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Abstract: Breast cancer (BC) is one of the most common malignancies in women. Although
widespread successful synthetic drugs are available, natural compounds can also be considered
as significant anticancer agents for treating BC. Some natural compounds have similar effects as
synthetic drugs with fewer side effects on normal cells. Therefore, we aimed to unravel and analyze
several molecular mechanisms of genistein (GNT) against BC. GNT is a type of dietary phytoestrogen
included in the flavonoid group with a similar structure to estrogen that might provide a strong
alternative and complementary medicine to existing chemotherapeutic drugs. Previous research
reported that GNT could target the estrogen receptor (ER) human epidermal growth factor receptor-2
(HER2) and several signaling molecules against multiple BC cell lines and sensitize cancer cell lines
to this compound when used at an optimal inhibitory concentration. More specifically, GNT mediates
the anticancer mechanism through apoptosis induction, arresting the cell cycle, inhibiting angiogene-
sis and metastasis, mammosphere formation, and targeting and suppressing tumor growth factors.
Furthermore, it acts via upregulating tumor suppressor genes and downregulating oncogenes in vitro
and animal model studies. In addition, this phytochemical synergistically reverses the resistance
mechanism of standard chemotherapeutic drugs, increasing their efficacy against BC. Overall, in this
review, we discuss several molecular interactions of GNT with numerous cellular targets in the BC
model and show its anticancer activities alone and synergistically. We conclude that GNT can have
favorable therapeutic advantages when standard drugs are not available in the pharma markets.
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1. Introduction

Breast cancer (BC) is considered a major public health problem globally. According to
“Cancer statistics, 2020”, BC is responsible for around 15% of all cancer-related deaths in
females and is the world’s third leading cause of mortality among cancer-related deaths [1].
Although there are some common risk factors including aging, sex, gene mutations, family
history, and unhealthy lifestyle [2] that can increase the possibility of developing BC,
abnormal hormones, namely estrogen, play an effective role in BC progression [3]. Various
chemotherapeutic agents are currently available and have been utilized to treat BC for
more than half a century [4]; however, a standard cure for the disease still cannot be
found in clinical trials. Some existing drugs cause numerous detrimental side effects,
including a reduction in blood cells [5], sore throat, hair loss, ulcers, fatigue, nausea,
change in taste, appetite loss, constipation, diarrhea, change in skin color, and changes
in several hormone levels [6], and some limitations are high costs, low effectiveness,
and allergic reactions [7]. Moreover, multidrug-resistant (MDR) tumor formation is the
major limitation of conventional treatment, leading to increased cancer-related deaths.
Numerous drug molecules, such as anthracyclines (doxorubicin, mitoxantrone, epirubicin),
taxanes (docetaxel, paclitaxel), and capecitabine were previously used successfully, but
now, cancer patients are becoming resistant to these drugs [8]. However, new plant-
based phytochemicals from natural origins may be reliable therapeutic constituents for
treating numerous diseases, from infections [9] to cancers [10,11] in humans. Therefore,
modern medical science emphasizes better treatments for BC with natural nutritional
components [12–14]. Under the phytochemicals, phytoestrogens are a natural dietary
component with potent anticancer activity against multiple cancers, most importantly,
ovarian, prostate, colorectal, and breast [15–18].

Genistein (GNT) is a soy-based phytoestrogen and is consumed regularly by Asian
populations [19]. This phytoestrogen may be one of the leading compounds as its safe and
anticancer activities have already been tested in several in vitro and preclinical models.
GNT has a structural similarity to 17 β-estradiol, and it binds to estrogen receptor ER-β
with higher affinity compared to ER-α [20,21]. Several studies suggested that GNT exerts
pleiotropic effects, including inhibiting the cell cycle [22], inducing the cellular apoptosis
process [23,24], suppressing metastasis [25] and angiogenesis [26], modulating oxidative
stress [27], and mammosphere formation [28] in in vitro BC models. Furthermore, this
phytoestrogen exerts several synergistic activities, as it can enhance the efficacy of conven-
tional drugs against BC and reduce chemotherapeutic drug resistance [29]. Moreover, many
in vivo [30] and clinical trials [31] also support that GNT can be considered a promising
chemopreventive agent for treating different types of BC.

However, besides the cancer-fighting properties, some contradictory results, including
promoting malignant cell growths [32] and activating the ATP-binding cassette subfamily
C member 1 (ABCC1) protein, makes GNT more difficult to use as an anticancer agent.
Therefore, we summarize the available evidence on the chemopreventive and therapeutic
potentials of GNT in BC as follows: first, we discuss the molecular pharmacology of GNT
in breast tissue; second, we assess molecular mechanisms and synergistic mechanisms to
determine the relationship between GNT intake and BC risk; third, we review possible
mechanisms of overcoming the resistance of some anticancer drugs.

2. An Overview of Genistein

GNT (IUPAC: 5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one) is a phytoestrogen
isoflavone that is widely available in soybean, mature seeds, and raw soy-related food
(5.6–276 mg/100 g) [32] and legumes (0.2–0.6 mg/100 g) [33]. It possesses lower oral
bioavailability, perhaps due to its high solubility in several polar solvents such as acetone,
dimethylsulfoxide, and ethanol, and its poor solubility in water [34]. The oral administra-
tion of GNT results in high absorption with a tmax (transport maximum) of 5–6 h and t1/2
of 8 h [35,36]. GNT is rapidly distributed throughout the body by crossing the placental and
blood–brain barriers. GNT is most abundant in the gastrointestinal tract and liver tissue
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distribution, consistent with its enterohepatic recycling [37]. GNT is absorbed rapidly and
nearly completely in vivo. It showed high permeability in Caco-2 (3 × 10−5 cm/s) and
Madin–Darby canine kidney (MDCKII) cells, where passive diffusion is the major transport
mechanism, but breast cancer resistance protein (BCRP) may play a role in limiting its
intestinal absorption [38–40]. In vivo, GNT undergoes a complex and extensive metabolic
process that includes oxidation, reduction, conjugation, glucuronidation, sulfation, and lim-
ited CYP reaction [41–46]. Coldham et al. found that GNT has the highest concentrations in
the gut (18.5 µg/g), followed by the liver (0.98 µg/g), plasma (0.79 µg/g), and reproductive
tissues (uterus, ovary, vagina, and prostate, ranging from 0.12 to 0.28 µg/g) in rats [47]. The
excretion of GNT depends on the activity of conjugating enzymes and relies on the efflux
transporters’ capacity [48]. In vivo, ADME studies revealed that GNT metabolites are ex-
creted via the intestinal, biliary, and renal tracts [49,50]. Although there is limited evidence
that consuming large amounts of GNT in the diet causes a deleterious effect in humans, the
toxicity of GNT on fertility and fetal development has been extensively studied in recent
years. Several studies have demonstrated that therapeutically relevant doses of GNT have a
harmful effect on BC differentiation, the estrous cycle, and fertility in rodent models [51,52].
This natural phytochemical can exhibit a wide range of important therapeutic activities,
including antioxidant [53], anti-inflammatory [54], antibacterial [55], antiviral [56], antidia-
betic [57], and anticancer activities [58]. GNT has proven its ability against various types of
human cancers such as lung [59], liver [60], prostate [61], pancreatic [62], skin [63], cervi-
cal [64], uterine [65], colon [66], kidney [67], bladder [68], neuroblastoma [69], gastric [70],
esophageal [71], pituitary [72], salivary gland [73], testicular [74], ovarian [75], and finally,
breast cancer [29].

