Optimization of Cultivation of HIV-Gag Producing 293F Cells

A total of seven fed-batch cultivations was performed. In the course of the cultivation
experiments, different base media and feeds as well as feeding strategies were investigated
with the aim of achieving a high VLP concentration as cost-effectively as possible. The
viable cell concentration curves are shown in Figure 3.
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Figure 3. (a) Viable cell concentration over process time of the seven fed-batch (FB) cultivations,
(b) relative VLP concentration based on SEC analysis, (c) glucose concentration, (d) lactate concentra-
tion, (e) glutamine concentration.

The first cultivation experiments were performed with the base media PM (FB1) and
SMD (FB2). These showed that SMD is more suitable for the cultivation of 293 cells.
These results were consistent with previous experiments performed in shake flasks (not
shown). SMD was thus further used as the primary base medium. The initial cultivation
experiments (Cultivations 1–3) were fed daily such that the glucose concentration after
feed addition was 6 g/L ± 0.5 g/L. In subsequent experiments, the glucose concentration
after feed addition was reduced to 2.5–3 g/L, which allowed higher cell numbers to be
achieved (Cultivations 4–7). Further cultivation experiments were aimed at reducing
the feed addition and realizing part of the added glucose by feeding a 400 g/L glucose
solution to make the process more cost-efficient while maintaining the same productivity. In
combination with the HEK FS feed medium, the maximum live cell number concentration
was 11.4 ± 0.3 million cells·mL−1. In the first cultivation, the cells grew until the ninth day,
like those of the second cultivation, but then the death phase had already begun. By using
the SMD medium and the HEK FS feed in Fermentations 3–5 and 7, the maximum live cell
number concentration increased to 14.2 ± 0.7 million cells·mL−1 for the first cell line, to
17.4 ± 0.3 million cells·mL−1 for the second cell line and to 17.1 ± 0.9 million cells·mL−1

for the third cell line. At Fed-batch 6, only a live cell concentration of 14.2 ± 1.2 million
cells·mL−1 was achieved with the Cell Boost 6 feeding solution. Based on the courses
of glucose and glutamine concentrations, it can be concluded that the cells were overfed
in the first two fermentations, because, here, the concentrations rose to a maximum of
11.0 ± 0.02 g·L−1 glucose and 5.1 ± 0.05 mM glutamine. By adjusting the feeding strategy
to a glucose concentration in the medium of 2.5–3 g·L−1 glucose, the glucose and glutamine
concentrations decreased to a minimum of 0.1 ± 0.004 g·L−1 glucose and 0.3 ± 0.006 mM
glutamine, respectively, without hindering cell growth, thus allowing feed savings. A
further advantage resulting from the lower glucose concentration is that the metabolism of
the cells shifted towards lactate consumption.

In the context of QbD-based process development, process monitoring by means of
process analysis technologies is in focus. Therefore, for the cultivation of HI-VLP producing
293F cells, a PAT concept should be developed, which allows the analysis of the main pro-
cess parameters. For this purpose, four spectroscopic methods were investigated: Raman
spectroscopy, FTIR spectroscopy, UV/Vis spectroscopy and fluorescence spectroscopy.

As part of the process development, PLS models were developed to predict the live
cell count, glucose, lactate concentration and relative product concentration. First, a PAT
model was created for the respective target variables based on the first cultivation. On the
one hand, the model was used to predict the concentration in the subsequent cultivation;
on the other hand, it was further trained with an increasing number of cultivations in order
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to cover a larger range of process conditions. The validation of the model was conducted
by comparing the concentrations measured off-line with the predictions of the PLS model
for the respective cultivation. Figure 4 shows an example of the prediction of Fed-batch 5
based on the PLS model trained from Fed-batch Cultivations 1–4. It was found that Raman
spectroscopy was most suitable for the prediction of live cell count as well as glucose
concentration, with R2 values 0.82 and 0.94, respectively. For the prediction of lactate
concentration, FTIR was slightly more suitable than Raman spectroscopy, with an R2 of 0.85.
Product concentration could be predicted sufficiently well using fluorescence spectroscopy,
with an R2 of 0.71. UV/Vis spectroscopy was not sufficiently suited for the prediction of
either of the analyzed process parameters.
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Figure 4. Raw spectra (top), processed spectra (middle) and predictions (bottom) of VCD and
glucose concentration using Raman spectroscopy, lactate concentration using FTIR spectroscopy and
relative product concentration using fluorescence spectroscopy.