3. Molecular Pharmacology of Genistein in Breast Tissue

GNT is a natural phytochemical belonging to phytoestrogen and it possesses a similar
structure to estrogen. Interestingly, it has both mimic and antagonized estrogen effects;
simultaneously, it inhibits BC cell proliferation [76]. Estrogen receptor-mediated growth
regulation of BC cells by GNT may be concentration-dependent. T.T.Y. Wang et al. summa-
rized that GNT stimulated growth at lower concentrations (10−8~10−6 M), but inhibited
cancer cell growth at higher concentrations (>10−5 M) [77]. There are two types of estrogen
receptors [78]. GNT has a structural similarity to both ER-α and ER-β receptors but binds
with ER-β with higher affinity compared to ER-α [20,21]. In the case of ER-α, GNT acts
as an antagonist. Thus, GNT-mediated anticancer activity is involved by suppressing the
expression and activity of ER-α. E.J. Choi summarized that GNT regulates cell proliferation
with apoptosis via the ER-α-dependent pathway in MCF-7 BC cells through the underlying
mechanism of downregulating cyclin D1 and upregulating the Bcl-2/Bax ratio (B cell lym-
phoma 2/BCL associated X) at the dose of 50 µM [79]. On the other hand, in ER-β, GNT
increases receptor activities as a type of agonist. Therefore, ER-β-dependent anticancer
activity of GNT is mediated by activating the receptor and potentiating chemotherapeu-
tic efficacy to treat cancer [80]. H. Jiang stated that GNT mediated anticancer activities
through ER-β1 receptors in MDA-MB-231, MCF-7 cells, and BALB/c mice by inhibiting
cell proliferation through arresting cells in the G2/M and G0/G1 phases, which led to cell
cycle blockade at the dose of 10−6–10−4 mol/L [81].

It has also been found that GNT can bind with the estrogen-responsive G protein-
coupled receptor-30 (GPR-30) or G protein-coupled estrogen receptor-1 (GPER-1) [82] and
inhibit cell proliferation [83]. Kim GY et al. summarized that GNT suppresses GPR-30
activation in breast cancer gene 1(BRCA-1)-mutated BC cells, resulting in G2/M phase
arrest mediated by suppressing Akt phosphorylation [84]. Human epidermal growth factor
receptor 2 (HER-2) is an important biomarker in BC and overexpressed in around 20–30%
of BC types [85]. Thus, regulating HER-2 is a significant factor in BC treatment. Sakla et al.
summarized that GNT inhibited proto-oncogenes of HER-2 and subsequently followed
the HER-2 protein expression, phosphorylation, and promoter activity through an ER-
independent mechanism in BC cells, aiming to delay tumor onset in transgenic mice [86].
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Furthermore, GNT can inhibit protein tyrosine kinase (PTK), hypothesized to be responsible
for the lower rate of BC observed in Asian women consuming soy. Akiyama et al. reported
that GNT scarcely inhibited the enzyme activities of threonine- and serine-specific protein
kinases such as cAMP-dependent protein kinase, Ca2+/phospholipid-dependent enzyme
protein kinase C, and phosphorylase kinase, and these mechanisms are mediated through
phosphorylation of the EGF receptor [87].

4. Cell-Specific Molecular Mechanisms of Genistein-Mediated Anti-Breast Cancer
Activity In Vitro

Cancerous cell lines derived from humans are critical models for in vitro cancer re-
search to determine the therapeutic advantage of anticancer agents [88]. Anticancer activity
of phytochemicals is cell-specific, where one phytochemical is effective in one or more
cell lines, and this may be the difference in the cell components system. Cell line-specific
anticancer activity of GNT is summarized in Figure 1.
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Figure 1. Graphical overview of the anticancer mechanisms of genistein. GNT induces apoptosis
through a mitochondrial-mediated classical caspase-dependent pathway with modulating Bcl-2
family proteins. It induces cell cycle arrest by modulating the cycle regulatory proteins. It inactivates
signaling pathways, namely PI3K/AKT and MAPK (ERK1/2) pathways. GNT also modulates
several miRNA expressions and suppresses cell migration, invasion, and angiogenesis, and regulates
epigenetic control.
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4.1. The Effects of Genistein on MCF-7 BC Cells

According to Prietsch et al., GNT (0.01–100 µM) promoted apoptosis via mediating
the autophagy-dependent mechanism and increasing the ratio of Bax/Bcl-2 and inhibiting
the oxidative stress of cancer progression through changing the expression of antioxidant
enzymes [89]. Liu et al. summarized that GNT (5–20 µM) induced apoptosis through
the mitochondrial-dependent pathway by decreasing the Bcl-2/Bax ratio and increasing
tumor suppressor gene p73 expression and ATM phosphorylation with G2/M phase
arrest permanently [90]. Similarly, GNT (50–200 µM) halted cellular growth and induced
apoptosis by following the downregulation of Bcl-2 protein, upregulation of Bax, and
decreasing cyclin D1 expression in the MCF-7 BC cell line [79]. At a low concentration, GNT
(1 µM) stimulates cell proliferation, but a higher concentration (25 µM) induces apoptosis
pathways by upregulating the CDKN1A and p53 responsive genes and downregulating
CCNG1 GADD45A, NF-κB, Bcl-2, TNFR, ESR1, NCOA2, and NCOA3 [91]. Another
study investigated that GNT (50 µM) induced apoptosis by upregulating poly-(ADP-
ribose)-polymerase and p53, and downregulating the Bcl-2/Bax protein ratio [92]. An
in vitro study by Lemos investigated that GNT (10 µM) induced apoptosis by breaking
the plasma membrane, nuclear membrane, and upregulating pS2 expression [93]. A later
study reported that GNT (100 µM) mediated programmed cell death and suppressed
cell growth by upregulating caspase 7, apoptosis signaling kinase-1, ADP ribose, and
p38-dependent mitogen protein kinase [94]. Inhibition of metastasis and angiogenesis
processes is a common mechanism in BC treatment. In vitro study demonstrated that GNT
(3.125–12.5 µM) decreased tumorigenic processes by increasing GSTP1 and RARβ2 gene
expression and activity [95]. Shon et al. concluded that GNT suppressed angiogenesis by
downregulating COX, TPA, and EROD proteins [96], while at 1–10 µg/mL, it inhibited
angiogenesis by decreasing tyrosine kinase and ribosomal S6 kinases [97]. In an in vitro
study, GNT lowered cell proliferation via mitochondrial-dependent pathways by reducing
Fis1 (mitochondrial fission) and Opa1 (mitochondrial fusion) mRNA expression [98] at
10 nm–10 µM, while 4–10 mol/L of GNT inhibited cell proliferation by downregulating
cyclin D1 and arresting the cell cycle in the G0/G1 phase, resulting in the blockage of cell
survival, according to H. Jiang et al. [81].