The prediction of VCD and glucose concentration for the cultivation of CHO cells is
widely described in the literature. The results presented here show that this procedure is
also transferable to the cultivation of HEK293 cells. Lactate concentration is an important
process variable, as lactate accumulation inhibits cell growth. In the context of cultivation
optimization (see Figure 3d), lactate accumulation could be prevented by adjusting the
feeding strategy. Prediction by FTIR spectroscopy is able to detect and predict broad
concentration ranges of lactate.

3.2. Characterization of Harvest via Depth Filtration

For distinct and quantitative depth filter characterization, a selection of appropriate
depth filter media was investigated. The main optimization criterion was filter capacity
for economic and cost reasons as well as to avoid unnecessary product dilution due to
pre- and postflush volumes. Usually, four distinct blocking mechanism models are used
to explain the increase in pressure during constant flux filtration: complete, standard and
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intermediate blockage, as well as cake formation. In this work, filter media from Merck
Millipore (Billerica, MA, USA)were investigated and characterized in terms of filter capacity
and blocking behavior.

Graphical representation of these four blocking models is shown in the following in
detail in the example of FB5 harvest by Millistak®+D0HC filter media (Merck Millipore,
Billerica, MA, USA), which is shown in Figure 5. On first sight, cake filtration (Figure 5c,
bottom right) was not able to qualitatively describe the pressure rise. This was expected,
as the cultivation fluid is a polydispersed mixture ranging from 100 to 200 nm sized HIV-
1-derived VLPs, exosomes, etc., up to approx. 15–60 µm sized bioparticles, such as cells,
cell agglomerates and precipitates. Therefore, no single, monodispersed, nondeformable
particle shape should be present to form a cake layer as dominant filtration resistance.
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Figure 5. Characterization of blocking mechanism during depth filtration of FB5 (Millistak®+D0HC)
by linear regression: (a) complete; (b) standard; (c) intermediate; (d) cake. Blue lines represent linear
regression results.

Other than cake filtration, each blocking model is linked to a conceivable phenomenon,
e.g., in the case of complete blocking, particles in same size range as or slightly larger
than the filter pores gradually block entire pores. The filter media discussed here was
composed of two different media grades: a cellulose layer with a filter rating of 5–8 µm
(Millistak®+CE25) prior to a combination of filter aid material (diatomaceous earth) and a
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cellulose layer with a filter rating of 0.6–1 µm (Millistak®+DE40). For such heterogenous
filter material, a complete blocking mechanism was unlikely. The two remaining blocking
models, standard and intermediate, were investigated in more detail. Best regression
achieved with both models for FB5 and FB6 are shown in Figure 6.
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Figure 6. Increase in pressure over filter capacity during constant flux direct (not preclarified) depth
filtration of FB5 (left) and FB6 (right). Experimental pressure values (black circles) are compared
with standard blockage (red line) and intermediate blockage models (blue line).

The standard blocking model could very accurately describe the observed filter resis-
tance with adj. R2 of 0.997 (FB5) and 0.975 (FB6), while the intermediate model failed to pre-
dict the quick pressure rise prior to total filter blocking (see Table 4 and Figure 6). Although
filter capacities of down to 50 L/m2 are within specification of Millistak®+D0HC [67],
potential benefits by preclarification were investigated.

Table 4. Summary of regression efficiency achieved with intermediate and standard blocking models
for FB5 and FB6.

Model Equation Blocking Constant (dm−1) Adj. R2 Feed

Intermediate p = p0 × exp(Ki × v) 0.06713 ± 2.3 × 10−4 0.852 FB5
0.05564 ± 1.6 × 10−4 0.761 FB6

Standard p = p0

(
1− Ks×v

2

)−2 0.03436 ± 2.79 × 10−4 0.997 FB5
0.02824 ± 5.63 × 10−4 0.975 FB6

In contrast to direct harvest filtration described above, the same filter media now
showed a clear intermediate blocking behavior, instead of the standard mechanism, while
also achieving much higher filter capacities of up to 260 L/m2, as desired (Figure 7). While
in the case of direct filtration of FB5 and FB6, particles must be present, leading to the
fouling of much larger pores [68], here, the intermediate blocking phenomenon suggested
that a combination of cake and complete blocking was observed. This was probably
attributable to exosome and VLP agglomerates and other particles that were within the
5–8 µm (Layer 1) or 0.6–1 µm (Layer 2) filter rating size ranges.

The achieved regression efficiency was very high in the case of intermediate blocking,
with adj. R2 of 0.948 (PC1) and 0.976 (PC2), as summarized in Table 5. The difference in
filter capacities for PC1 and PC2 was caused by different particle loads.



Processes 2022, 10, 419 12 of 22

Processes 2021, 9, x FOR PEER REVIEW 12 of 22 
 

 

  
Figure 7. Increase in pressure over filter capacity during constant flux direct (not preclarified) depth 
filtration of preclarified feed PC1 (left) and PC2 (right). Experimental pressure values (black circles) 
are compared with standard blockage (red line) and intermediate blocking models (blue line). 

The achieved regression efficiency was very high in the case of intermediate blocking, 
with adj. R² of 0.948 (PC1) and 0.976 (PC2), as summarized in Table 5. The difference in 
filter capacities for PC1 and PC2 was caused by different particle loads. 

Table 5. Summary of regression efficiency achieved with intermediate and standard blocking mod-
els for preclarified feed PC1 and PC2. 

Model Equation Blocking Constant (dm⁻1) Adj R2 Feed 

Intermediate 𝑝 =  𝑝଴ × expሺ𝐾௜ × 𝑣ሻ 0.01876 ± 8.1 × 10⁻⁶ 0.948 PC1 
0.03015 ± 9.4 × 10⁻⁶ 0.976 PC2 

Standard 𝑝 =  𝑝଴  ൬ 1 − 𝐾௦ × 𝑣2 ൰ିଶ
 

0.00705 ± 1.28 × 10⁻⁶ 0.792 PC1 
0.001025 ± 3.39 × 10⁻⁶ 0.489 PC2 

3.3. Intermediate Purification and Concentration via Ultra- and Diafiltration 
In this work, initial product purification and subsequent concentration of the har-

vested cell culture fluid (HCCF) were achieved by ultrafiltration utilizing hollow fiber 
modules (MIDIKROS 20 cm length, 0.05 µm pore diameter, 60 fibers, polysulfone). The 
characterization WAS conducted by statistical evaluation of an experimental plan (Table 
3) that covered the combinations of the key process parameters: transmembrane pressure 
(TMP), shear rate and the final relative increase in concentration. 

The desired range of concentration increase in this work was set due to robustness 
reasons, as bigger concentrations were difficult to reproduce given the dead volume (50 
mL) of the utilized set-up being in the same range and higher than the final concentrate 
volume at a factor of five and beyond. The range of TMP was set to cover a reasonable 
range, with 0.5 bar being a typical lower pressure value and 1.5 bar being as close to the 
specified pressure limit of 2 bars without risking total blockage during the initial filtration 
stage. Shear rate was set purposely low at a range of 1249 s⁻1 up to 3738 s⁻1. Although 
typically for mid- to high-fouling solutions, shear rates of 6000 s⁻1 to 10,000 s⁻1 are recom-
mended [69], a most-gentle-as-possible filtration process was desired due to the fragility 
of the VLP. 