Chen et al. reported that GNT (5–100 µM) inhibited the proliferation of cells by induc-
ing apoptosis through IGF-1R-PI3 K/Akt-mediated pathway inactivation and upregulating
the Bax/Bcl-2 ratio [99]. Furthermore, it has been shown that GNT (5–30 µM) inhibited BC
cell growth, proliferation, and promoted apoptosis by following the downregulation of the
Hedgehog–Gli1 signaling pathway and decreasing the mRNA level of Smo and Gli1 [100].
Marik et al. also found similar results, that GNT at a low concentration (0.1 µM) stimulates
cancer progression, but GNT (20 µM) at a high concentration inhibits cell proliferation
by downregulating mRNA expression of ER-α protein and arresting the cell cycle at the
G2/M phase [76]. Furthermore, Chinni et al. reported that GNT (100 µM) inhibits cell
proliferation by downregulating Akt-mediated signaling pathways, decreasing telomere
length, and overexpression of cyclin-dependent kinase inhibitor p21WAF1 [101]. An early
study demonstrated that GNT (50 µM) inhibited tumor growth with apoptosis inductions
by increasing Ca2+-dependent pro-apoptotic protease, mµ-calpain, and caspase-12 [102].
On the other hand, Liao et al. showed that GNT (100 µM) inhibited cell growth along-
side decreasing paclitaxel-induced tubulin polymerization, Bcl-2, cyclin B1, and CDK2
kinase, leading to cell cycle arrest at the G2/M phase [103]. Chen et al. showed that
GNT (50–100 µM) suppressed cell division through uplifting heat shock protein (HSP)
activity and reducing SRF mRNA, RAG-1, and DOC 2 expression [104]. GNT (40 nm–2 µM)
inhibits mammosphere formation in BC stem cells by suppressing PI3K/Akt signaling
through upregulating the PTEN expression [28]. A similar result found by Y. Liu et al.
confirmed that GNT (40 nm–2 µM) inhibited mammosphere formation and induced stem
cell differentiation by activating PI3K/Akt and MEK/ERK signaling in a paracrine manner,
increasing E-cadherin mRNA expression by reducing the ratio of CD44+/CD24-/ESA in
MCF-7 BC cells [105]. GNT (1 µM) induces an anticancer effect through upregulating
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pro-inflammatory genes, i.e., pS2 and COX2, and downregulating anti-inflammatory gene
expression, i.e., TFGβ and PPARγ in MCF-7 BC cells [106]. Furthermore, Kazi et al. re-
ported that GNT (50–200 µM) halts cancer progression by upregulating IκB-α and p27
(Kip1) levels, and downregulating proteasomal chymotrypsin-like activity and CDKs [107].
Epigenetics regulation by GNT (60–100 µM) is mediated by diminishing DNA methylation
levels, DNMT1 expression, and DNA methyltransferase enzyme activity. However, this
reduction in DNA methylation occurs in the promoter region of multiple tumor suppressor
genes (TSGs) such as adenomatous polyposis coil (APC), ataxia telangiectasia mutated
(ATM), phosphatase and tensin homolog (PTEN), and mammary serpin peptidase inhibitor
(SERPINB5) [108].

4.2. The Effects of Genistein on MDA-MB-231 BC Cells

Recently, an experiment conducted by Liu et al. GNT (5–20 µM) induced apopto-
sis through the mitochondrial-dependent pathway by reducing the Bcl-2/Bax ratio and
inhibiting cell growth and increasing the expression of p73, leading to the activation of
G2/M phase arrest and the ATM/Cdc25C/Chk2/Cdc2 checkpoint pathway [90]. GNT
prompted the apoptotic pathway and directly inhibited the growth of cells through the
prevention of NF-κB signaling by the Notch-1 pathway and by downregulating cyclin
B1 and Bcl-2 expression, resulting in the arrest of the cell cycle at the G2/M phase at
5–20 µM [109], while at 5–50 µM, this phytochemical induced apoptosis by targeting the
endogenous copper ion, reducing Cu(II) to Cu(I) through the production of reactive oxygen
species (ROS) [110]. Before that, an in vitro study by Dampier et al. reported that GNT
(10 µM) induced apoptosis and inhibited cell proliferation and cell cycle arrest at the G2
phase, degrading proto-oncogene c-Fos and prohibiting protein-1 (AP-1), and also ERK
activity [111]. Another study by Yang et al. demonstrated that GNT (50 µM) exerted apop-
tosis by upregulating poly-(ADP-ribose)-polymerase, activating p53, and downregulating
Bcl-2/Bax protein [92].

In the case of angiogenesis, Mukund et al. explained that GNT (100 µM) reduced
angiogenesis by blocking the transactivation of downstream HIF-1α effectors, e.g., VEGF,
leading to the reduction in hypoxia-inducible factor-1α expression in MDA-MB-231 BC
cells [26]. Furthermore, 1–10 µg/mL of GNT suppressed angiogenesis and cell mutation by
decreasing tyrosine kinase, ribosomal S6 kinases, and DNA topoisomerases I and II [97],
while at a 50 µM concentration, it decreased angiogenesis and inhibited cell division
through the underlying mechanism of downregulating COX, topoisomerase II enzyme
TPA, and EROD protein activity [96]. Followed by angiogenesis, GNT (15–30 µM) [112]
and (5–20 µM) [24] obstructed cancer cell migration and invasion, respectively, by lowering
levels of CDKs, tyrosine kinase, and paracrine stimulation and decreasing MEK5, ERK5,
phospho-ERK5, NF-κB/p65, and Bcl-2/Bax.

Another study conducted by Kousidou et al. reported that GNT (35–100 µM) pro-
gresses slowdown invasiveness by decreasing MMP gene expression, PTK activity, and
glucose uptake rate, leading to phagocytosis of cancerous cells [113]. Apart from this,
it reduces cell viability by decreasing the DNA methyltransferase activity and DNMT1
expression and affecting the expression of TSGs, i.e., APC, ATM, PTEN, and SERPINB5 at
60–100 µM of GNT [108]. Another recent study by Pons et al. summarized that GNT (1 µM)
causes a considerable decrease in cell viability through the mitogen-dependent protein
kinase pathway and by promoting apoptosis mechanisms [106].

In MDA-MB-231 BC cells, cell growth control is a significant target for GNT. Gong
et al. stated that GNT (5–50 µM) inhibited cell growth by partly inducing apoptosis via
downregulation of the Akt and NF-κB cascade pathways [114]. In another in vitro analy-
sis, the cell growth inhibitory activity was evidenced by GNT (2.5–400 µM) through the
upregulation of two crucial TSGs, p21WAF1 (p21) and p16INK4a (p16), and the down-
regulation of two tumor-promoting genes, c-MYC and BMI1, ultimately inhibiting cancer
progression [115]. Y. Fang et al. concluded that GNT (40 µM) inhibited cellular growth
by following the activation of DNA-dependent damage response and the ATR signaling
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pathway and activating the BRCA-1 complex, inhibiting the cohesion complex, and increas-
ing phosphatide, which is distributed among CDK1, CDK2, and CDK3 [116]. Recently, it
was established that GNT (1000 ppm) suppressed tumor growth by cell cycle regulation
via maintaining the expression level of the cyclin D1 protein, leading to G0/G1 phase
arrest, which causes cell cycle blockage [81]. Subsequently, Rajah et al. summarized that
GNT (10–100 µM) inhibited tumor growth by downregulating MEK5, pERK5, and NF-κB
proteins [117]. In the case of cell proliferation, a low dose of GNT (10 µM) slightly inhibited
cell proliferation by reducing the P-STAT3/STAT-5 ratio [98]. In comparison, at a double
dose, i.e., 20–40 µM, it significantly prevented cell proliferation by inducing apoptosis and
suppressing Skp2 expression by upregulating the tumor suppressor genes, i.e., p21 and p27,
resulting in G2/M phase arrest [118]. Li et al. investigated that GNT (5–20 µM) inhibited
cell differentiation with cell cycle arrest at the G2/M phase by decreasing CDK1, cyclin B1,
Cdc25C, c-Jun, and c-Fos levels [22]. GNT can also play a role in MDA-MB-231 by inhibiting
mammosphere formation. A lower dose of GNT (2 µM) prevents mammosphere formation
through PI3K/Akt signaling by increasing the PTEN expression [28], while at a higher
dose, GNT (40 nm–2 µM) prevents the formation of mammosphere cells and promotes
differentiation through the PI3K/Akt and MEK/ERK signaling pathway by reducing the
CD44+/CD24-/ESA ratio and increasing E-cadherin mRNA expression [105]. Finally, GNT
(50 µM) impedes primary tumor formation by downregulating chelator neocuproine and
Bcl-2/Bax and by upregulating the caspase-3 pathway [110].

4.3. The Effects of Genistein on T-47D Breast Cancer Cells

Mukund et al. summarize that GNT (50 µM) lowered angiogenesis by preventing
the transactivation of downstream HIF-1α effectors such as VEGF, reducing the expres-
sion of hypoxia-inducible factor-1α in the T-47D BC cell line [26]. Cell proliferation effi-
cacy was evident by GNT (10 nm) with apoptosis induction through the mitochondrial-
dependent pathway via upregulating the cyt-C and oxidase activity, and downregulating
the ATP synthase/cytochrome c oxidase ratio [98]. GNT at 1 nm–100 µM inhibits cell
proliferation through ERK1/2-mediated signaling by the downregulation of phosphory-
lated p90RSK [119], while 10 µM of GNT induces apoptosis and inhibits cell proliferation
through degrading proto-oncogene c-Fos levels and prohibiting protein 1 (AP-1) and ERK
expression [111]. Another in vitro study by Rajah revealed that GNT (10–100 µM) in-
hibits cell proliferation and tumor growth by downregulating MEK5, pERK5, and NF-κB
proteins [117]. Additionally, a high GNT (20 M) concentration inhibits cell proliferation
by reducing ER-messenger RNA transcription and arresting the cell cycle at the G2/M
phase [76]. According to Sotoca et al., GNT (500 nm) inhibited cell growth and induced
apoptosis by activating cytoskeleton restructuring that results in interaction among inte-
grins, focalized adhesion kinase, and CDC42 that leads to cell cycle arrest in the T-47D BC
cell line [120], while according to Pons et al., GNT (1 µM) caused a significant decrease in
cell viability by increasing Sirt1, TGFβ, and PRARγ and decreasing IL-1β expression in
T-47D BC cells [106].

4.4. The Effects of Genistein on HCC1395 Breast Cancer Cells

Lee et al. demonstrated that GNT (1–200 µM) inhibited HCC1395 cell invasion and
metastasis through the upregulation of TFPI-2, ATF3, DNMT1, and MTCBP-1 gene expres-
sion and the downregulation of MMP-2, MMP-7, CXCL12 genes, leading to cell cycle arrest
at the G2/M phase, therefore reducing cell viability [25].

4.5. The Effects of Genistein on HCC38 Breast Cancer Cells

Donovan stated that GNT (4–10 ppm) inhibited cell growth by increasing the BRCA1
protein level and reducing CpG methylation, consequently decreasing the aryl hydrocarbon
receptor (AhR) binding at BRCA1 in the HCC38 cell line [121].
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4.6. The Effects of Genistein on Hs578t Breast Cancer Cells

According to Parra et al., GNT (1–50 µM) inhibits cell viability and induces apoptosis
through the downregulation of mir-155, resulting in the upregulation of casein kinase,
FOXO3a, p27, and PTEN expression, and the reduction of β-catenin in the Hs578t cell
line [122].

4.7. The Effects of Genistein on DD-762 and Sm-MTC Breast Cancer Cells

Nakagawa et al. appraised that GNT (7–274.2 µM) inhibited cell proliferation by
upregulating caspase-3 protein activity in DD-762 and Sm-MTC BC cell lines [123].

4.8. The Effects of Genistein on BT-474 Breast Cancer Cells

GNT at a low concentration (1 µM) could promote cancer but at a high concentration
(50 µM), it inhibits cell division by downregulating tyrosine kinase, HER2 activation, and
the MAPK pathway [86]. GNT (3.125–25 M) inhibits cell replication and arrests the cell
cycle in the G2/M phase, and inhibits the expression of EGFR, HER2, and ER-alpha [124].

4.9. The Effects of Genistein on BT20 Breast Cancer Cells

Cappelletti et al. revealed that GNT (15–30 µM) inhibits metastasis by lowering levels
of CDKs, tyrosine kinase, DNA topoisomerase II, and paracrine stimulation in the BT20
cell line [112].

4.10. The Effects of Genistein on 21PT Breast Cancer Cells

Marik et al. demonstrated that GNT at a 0.1 M concentration stimulated cancer
progression, while 20 M of GNT inhibited cell proliferation by decreasing ER-messenger
RNA expression and arresting the cell cycle at the G2/M phase in the 21PT cell line [76].

4.11. The Effects of Genistein on 184-B5/HER Breast Cancer Cells

Katdare et al. showed that GNT (2.5–10 µM) impeded the cell cycle and induced
apoptosis by increasing the P16INK4a gene and decreasing HER-2/neu and tyrosine
kinase [125].

4.12. The Effects of Genistein on MCF-10A, MCF-ANeoT, and MCF-T63B Breast Cancer Cells

An early study showed that GNT (1–10 µg/mL) obstructed angiogenesis and cell
mutation by decreasing the expression of ribosomal S6 kinases and tyrosine kinase [97].
An overview of GNT’s anticancer activities is given in Table 1.

Table 1. Tabular representation of in vitro anti-breast cancer activity of genistein.

Target Pharmacological
Interaction

Type of Study (In Vitro or
In Vivo) Dose Molecular Mechanism Molecular Target Ref.

In vitro
(MCF-7) 5–100 µM ↑Apoptosis

↓Cell proliferation
↓IGF-1R-PI3 K/Akt pathway
↓Bcl-2/Bax level [99]

ER-α Antagonist
In vitro

(MDA-MB-231
and T-47D)

50–100 µM ↓Angiogenesis ↓VEGF
↓HIF-1α expression [26]

ER-α
ER-β

Agonist
Antagonist

In vitro
(MCF-7, T47D,

and MDA-MB-231)
0.01–10 µM ↓Cell proliferation

↓Mitochondrial activity

↓Opa1, Fis1
↑Cytochrome c oxidase
↓ATP synthase/cytochrome c ratio
↓P-STAT3/STAT-3 ratio

[98]

ER-α
ER-β Not mentioned In vitro

(MDA-MB-231) 5–20 µM ↑Apoptosis
↑Cell cycle arrest

↑Arrest G2/M phase
↓NF-κB, Notch-1 pathway
↓Cyclin B1,
↓Bcl-2 and Bcl-xL

[109]

ER-α
ER-β Not mentioned In vitro

(MDA-MB-231)
2.5–400 µM
/250 mg/kg ↓Cell growth ↑p21WAF1 (p21), p16INK4a (p16)

↓BMI1, c-MYC [115]

ER-α
ER-β

Agonist
Antagonist

In vitro
(MCF-7 and MDA-MB-231) 5–20 µM ↑Apoptosis

↓DNA damage

↑Arrest G2/M
↑ATM, Bax, P73

↓Bcl-2,
↓Bcl-2/Bax rate, mutant P53

[90]
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Table 1. Cont.