The statistical model was built stepwise by minimizing the p-value threshold using 
an algorithm featured in JMP®16.0. Applying the standard least squares routine to the so 
found model effects resulted in a very high regression efficiency (Figure 8) for the actual 
LMH, with an adj. R2 of 0.997 and a p-value of 0.0022. As the experimental design was set 
inside a shear rate space, which is prone to fouling, the lowest LMH could be found as 
expected at 1249 s⁻1, while the highest LMH could be found at a shear rate of 1738 s⁻1. With 

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Pr
es

su
re

 (m
ba

r)

Filter Capacity (L/m²)

 D0HC
 Intermediate
 Standard

0 25 50 75 100 125 150 175 200

0

500

1000

1500

2000

2500

Pr
es

su
re

 (m
ba

r)

Filter Capacity (L/m²)

 D0HC
 Intermediate
 Standard

Figure 7. Increase in pressure over filter capacity during constant flux direct (not preclarified) depth
filtration of preclarified feed PC1 (left) and PC2 (right). Experimental pressure values (black circles)
are compared with standard blockage (red line) and intermediate blocking models (blue line).

Table 5. Summary of regression efficiency achieved with intermediate and standard blocking models
for preclarified feed PC1 and PC2.

Model Equation Blocking Constant (dm−1) Adj R2 Feed

Intermediate p = p0 × exp(Ki × v) 0.01876 ± 8.1 × 10−6 0.948 PC1
0.03015 ± 9.4 × 10−6 0.976 PC2

Standard p = p0

(
1− Ks×v

2

)−2 0.00705 ± 1.28 × 10−6 0.792 PC1
0.001025 ± 3.39 × 10−6 0.489 PC2

3.3. Intermediate Purification and Concentration via Ultra- and Diafiltration

In this work, initial product purification and subsequent concentration of the har-
vested cell culture fluid (HCCF) were achieved by ultrafiltration utilizing hollow fiber
modules (MIDIKROS 20 cm length, 0.05 µm pore diameter, 60 fibers, polysulfone). The
characterization WAS conducted by statistical evaluation of an experimental plan (Table 3)
that covered the combinations of the key process parameters: transmembrane pressure
(TMP), shear rate and the final relative increase in concentration.

The desired range of concentration increase in this work was set due to robustness
reasons, as bigger concentrations were difficult to reproduce given the dead volume (50 mL)
of the utilized set-up being in the same range and higher than the final concentrate volume
at a factor of five and beyond. The range of TMP was set to cover a reasonable range, with
0.5 bar being a typical lower pressure value and 1.5 bar being as close to the specified pres-
sure limit of 2 bars without risking total blockage during the initial filtration stage. Shear
rate was set purposely low at a range of 1249 s−1 up to 3738 s−1. Although typically for
mid- to high-fouling solutions, shear rates of 6000 s−1 to 10,000 s−1 are recommended [69],
a most-gentle-as-possible filtration process was desired due to the fragility of the VLP.

The statistical model was built stepwise by minimizing the p-value threshold using
an algorithm featured in JMP®16.0. Applying the standard least squares routine to the so
found model effects resulted in a very high regression efficiency (Figure 8) for the actual
LMH, with an adj. R2 of 0.997 and a p-value of 0.0022. As the experimental design was
set inside a shear rate space, which is prone to fouling, the lowest LMH could be found as
expected at 1249 s−1, while the highest LMH could be found at a shear rate of 1738 s−1. With
a log-worth of 3.201, it was the most significant process parameter. The second strongest
single-effect was the final concentration factor (log-worth of 2.01), with the interaction of
those two effects being as expected in between both (log-worth of 2.633). In the face of
the strong influence that these parameters have on the process, the TMP and interactions
involving this factor became insignificant, with log-worth smaller than 0.2, which is the
threshold for significance (Figure 9).



Processes 2022, 10, 419 13 of 22

Processes 2021, 9, x FOR PEER REVIEW 13 of 22 
 

 

a log-worth of 3.201, it was the most significant process parameter. The second strongest 
single-effect was the final concentration factor (log-worth of 2.01), with the interaction of 
those two effects being as expected in between both (log-worth of 2.633). In the face of the 
strong influence that these parameters have on the process, the TMP and interactions in-
volving this factor became insignificant, with log-worth smaller than 0.2, which is the 
threshold for significance (Figure 9). 

  

Figure 8. Actual-vs-predicted plot for the concentration step during ultrafiltration (left). Statistical 
key-numbers of obtained response values as Boxplot (right). 

 
Figure 9. Effect summary in the concentration step during ultrafiltration. 