Target Pharmacological
Interaction

Type of Study (In Vitro or
In Vivo) Dose Molecular Mechanism Molecular Target Ref.

ER-α
ER-β

Agonist
Antagonist

In vitro
(MCF-7, MDA-MB-435,

and Hs578t)
1–50 µM ↓Cell viability

↑Apoptosis

↓miR-155
↓β-catenin
↑Casein kinase,
↑FOXO3a, p27, PTEN, CK1α

[122]

ER-α
ER-β Not mentioned In vitro

(MDA-MB-231) 40 µM ↓Cell growth

↑Phosphopeptide
↓Cohesin complex
↑DNA damage response pathway
↑BRCA1
↑ATR signaling pathway

[116]

ER-α
ER-β

Agonist
Antagonist

In vitro
(MCF-7 and MDA-MB-231) 40 nm–2 µM ↓Mammosphere

formation
↑PTEN expression
↓PI3K/Akt signaling [28]

ER-α
ER-β

Agonist
Antagonist

In vitro
(MCF-7, T47D, and

MDA-MB-231)
1 µM ↓Cell viability

↓Cell proliferation
↑ROS, pS2, Sirt1, COX2
↓IL-1β, TFGβ, PPARγ [106]

ER-α
ER-β

Agonist
Antagonist

In vitro
(T47D) 500 nm ↓Cell growth

↑Apoptosis

↑Cytoskeleton remodeling
↑Integrins, focal adhesion
kinase, CDC42
↑Arrest cell cycle

[120]

ER-α Antagonist In vitro
(T47D) 1–100 µM ↓Cell proliferation ↓ERK1/2, p90RSK [119]

ER-α Antagonist
In vitro

(MCF7, UACC3199, and
HCC38)

4–10 ppm ↓Cell growth
↑Activate BARCA-1
↓CpG methylation
↓AHR activity

[121]

ER-β Agonist In vitro
(MCF-7 and MDA-MB-231)

10−6 mol/L–
10−4 mol/L/

100–1000 ppm
↓Cell proliferation ↓Cyclin D1

↑Arrest G0/G1 phase [81]

ER-α
ER-β Not mentioned In vitro

(MCF-7)
5–30 µM/

20–50 mg/kg
↓Cell growth
and proliferation

↓Hedgehog–Gli1
signaling pathway [100]

ER-α
ER-β Not mentioned

In vitro
(MDA-MB-231, and

MDA-MB-468)
5–50 µM ↑Apoptosis

↓Endogenous copper ion
↑Generation of reactive oxygen
species (ROS)

[110]

ER-α Antagonist In vitro
(MCF-7 and UACC-3199) 0.5–20 µM ↓Cell growth

↑BRCA-1
↓CpG methylation
↓Cyclin D1
↓DNMT-1
↑AhR
↑CYP1A1

[126]

ER-α Antagonist In vitro
(HCC1395) 1–200 µM

↓Cell viability
↓Invasion
↓Metastasis

↑TFPI-2, ATF3, DNMT1, MTCBP-1
↓MMP-2
↓MMP-7, CXCL12
↑Arrest G2/M phase

[25]

ER-β Agonist In vitro (SUM1315MO2) 1–100 µM ↓Cell proliferation ↑ER-β expression
↑Restore BRCA1 function [127]

ER-α Antagonist In vitro
(MCF-7) 50–200 µM ↓Cell growth

↑Apoptosis

↓Bcl-2
↑Bax
↓Cyclin D1
↓Bcl-2/Bax ratio

[79]

ER-α
Agonist

and
Antagonist

In vitro
MCF-7 1–25 µM ↑Apoptosis

↓Cell proliferation

↑CDKN1A, TNF-α p53
responsive gene
↓CCNG1 and GADD45A
↓BCL-2, BCL-3, and NF-kappa B
and TNFR
↓NCOA2 and NCOA3

[91]

ER-α Antagonist In vitro
MDA-MB-435 750 µg/g ↑Apoptosis

↓Metastasis
↓Tyrosine phosphorylation
↑Matrix degrading enzymes [128]

ER-α Antagonist
In vitro

MCF-7, ZR-75.1, T47-D,
MDA-MB 468, MDA-MB

231, and HBL
1–10 µM ↑Apoptosis

↓Cell proliferation

↓c-Fos levels, protein-1 (AP-1)
activity, ERK signal
↑Arrest at G2 phase

[111]

ER-α
ER-β Not mentioned In vitro

(MCF-7 and MDA-MB-231) 60–100 µM ↓Cell viability
↓mRNA expression of DNMT1
↓DNA methylation in tumor
suppressor genes

[108]

ER-α
ER-β Not mentioned In vitro

(MCF-7) 0.01–100 µM ↑Apoptosis ↑Bax/Bcl-2 ratio [89]

ER-α
ER-β Antagonist

In vitro
MCF-7

MDA-MB-231
50 µM

↑Apoptosis
↓Cell division
↓Angiogenesis

↓EROD, TPA
↓Cyclooxygenase
↓Tyrosine kinase

[96]

ER-α
ER-β Antagonist In vitro

MDA-MB-468 25–100 µM
↓Cell cycle kinetics
↑Apoptosis
↓Cell proliferation

↑Arrest at G2/M phase
↑Nuclear membrane breakdown
during G2/M transition
↓DNA synthesis

[129]

ER-β Antagonist In vitro
MCF-7 0.001–10 µM ↑Cell apoptosis

↑ Plasma membrane breakdown
↑Nuclear membrane breakdown
↑pS2 expression

[93]

ER-β Antagonist In vitro
MCF-7 and MDA-MB-231 10–100 µM ↑Apoptosis

↓Cell division

↓PTK, Akt, FAK, ErbB-2, and Bcl-2
↓Topoisomerase II, tyrosine kinase
↓Osteoclast activity

[87,
113,
130–
137]

ER-α
ER-β Not mentioned In vitro

(MDA-MB-231 and SKBR3) 20–40 µM
↓Cell proliferation
↑Apoptosis
↓Metastasis

↓Skp2 expression
↑Arrest G2/M phase
↑p21, p27

[118]

ER-α
ER-β Not mentioned In vitro

(MCF-7) 75–200 µM ↓Cell growth ↑miR-23b
↑Target PAK2 gene [138]

ER-α
ER-β Antagonist In vitro

MDA-MB-231 0.5–15 µM ↓Cell cycle kinetics
↑Apoptosis

↑Anti-growth signals protein
↑Connexin phosphorylation blocks
the homeostatic regulators

[139]



Processes 2022, 10, 415 10 of 22

Table 1. Cont.

Target Pharmacological
Interaction

Type of Study (In Vitro or
In Vivo) Dose Molecular Mechanism Molecular Target Ref.

ER-α Antagonist
In vitro

MDA-MB-231, BT20, T47D,
and ZR75.1

15–30 µM ↑Cell apoptosis
↓Migration

↑Arrest at G2/M phase
↓Tyrosine kinase
↓Paracrine stimulation

[112]

ER-α
ER-β

Agonist
and Antagonist

In vitro
MDA-MB-231 and T47D 10–100 µM

↓Decrease cell
proliferation
↓Tumor growth

↓MEK5, pERK5, NF-κB proteins [117]

ER-α
ER-β Antagonist In vitro

AS-4, NEO, and BG-1 25–150 µM ↑Inhibit cell proliferation
↑Induce apoptosis

↓Cytotoxic effect in AS4,
tyrosine kinase
↑Ubiquitin E3 ligase

[140]

ER-α Antagonist In vitro
MDA-MB-231 5–20 µM ↑Trigger apoptosis

↓Invasion
↓MEK5, ERK5, NF-κB/p65
↓Bcl-2/Bax [24]

ER-α Antagonist In vitro
MDA-MB-231 5–20 µM ↑Cell depletion

↓Differentiation

↑Trigger G2/M cell cycle arrest
↓CDK1, cyclinB1, and Cdc25C
↓c-Jun and c-Fos

[22]

ER-α Antagonist In vitro
MCF-7 50 µM ↓Tumor growth

↑Induce apoptosis

↑Ca2+-dependent
proapoptotic proteases
↑mµ-calpain and caspase-12

[102]

ER-β Agonist
and Antagonist

In vitro
MDA-MB-231

20–80 µM
and 750 µg/g

↓Cell growth
↓Tumor formation ↑Cell cycle blocked at G2/M [141]

ER-α Antagonist In vitro
MCF-7 and MDA-MB-231 100 µM ↑Induce apoptosis

↓Cell proliferation

↑Arrest at G2/M phase
↓Paclitaxel-induced tubulin
Polymerization
↓Bcl-2 phosphorylation
↓Cyclin B1 and CDC2 kinase

[103]

ER-α Antagonist In vitro
BT-474 3.125–25 µM ↑Induce apoptosis

↓Duplication

↓HER2 and ER-alpha
↑Cell cycle arrest at S and G2/M
↓Expression of surviving, EGFR

[124]

ER-α
ER-β Antagonist

In vitro
MDA-MB-

231, MCF-7, and MCF-12A
35–100 µM

↓Cell invasiveness
↓Cell cycle
↑Phagocytosis

↓Protein tyrosine kinase pathway
↑Arrest at G2/M phase
↓MMP genes
↓Glucose uptake

[113]

ER-α Antagonist In vitro
MCF-7 100 µM ↑Induce apoptosis

↓Cell Growth

↑Caspase 7 and poly (ADP ribose)
polymerase
↑Apoptosis signaling kinase 1
↑p38 MPK

[94]

ER-α Antagonist In vitro
MDA-MB-231 5–50 µM

↑Induce apoptosis
↓Cell cycle

↑Apoptosis-related genes
↓Akt, NF-κB signal
↓EGF

[114]

ER-α Antagonist In vitro
MCF-7 50–200 µM

↓Cell invasion
↑Apoptosis
↓Cancer progression

↓Proteasomal chymotrypsin-like
activity
↓CDKs inhibit by p27Kip1
↑IκB-α level

[107]

ER-α Antagonist In vitro
MCF-7 50–100 µM ↓Cell division

↓Cancer progression

↓SRF, RAG-1, DOC 2
↑Arrest at G2/M phase
↑Heat shock protein 105
(HSP) mRNA

[104]

ER-α Agonist
Antagonist

In vitro
MCF-7 and MDA-MB-468 3.125–12.5 µM ↓Primary tumor

↓Metastasis
↑GSTP1 gene
↑RARβ2 gene [95]

ER-α Antagonist In vitro
MCF-7 1–100 µM ↑Apoptosis, cell cycle

arrest
↓CDKs, Akt activity
↓Telomere length [101]

ER-α Agonist
Antagonist

In vitro
MCF-7, 21PT, and T47D 0.1–20 µM ↓Cell proliferation

↓Cancer progression
↓ER-α messenger RNA expression
↑Cell cycle arrest at the G2-M phase [76]

Antagonist
In vitro

MDA-MB-231 and
MDAMB-468

50 µM ↓Primary tumor
↑Apoptosis

↓Chelator neocuproine
↓Bcl-2
↑Bax and caspase-3

[110]

ER-α Antagonist In vitro
184-B5/HER 2.5–10 µM

↑Cellular apoptosis
↓Cell cycle
regulators

↑P16INK4a gene
↓HER-2/neu
↓Tyrosine kinase
↑Arrest at S + G2/M phase

[125]

5. Clinical Trials

Human clinical trials have confirmed the in vitro research findings. In some cases,
when consumed at a consistent dose, pure GNT had no estrogenic effect on breast tis-
sue [31,142], although in other cases, dietary soy supplementation had pro-estrogenic
effects on breast tissue [143–145]. Several secondary endpoints were evaluated in a recently
published clinical study to determine whether purified GNT affects endometrial thickness,
vaginal cytology, and breast density (Table 2 [31,95,96]. Following the implementation of
safety measures, it was possible to identify the potential estrogenic effects of 54 mg/day of
purified GNT as indicators of BC risk in the research participants. Indeed, while the placebo
group maintained a constant endometrial thickness, the GNT group demonstrated a time-
dependent reduction that reached statistical significance during the 36-month follow-up
(approximately 12% reduction, p < 0.01). Moreover, levels of gene expression of BRCA-1
and 2 breast tumor suppressor genes [146,147] have been preserved for three years in the
GNT-administered group, while levels of both BRCA-1 and 2 have decreased in the placebo
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group (Table 2) [31,142]. GNT also significantly reduced sister chromatid exchanges, imply-
ing that it may prevent genotoxicity and subsequent mutagenesis (Table 2) [142]. In this
regard, based on the use of GNT in BC, two clinical trials—a phase II study entitled “Gem-
citabine Hydrochloride and GNT in Treating Women with Stage IV BC” (NCT00244933)
and a phase I study entitled “GNT in Preventing Breast or Endometrial Cancer in Healthy
Postmenopausal Women” (NCT00099008)—have been completed, but the results are not
yet published. The effects of GNT on human clinical studies against cancer are summarized
in Table 2.

Table 2. Effects of genistein on markers of cancer risk observed from human clinical studies (post-
menopausal women).