With this information, a rudimentary design space could be defined, i.e., in the form 
of a contour plot (Figure 10). The highest LMH, and therefore highest productivity, can 
be achieved at a high shear rate. As mentioned above, this indicates the operation within 
a fouling prone process range. Though it could be concluded that higher fluxes can be 
achieved by operating at increased shear rates above 3738 s⁻¹, this could lead to product 
loss due to shear-stress-induced disintegration. Higher concentration factors result in 
smaller LMH, especially at low shear rates. Nonetheless, there is a tradeoff between de-
creased flux and increased concentration, which is favorable for the subsequent down-
stream. 

Shear Rate

Shear Rate x Concentration Factor

Concentration Factor

TMP x Shear Rate

TMP x Concentration Factor

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Log-worth (log p)

Figure 8. Actual-vs-predicted plot for the concentration step during ultrafiltration (left). Statistical
key-numbers of obtained response values as Boxplot (right).

Processes 2021, 9, x FOR PEER REVIEW 13 of 22 
 

 

a log-worth of 3.201, it was the most significant process parameter. The second strongest 
single-effect was the final concentration factor (log-worth of 2.01), with the interaction of 
those two effects being as expected in between both (log-worth of 2.633). In the face of the 
strong influence that these parameters have on the process, the TMP and interactions in-
volving this factor became insignificant, with log-worth smaller than 0.2, which is the 
threshold for significance (Figure 9). 

  

Figure 8. Actual-vs-predicted plot for the concentration step during ultrafiltration (left). Statistical 
key-numbers of obtained response values as Boxplot (right). 

 
Figure 9. Effect summary in the concentration step during ultrafiltration. 

With this information, a rudimentary design space could be defined, i.e., in the form 
of a contour plot (Figure 10). The highest LMH, and therefore highest productivity, can 
be achieved at a high shear rate. As mentioned above, this indicates the operation within 
a fouling prone process range. Though it could be concluded that higher fluxes can be 
achieved by operating at increased shear rates above 3738 s⁻¹, this could lead to product 
loss due to shear-stress-induced disintegration. Higher concentration factors result in 
smaller LMH, especially at low shear rates. Nonetheless, there is a tradeoff between de-
creased flux and increased concentration, which is favorable for the subsequent down-
stream. 

Shear Rate

Shear Rate x Concentration Factor

Concentration Factor

TMP x Shear Rate

TMP x Concentration Factor

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Log-worth (log p)

Figure 9. Effect summary in the concentration step during ultrafiltration.

With this information, a rudimentary design space could be defined, i.e., in the form
of a contour plot (Figure 10). The highest LMH, and therefore highest productivity, can be
achieved at a high shear rate. As mentioned above, this indicates the operation within a foul-
ing prone process range. Though it could be concluded that higher fluxes can be achieved
by operating at increased shear rates above 3738 s−1, this could lead to product loss due to
shear-stress-induced disintegration. Higher concentration factors result in smaller LMH,
especially at low shear rates. Nonetheless, there is a tradeoff between decreased flux and
increased concentration, which is favorable for the subsequent downstream.

Figure 11 shows an example of the chromatogram of Tosoh SEC for Experiment 5
for the product of the depth filtration, which served as feed for the UF/DF, the permeate
of the ultrafiltration and the diafiltration as well as the retentate of the diafiltration. It
can be clearly seen that, as expected, no VLPs, which migrate through the column with a
retention time of approx. 30 min, were present in the permeate of the ultrafiltration and
the diafiltration. On the other hand, the concentration by a factor of seven can be easily
recognized. In addition, hardly any secondary components were present in the retentate,
which indicates good purification in the diafiltration.
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Figure 11. Chromatograms of Tosoh SEC of the product of depth filtration (black line), permeate of
ultrafiltration (green line) and diafiltration (blue line) of Experiment 5 and retentate of ultrafiltration
(red line) of Experiment 5 with VLP peak marked.