Subjects (n) Number/Intervention (mg/day) Study Length
(Months) Results Ref

57 54g/day GNT (n = 30) or
placebo (n = 27) 12 Protect genomic damage [142]

389

Placebo (n = 191; 1000 mg calcium
and 800 mg vitamin D) or GNT
(n = 198; 54 mg GNT, 1000 mg

calcium, and 800 mg vitamin D)

24
↑BMD at the lumbar spine and the
femoral neck
↑B-ALP and IGF-1

[148]

220 Placebo (n = 111) or isoflavone
(n = 109; ~50 mg isoflavones) 24

↓Breast area
↓Breast density; neither was significant
when compared to placebo

[149]

34 Placebo (n = 17) or soy (n = 17;
100 mg isoflavone, ~76 mg aglycones) 12 ↓Breast area [150,151]

84
Placebo (n = 23) or soy (n = 28;

60 mg, ~45 mg isoflavones) 14 days

↓Nipple aspirate levels of apolipo-protein D
↑pS2 level

[143,144]

389
54 mg of GNT aglycone daily

(n = 71) or placebo (n = 67) 36

unchanged breast density, BRCA1
and BRCA2
↓Sister chromatid exchange
↓Pyridinoline, NF-B receptor activator
↑Alkaline phosphatase, IGF-I,
and osteoprotegerin

[31]

6. Synergistic Properties of Genistein in the Treatment of Breast Cancer

In addition to its solid anticancer activity alone, GNT possesses synergistic properties
with many other anticancer drugs, helping it overcome chemopreventive resistance mecha-
nisms in BC treatment. The synergistic activity of GNT can be carried by many anticancer
drugs such as doxorubicin, trastuzumab, tamoxifen, trichostatin A, cisplatin, capsaicin,
paclitaxel, and vincristine.

6.1. Synergistic Properties of Genistein with Doxorubicin in MCF-7/Adr Cells

Doxorubicin is an antibiotic that exhibits no inhibitory effects on Adriamycin-resistant
BC cell lines. However, the combination of GNT at 30 µmol/L and doxorubicin has syn-
ergistic effects on MCF-7/Adr cells. GNT enhances the cytotoxic effects of doxorubicin
and decreases the chemoresistance of MCF-7/Adr BC cells. In addition, GNT and dox-
orubicin synergistically induced apoptosis by decreasing expression of Her2/new mRNA
and c-erbB2, resulting in cell cycle arrest in MCF-7/Adr BC cells in the G2/M phase [29].
Another study by Yang et al. reported that GNT (50 µM) with a combination of doxorubicin
slightly induces apoptosis by destroying the plasma membrane of cells and increasing poly
(ADP-ribose) polymerase cleavage in MDA-MB-231 and MCF-7 BC cells [92].

6.2. Synergistic Effect of Genistein with Trastuzumab

GNT and trastuzumab synergistically develop antitumor activity in BT-474 BC cells.
C. Lattrich et al. stated that the combination of GNT (10 µmol/L) and trastuzumab
(1/10 µg/mL) enhanced the growth-inhibitory effect and reduced viable cell numbers
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by increasing the ER-β2 expression, which causes an antiestrogenic effect, leading to
reduced cell proliferation in ER-α/β-positive and HER2-overexpressing BT-474 BC cells.
Furthermore, both GNT and trastuzumab reduce cyclin A2 mRNA expression, c-Fos, HER2,
and cyclin D1 expression, which suppresses the proliferation of BT-474 BC cells [152].

6.3. Synergistic Properties of Genistein with Tamoxifen

Tamoxifen is a well-established medicine for treating BC, although the development
of gemcitabine resistance has hampered its efficacy. In this regard, GNT can improve the
efficacy of tamoxifen. Y. Li et al. described that GNT enhanced the anticancer capacity of
tamoxifen at the dose of 25 µM through the reactivation of ER-α and epigenetic pathway
regulation, e.g., histone modification, resulting in the reduction in HDAC1 and DNMT1
expression both in vitro (ER-α-negative MDA-MB-231 BC cells) and in vivo, leading inhib-
ited cell growth and cell viability [153]. On the other hand, Pons et al. concluded that 1 µM
GNT and 10 µM tamoxifen decrease the ROS production in T47D and MCF-7 BC cells and
upregulate the autophagic vacuole formation and PARP protein level and also reduce cell
viability, resulting in autophagic cell death only in T47D BC cells [154]. Another early study
reported that tamoxifen with GNT (1–10 µg/mL) impeded angiogenesis and cell mutation
by downregulating ribosomal S6 kinases, tyrosine kinase, and cell cycle regulators [97].
GNT also shows a prohibitory effect with tamoxifen, which induces apoptosis by destroy-
ing the nuclear membrane [93] and arrests the cell cycle by decreasing the expression of
HER2 in a dose-dependent manner [124].

6.4. Synergistic Effect of Genistein with Trichostatin A

GNT and trichostatin A act synergistically to inhibit PGR (progesterone receptors)
expression, resulting in a significant change in cell growth in ER-positive and ER-negative
BC cells. According to Li et al., the combination of GNT (25 µM) and trichostatin A
(100 ng/mL) synergistically decreased ROS production through the underlying mechanism
of increasing antioxidant enzymes, i.e., Mn-SOD (manganese-superoxide dismutase) and
catalase, in MCF-7 and T47D BC cells. Furthermore, GNT and cisplatin also synergistically
arrest the cell cycle at the S phase and cause a drop in the sub-G0/G1 phase, resulting in
MCF-7 cells at 25–50 mol/L concentration [154].

6.5. Synergistic Effect of Genistein with Capsaicin

The combination of GNT and capsaicin exerted anti-inflammatory and anticarcino-
genic effects in MCF-7 cells as well as in vivo in 48-week-old female Sprague–Dawley
rats by modulating the mitogen-activated protein kinase (AMPK) and COX-2, as well as
possibly other mitogen-activated protein kinases [30].

6.6. Synergistic Effect of Genistein with Paclitaxel and Vincristine

Paclitaxel and vincristine both are chemotherapy drugs. Together with GNT (100 µM),
they can suppress cell growth and cell viability by inhibiting CDC2 and cyclin B1 kinase
and inhibiting microtubule polymerization in human MDA-MB-231 and MCF-7 BC cell
lines. Furthermore, cell death by inducing apoptosis via decreasing Bcl-2 phosphorylation
without changing p21, p53, and Bax protein expression was also observed in combined
treatment [103]. Table 3 summarizes the effects of phytoestrogens in combination with
anticancer therapies that have been previously described.
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Table 3. Summary of the described effects of phytoestrogens in combination with anticancer therapies.

Treatment Option Study Type Effective Mechanism Ref

Doxorubicin

In vitro
(MCF-7/Adr)

↓Chemoresistance of tumor cells
↑Cell cycle arrest G2/M phase
↑Apoptosis
↓Her2/neu mRNA expression
↓c-erbB2 expression

[29]

In vitro
MCF-7 and MDA-MB-231

↑Destroyed the plasma membrane of cells
↑Apoptosis in most of the individual MCF-7 cells
↑Poly (ADP-ribose) polymerase cleavage

[92]

Trastuzumab In vitro
(SK-BR-3, BT-474, and MDA-MB-231)

↓Cell proliferation
↑Cell cycle arrest
↓c-Fos
↓HER2

[152]

Tamoxifen (TAM)

In vitro and vivo
(MDA-MB-231)

female immunodeficiency
nude mice)

↓Cell growth and cell viability
↓HDAC1
↓DNMT1

[153]

In vitro
MCF-7

↑Destroyed the plasma membrane of cells
↑Nuclear membrane breakdown
↑pS2 expression

[93]

In vitro
BT-474

↓Expression of HER2 and
ER-α
↓Expression of factor and EGFR

[124]

In vitro dysplastic, malignant cells ↓Cell growth, proliferation [97]

Trichostatin A
(TSA)

In vitro
(MCF-7, MDA-MB-231, and

MDA-MB-157)

↑ER-α reactivation
↑Histone remodeling
↓HDACs, DNMTs, PGR expression

[153]

Cisplatin (CDDP) In vitro
(MCF-7 and T47D)

↓ROS production
↑MnSOD, catalase activity
↑Arrest S and G0/G1 phase

[154]

Tamoxifen (TAM) In vitro
(MCF-7 and T47D)

↓ROS, LC3-II/LC3-I ratio
↓Cell viability
↑PARP

[154]

Ornithine decarboxylase
In vitro
MCF-7

MDA-MB-231

↑Putrescine, spermidine and spermine
↓12-Otetradecanoylphorbol-13-acetate (TPA)
↓Cyclooxygenase (COX)

[96]

Paclitaxel and vincristine In vitro
MCF-7 and MDA-MB-231

↓Bcl-2 phosphorylation
↓Cyclin B1 and CDC2 kinase
↓Cell viability
↓Microtubule polymerization

[103]

Lycopene In vivo
female Wistar rats

↓Serum MDA
↓8-isoprostane and 8-OhdG levels
↓Bcl-2, caspase 3, and caspase 9
↓Expression of Bax

[155]

7. Possible Strategies to Overcome Anticancer Drug Resistance by Genistein

Numerous mechanisms are responsible for BC drug resistance, such as membrane
glycoproteins acting as efflux pumps, including P-glycoprotein (P-gp), multidrug resistance
(MDR) protein, and BCRP, as well as enzymatic inactivation of the anticancer drug [156].
Phytochemical-based therapy can provide a reliable safety mechanism to prevent anticancer
resistance. Inhibition of P-glycoprotein (P-gp) activities or conjunction of P-gp substrate
with the anticancer drug leads to the increased accumulation of the anticancer drug within
the cell, producing cell cytotoxicity. However, GNT does not directly affect P-gp function
in a BC cell line but indirectly increases intracellular drug concentration, including dox-
orubicin. For instance, Castro and Altenberg stated that GNT decreased photo-affinity
labeling of P-gp with [3H] azidopine, a P-gp substrate, suggesting that GNT could block
P-gp-mediated drug efflux by direct interaction with P-gp and inhibited rhodamine123
efflux in human MCF-7 BC cell lines [157]. Furthermore, intracellular doxorubicin accumu-
lation was boosted by GNT therapy, leading to cell cycle arrest and apoptosis via inhibiting
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HER2/neu rather than influencing P-gp function and MDR-1 expression in MCF-7/Adr
cells [29]. GNT pretreatment with MDA-MB-231 and CB-17 scid/scid mice inactivated NF-
κB and may contribute to increased growth inhibition and apoptosis induced by cisplatin
docetaxel and doxorubicin in BC cells [158]. Targeting cyclooxygenase-2 (COX-2) can be
a possible mechanism of overcoming drug resistance. There is a positive relationship be-
tween COX-2 and MDR1/P-gp. GNT significantly inhibited cyclooxygenase-2 activity [96],
suggesting that GNT can inhibit MDR1/P-gp in BC, leading to improved anticancer drug
efficacy [159]. In the case of BCRP, GNT and its glucuronide and sulfate conjugation are the
substrates of BCRP established in in vitro cell culture models and in vivo pharmacokinetic
studies [39,40]. This binding of GNT with BCRP indicates that GNT treatment increases
anticancer drug concentration by decreasing efflux. However, there has been controversy
with GNT and C member 1 (ABCC1) and ABCG2. Rigalli et al. reported that treatment of
MCF-7 with GNT increases resistance to mitoxantrone and doxorubicin by increasing drug
efflux [160].

8. Nano-Formulation of Genistein for Breast Cancer Treatment

GNT research for cancer treatment has been extended in recent years due to evidence
of lower disease risk associated with its administration and a quest for pharmacological
medicines that impact growth factor signaling pathways in cells. A significant drawback of
GNT as a natural substance is its low water solubility. This may necessitate modifying its
chemical structure to increase solubility and boost bioavailability [161].

However, the advancement of nanomedicines has the potential to overcome phyto-
chemical limitations and allied health concerns, such as improved solubility, increased
bioavailability, targeted treatment of tumor cells or tissues while avoiding healthy cell
damage, and increased cell take-up. Nanomedicines could provide new avenues for cir-
cumventing these concerns. Additional advantages may include improved blood stability,
multifunctional nanomedicine design, minimal interaction with synthetic medications,
and improved anticancer activity [162]. Furthermore, multidrug resistance (MDR) is one
of the most important variables contributing to the failure of phytochemical therapy in
cancer. MDR can be circumvented using a new technique including nanocarriers and
phytochemical delivery. Modifying the biophysical interaction between the nanomedicines
and cancer cell membrane lipids can increase phytochemical delivery and overcome drug
resistance. This is accomplished by improving the transport of phytochemicals to target tis-
sues through surface modification of nanomedicines [163,164]. Currently, advancements in
treatment efficiency through nanomedicines have received much attention because of the in-
creased delivery of phytochemicals to tumors and cancer cells. Numerous highly successful
nanomedicines have been employed to enhance phytochemicals’ physicochemical qualities
and anticancer activity [165]. BC treatment with doxorubicin and GNT is improved by
using multifunctional hybrid nano-constructs that enable intracellular localization of the
drugs [166]. A research study by Jimmy Pham and his colleagues demonstrated that mito-
chondriotropic nano-emulsified genistein-loaded vehicles showed more effective potential
against hepatic and colon carcinomas than the control drugs [167].In one study, cervical
cancers were treated with bioflavonoid genistein-loaded chitosan nanoparticles targeted to
the folate receptor, which had a significant anticancer effect. The naturally derived chitosan
nanoparticles exhibited potent biodegradability and biocompatibility when coated with
the GNT [168]. Additionally, genistein-loaded biodegradable TPGS-b-PCL nanoparticles
possessed enhanced therapeutic effects in cervical cancer cells [169]. Moreover, the nanofor-
mulation of GNT promoted selective apoptosis in the cell line of oral squamous cancer by
suppressing the expression of a 3PK-EZH2 signaling pathway [170].

9. Concluding Remarks and Future Directions

The evidence provided from available scientific literature (in vitro and in vivo) de-
tailed in this review offers a comprehensive summary of the anticancer activities of GNT.
Overall, information from our study would help in the identification of the mechanisms
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of GNT against BC pathogenesis that will aid in drug development in anti-BC therapy.
Mechanisms of GNT are related to multiple molecular pathways, including regulating
miRNA, several proteins such as apoptosis, transcription factor and tumor suppressor-
related proteins, enzymes including kinase, several growth factors, receptors, and other
numerous targets (Figure 2). Successful conventional treatment of BC is limited due to
rising resistance to some chemotherapeutic drugs, but GNT may bring therapeutic advan-
tages by sensitizing multidrug-resistant BC cells and mediating some synergistic effects
with conventional anticancer drugs. Therefore, using GNT as a regular food supplement
may help in the near future to treat BC. However, we still need further research, including
clinical trials, regarding drug interactions, accurate pharmacokinetics, accurate therapeutics
doses, routes of administration, and established nanoformulation of GNT. The successful
performance of all approaches will make GNT a novel candidate for drug development
against BC.
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