During diafiltration, spectra were continuously recorded using a FTIR spectrometer
and a DAD. In addition, a fluorescence spectrum was recorded at the beginning and at
the end of the diafiltration. The spectra generated during Experiments 1 and 2 are shown
in Figure 12. The color gradient from blue to red shows the progress of the diafiltration
over time. The blue spectra in the FTIR (Figure 12a,b) represent water as a reference. As
the experiment progresses, a peak appears at a wavenumber of 1200 cm−1 that increases
in intensity with time. An interaction at this wavenumber is especially characteristic for
carbon–nitrogen compounds [70]. In the DAD (Figure 12c,d), the intensity of the measured
absorption decreases with increasing experimental time.



Processes 2022, 10, 419 15 of 22

Processes 2021, 9, x FOR PEER REVIEW 15 of 22 
 

 

the end of the diafiltration. The spectra generated during Experiments 1 and 2 are shown 
in Figure 12. The color gradient from blue to red shows the progress of the diafiltration 
over time. The blue spectra in the FTIR (Figure 12a,b) represent water as a reference. As 
the experiment progresses, a peak appears at a wavenumber of 1200 cm⁻1 that increases in 
intensity with time. An interaction at this wavenumber is especially characteristic for car-
bon–nitrogen compounds [70]. In the DAD (Figure 12c,d), the intensity of the measured 
absorption decreases with increasing experimental time. 

In the fluorescence spectra (Figure 12e,f), there are three characteristic peaks at the 
wavelengths of about 300, 390 and 590 nm, the first and the third peak being significantly 
larger at the end of the process than at the beginning. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

9001000110012001300140015001600
0.040

0.045

0.050

0.055

0.060

0.065

0.070

 1
 2
 3
 4
 5
 6
 7

In
te

ns
ity

 (A
U

)

Wavenumber (cm-1)

9001000110012001300140015001600
0.040

0.045

0.050

0.055

0.060

0.065

0.070

In
te

ns
ity

 (A
U

)

Wavenumber (cm-1)

 1
 2
 3
 4
 5
 6
 7

150 200 250 300 350 400 450 500 550

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
bs

or
pt

io
n 

(A
U

)

Wavelength (nm)

 1
 2
 3
 4
 5

150 200 250 300 350 400 450 500 550

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
bs

or
pt

io
n 

(A
U

)

Wavelength (nm)

 1
 2
 3
 4
 5

200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (A
U

)

Wavelength (nm)

 1
 2

200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (A
U

)

Wavelength (nm)

 1
 2

Figure 12. PAT results of UF/DF experiments for product concentration and purification. Raw spectra
for: FTIR, (a) Experiment 1, (b) Experiment 2; DAD, (c) Experiment 1, (d) Experiment 2; fluorescence,
(e) Experiment 1, (f) Experiment 2.

In the fluorescence spectra (Figure 12e,f), there are three characteristic peaks at the
wavelengths of about 300, 390 and 590 nm, the first and the third peak being significantly
larger at the end of the process than at the beginning.
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3.4. Anion-Exchange Chromatography

The decision whether to use a weak or strong anion exchange resin for further pu-
rification after UF/DF was based on initial screening experiments with Experiment 6’s
product phase. Figure 13 shows step elution on both the POROS™ GoPure™ HQ column
packed with strong anion exchange resin (left) and the Fractogel® DEAE column packed
with weak anion exchange resin (right). In both cases, a clear elution peak can be observed
at each NaCl step. While the holding time of 10 CV on the strong AEX resin was sufficient
to achieve baseline separation, tailing into the subsequent fraction was observed on the
weak AEX resin, especially between E1 and E3. In order to achieve optimal purification at
even higher column loading without investing time for further method optimization, the
decision was made to use the strong AEX resin.
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Figure 13. Screening of the elution step on a packed column of strong anion exchange resin POROS™
GoPure™ HQ (left) and a packed column of weak anion exchange resin Fractogel® DEAE (right).

The higher column load results in an overall stronger tailing and higher peak intensities
(Figure 14, top). The fractions were subdivided according to UV absorbance at 280 nm
(Figure 14, top, blue bars). SEC analysis showed that no product was lost in the flowthrough
or in E2 (Figure 14, middle). As can be seen in the SEC analytics of the AEX fractions, the
VLP was enriched in fraction E3.
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Figure 14. Fractionation with 5 CV loading on a packed column with strong anion exchange resin
POROS™ GoPure™ HQ at a flow rate of 1 CV/min (top). SEC analysis for product concentration
and purity (middle). Overview of the increase in concentration and purity (bottom).
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4. Summary

The aim of this work was to optimize the production of HIV-VLPs using PAT and to
investigate different process control strategies. In addition, a concept for cell separation by
depth filtration and subsequent product purification and concentration using a combination
of ultrafiltration and diafiltration was to be developed. For this purpose, three different
cell lines were cultivated in different media in combination with different feeds. It was
shown that by combining SMD with HEK FS as feed medium, a maximum live cell number
concentration of 17.4 ± 0.3 million cells·mL−1 was obtained, which corresponds to an
increase of 272% compared to the first cultivation, in which PM was used as medium and
production medium spiked with 44 mM glutamine was used as feed. In addition, over-
feeding of the cells was noticed, especially in the determination of glucose and glutamine
concentrations, whereupon the feeding strategy was adjusted so that instead of 6 g·L−1

glucose, 2.5–3.0 g·L−1 glucose was fed. In addition to saving on a cost-intensive feeding
medium, this had the positive effect of shifting cell metabolism towards the consumption of
lactate, which is critical for cell growth. Furthermore, the optimization of the medium and
the resulting higher concentration of live cells led to an increase in productivity, resulting
in a relative increase in product concentration by a factor of 16.7. For the separation of the
cells from the cultivation broth, different depth filters were used, either individually or
connected in series, which were characterized in this work with regard to their blocking
mechanisms. The Millistak®+D0HC from Merck Millipore could be described very well by
the standard blocking model with a minimum R2 of 0.975 when used as a direct harvest
filter. With pretreatment, the main blocking mechanism shifts towards the intermediate
model, which describes filtration very well with a minimum R2 of 0.948. Moreover, pre-
treatment increased the filtration capacity from a maximum of 60 L·m−2 up to 260 L·m−2.
Furthermore, it was shown that process analysis is suitable for predicting process parame-
ters, such as glucose and lactate concentration, as well as the target parameters’ live cell
counts and product concentrations. For this purpose, Raman, FTIR, DAD and fluorescence
spectra were recorded and evaluated using statistical data analysis. A prediction model was
developed based on the first cultivation in each case, and this model was used to predict the
data from the offline analysis of the second cultivation. These were subsequently included
in the training data set to increase the predictivity of the subsequent cultivation. It has
been shown that even a change in the process conditions such as the feeding strategy, the
medium used or the cell line used allows prediction. For example, a fluorescence detector
is best suited for the prediction of the product concentration. It was shown that model
training improved the prediction efficiency from an R2 of 0.24 to an R2 of 0.71. In addition,
the highest predictivity of glucose and viable cell density was obtained by using a Raman
spectrometer. Thus, the efficiency of the prediction of glucose concentration for cultivations
with the same media combination by model training increased the R2 to 0.94. The R2 for
the prediction of the viable cell density was increased by 81% to an R2 of 0.82 by expanding
the training data set. For the prediction of the lactate concentration, the FTIR spectrometer
proved to be suitable. Using FTIR spectra, a R2 of 0.85 could be obtained. Only a prediction
of glutamine concentration was not satisfactory with any of the four spectrometers.

5. Conclusions

The presented process is effective in producing, concentrating and purifying HIV-Gag
VLPs: Figure 15 shows the relative VLP concentration and purity over the process as a
summary. After efficient removal of cells and bigger cell debris by depth filtration, the
UF/DF concentrates the VLP approximately 7.5-fold and, at the same time, achieves a purity
of approximately 20%. In the following anion exchange chromatography, the purity can be
increased to over 80% and concentration increased to 12.5-fold initial VLP concentration.
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Figure 15. Relative product concentration and purity over the process.

Further research will be dedicated to another chromatography step following AEX to
polish the VLPs and achieve >99% purity as well as to formulation and freeze drying of the
purified VLP solution to cover the full VLP production process.
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